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FOURIER TRANSFORMS OF SPHERICAL
DISTRIBUTIONS ON COMPACT

SYMMETRIC SPACES

GESTUR ÓLAFSSON and HENRIK SCHLICHTKRULL∗

Abstract
In our previous articles [27] and [28] we studied Fourier series on a symmetric space M =
U/K of the compact type. In particular, we proved a Paley-Wiener type theorem for the smooth
functions onM , which have sufficiently small support and areK-invariant, respectivelyK-finite.
In this article we extend these results toK-invariant distributions onM . We show that the Fourier
transform of a distribution, which is supported in a sufficiently small ball around the base point,
extends to a holomorphic function of exponential type. We describe the image of the Fourier
transform in the space of holomorphic functions. Finally, we characterize the singular support of a
distribution in terms of its Fourier transform, and we use the Paley-Wiener theorem to characterize
the distributions of small support, which are in the range of a given invariant differential operator.
The extension from symmetric spaces of compact type to all compact symmetric spaces is sketched
in an appendix.

Introduction

The Paley-Wiener theorem for Rn describes (in the version due to L. Schwartz)
the image by the Fourier transform of the space of compactly supported smooth
functions on Rn. A similar theorem describes the image of the space of com-
pactly supported distributions. More precisely, let C∞

c (R
n) and C−∞

c (Rn) de-
note the spaces of of compactly supported smooth functions and distributions,
respectively. Then the Fourier image ofC∞

c (R
n) is the space of entire functions

F on Cn of exponential type, that is, for which there exist r > 0 and for every
N ∈ Z+ = {0, 1, 2, . . .} a constant CN such that

|F(λ)| ≤ CN(1 + |λ|)−Ner| Im(λ)|

for all λ ∈ Cn. Furthermore, the Fourier image of C−∞
c (Rn) is the space of

entire functions F for which there exist r > 0 and for someN ∈ Z+ a constant
CN such that

|F(λ)| ≤ CN(1 + |λ|)Ner| Im(λ)|
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for all λ ∈ Cn. An important aspect of these theorems is that the smallest
exponent r in the estimates matches with the radius of the smallest closed ball
B̄r = {x ∈ Rn | |x| ≤ r} containing the support of the function or distribution.
Finally, by an analogous result due to Hörmander, the singular support of a
compactly supported distribution is contained in B̄r if and only if its Fourier
transform F satisfies the following condition. There exists N ∈ Z+ and for
every m ∈ Z+ a constant Cm such that

|F(λ)| ≤ Cm(1 + |λ|)Ner| Im(λ)|

for all λ ∈ Cn with | Im(λ)| ≤ m log(1 + |λ|). See [22], Section 1.7.
There are several generalizations of these theorems to settings where Rn

is replaced by a symmetric space X. The most general results have been ob-
tained for X = G/K a Riemannian symmetric space of the non-compact
type, by Gangolli [16] and Helgason [18], [19] for smooth functions, and
by Eguchi, Hashizume and Okamoto [15] for distributions. Again the ex-
ponent matches with the radius of the support. For functions this is seen in
the references just mentioned, and for distributions it is shown by Dadok
[12], who gives a proof of the distributional Paley-Wiener theorem different
from that of [15]. Combining these results with Hörmander’s theorem for Rn,
a characterization of singular supports is easily deduced, see [12] (see also
[1]).

In the present paper we investigate the generalization of the theorems for
distributions to a Riemannian symmetric spaceM = U/K of the compact type.
In previous papers [27] and [28], we have treated the case of K-invariant, re-
spectively, K-finite smooth functions on M . These papers generalized partial
results in [9], [10], [17], [23]. In contrast to the non-compact cases G/K , the
results obtained for M are local in the sense that they are only valid for func-
tions supported in sufficiently small balls, with an explicit (but not necessarily
optimal) upper bound for the radius. In the present paper we use the results
of [27] to extend the K-invariant Paley-Wiener theorem to K-invariant distri-
butions on M , including the analogous result for singular support. The more
general case of K-finite distributions can be treated similarly, based on [28]
(the details are omitted). In an appendix at the end of the paper we briefly
discuss the extension to all compact symmetric spaces of the results from [27]
as well as those of the present paper.

The Paley-Wiener theorems have also been generalized to non-Riemannian
symmetric spaces. General reductive symmetric spaces are treated in [7] and
[8]. The case of a reductive Lie group (which can be considered as a symmetric
space), was earlier treated in [5], see also [6] and [14]. Hyperbolic spaces were
treated in [2]. Some partial results have been obtained for the Fourier-Laplace
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transform on causal symmetric spaces, see [3], [4], [25] and the overview in
[26].

The article is organized as follows. In Section 1 we introduce the basic
notation. In Section 2 we discuss the parametrization of the irreducible unitary
K-spherical representations and the related Fourier transform. Let f be a K-
spherical smooth function (or distribution) on M , then its Fourier transform
f̃ (λ) is defined for λ in the semi-lattice �+(M) consisting of the highest
weights λ ∈ �∗

C of irreducible K-spherical representations (the weights are
purely imaginary linear forms on the maximal abelian subspace �). In Section 4
we recall the main result of [27] which, in short, says the following. Assume f
is smooth, then the Fourier transform f̃ extends to a holomorphic function on
�∗

C of exponential type, and the best exponent of growth is equal to the radius
of the smallest closed ball around the origin, which contains the support of f .
Here it is required that the support of f is sufficiently small, as explained in
the Remark 4.3 in [27].

Section 6 contains the main results of this article. First, we introduce the
Paley-Wiener space PW∗

r (�) of holomorphic functions on �∗
C such that:

a) There exists k ∈ Z+ and C > 0 such that for all λ ∈ �∗
C,

|�(λ)| ≤ C(1 + |λ|)ker| Re λ|

b) �(w(λ+ ρ)− ρ) = �(λ) forall w in the Weyl group W .

LetC−∞
r (M)K denote the space ofK-invariant distributions onM with support

in a closed ball of radius r around the origin. Our main results are:

Theorem 6.4 (Local Paley-Wiener theorem for distributions). There exists
R > 0 such that the following holds for each 0 < r < R.

i) Let F ∈ C−∞
r (M)K . Then the Fourier transform F̃ :�+(M) → C ex-

tends to a function in PW∗
r (�).

ii) Let � ∈ PW∗
r (�). There exists a unique distribution F ∈ C−∞

r (M)K

such that F̃ (μ) = �(μ) for all μ ∈ �+(M).
iii) The functions in the Paley-Wiener space PW∗

r (�) are uniquely determ-
ined by their values on �+(M).

Thus, the Fourier transform followed by the extension gives a bijection

C−∞
r (M)K � PW∗

r (�).

Theorem 6.6 (Characterization of singular support). Let R be as above
and let 0 < s ≤ r < R. Let F ∈ C−∞

r (M)K . Then the singular support of F
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is contained in a closed ball of radius s if and only if there exists N ∈ Z such
that for each m ∈ Z+ the holomorphic extension of F̃ satisfies

|F̃ (λ)| ≤ Cm(1 + |λ|)Nes| Re λ|

for all λ ∈ �∗
C with | Re λ| ≤ m log(1 + |λ|).

One of the consequences of the Paley-Wiener theorem is a condition for the
solvability of invariant differential equationsDT = F in the spaceC−∞

r (M)K .
This is stated in Theorem 6.7.

1. Basic notation

LetM be a connected Riemannian symmetric space of the compact type. Then
there exists a compact connected semisimple Lie group U acting on M by
isometries and a closed subgroup K ⊂ U such that M = U/K . Furthermore,
there exists an involution θ : U → U such that Uθ

0 ⊂ K ⊂ Uθ . Here Uθ

denotes the subgroup of θ -fixed points, and Uθ
0 its identity component. We

denote the base point eK in M by o.
Let � denote the Lie algebra ofU , then θ induces an involution of � (denoted

by the same symbol). Let � = � ⊕ � be the corresponding decomposition in
eigenspaces for θ . Let 〈·, ·〉 be the inner product on � defined by 〈X, Y 〉 =
−B(X, Y ), where B is the Killing form. We assume that the Riemannian
metric g ofM is normalized such that it agrees with 〈·, ·〉 on the tangent space
� � ToM . We denote by exp the exponential map � → U , and by Exp the
map � → M given by Exp(X) = exp(X) · o. Denote by Br(0) the open ball
in � of radius r > 0 and centered at 0 and Dr(o) the open metric ball in M of
radius r > 0 and centered at o. Similarly B̄r (0) and D̄r(o) stand for the closed
balls. The exponential map Exp is surjective and an analytic diffeomorphism
Br(0) → Dr(o) for r sufficiently small.

Let � ⊂ � be a maximal abelian subspace, �∗ its dual space, and �∗
C the

complexified dual space. Then 〈·, ·〉 defines an inner product on �∗. By ses-
quilinear extension we obtain inner products on �∗

C and i�∗, which we shall
denote by the same symbol. The corresponding norm is denoted by | · |.

We denote by � the set of non-zero (restricted) roots of �C with respect to
�C. Then� ⊂ i�∗. Furthermore,�+ stands for a fixed set of positive roots and
ρ ∈ i�∗ denotes half of the sum of the roots in�+ counted with multiplicities.
The corresponding Weyl group, generated by the reflections in the roots, is
denoted W .
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2. Fourier analysis on M

In this section we recall the basic facts on Fourier series on M and the para-
metrization ofK-spherical representations. Letπ denote an irreducible unitary
representation of U , and Vπ the Hilbert space on which π acts. Let

V Kπ = {v ∈ Vπ | (∀k ∈ K)π(k)v = v}.
If V Kπ = {0} then dim V Kπ = 1 and π is said to be K-spherical. If π is
K-spherical, then eπ will denote a fixed choice of a unit vector in V Kπ .

Recall the following parametrization of K-spherical irreducible represent-
ations of U , due to Helgason (see [20], p. 535). Denote by Ũ the universal
covering of U and by κ the canonical projection Ũ → U . Then θ defines an
involution θ̃ on Ũ , and the group K̃ of θ̃ -fixed points is connected. If π is a
K-spherical representation of U , then π ◦ κ is a K̃-spherical representation of
Ũ .

Theorem 2.1. The map π �→ μ, where μ ∈ i�∗ is the highest weight of
π , induces a bijection between the set of equivalence classes of irreducible
K̃-spherical representations of Ũ and the set

(2.1) �+(Ũ/K̃) =
{
μ ∈ i�∗

∣∣∣∣ (∀α ∈ �+)
〈μ, α〉
〈α, α〉 ∈ Z+

}
.

For μ ∈ �+(Ũ/K̃), let (πμ, Vμ) denote a fixed irreducible unitary repres-
entation of Ũ with highest weightμ, and let eμ = eπμ . We denote by�+(U/K)
the set of elements in �+(Ũ/K̃), for which the representation πμ of Ũ des-
cends to a representation of U with a K-fixed vector. Note that if it descends,
it will have a K0-fixed, but not necessarily a K-fixed vector. This was not
made clear in [27], Theorem 3.1, which is only valid as stated under the extra
condition that K is connected. As an example take U = SO(n), n ≥ 3, and

K = O(n− 1) =
{(

det(A) 0
0 A

) ∣∣∣∣ A ∈ O(n− 1)

}
.

Then K0 � SO(n− 1). The natural representation of SO(n) acting on Cn has
a K0-fixed vector e1, but is not K-spherical. However, the restricted validity
does not affect the main results of [27], as the exact description of �+(U/K)
is not used. However, the following property of �+(U/K) is used.

Lemma 2.2. The subset �+(U/K) ⊂ i�∗ is closed under addition, and it
has full rank in i�∗, that is, there exist μ1, . . . , μn ∈ i�∗ linearly independent
where n = dim �, such that

(2.2) Z+μ1 + · · · + Z+μn ⊂ �+(U/K).
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Proof. It follows from Theorem 2.1 that the result holds for�+(Ũ/K̃). In
fact, in this case equality is attained in (2.2) when μ1, . . . , μn are the funda-
mental weights (see [34]).

Let K∗ = κ−1(K) then K̃ = K∗
0 , and the quotient K∗/K̃ is a finite group,

which acts by a homomorphism γμ:K∗/K̃ → C on the one-dimensional space

V K̃πμ for eachμ ∈ �+(Ũ/K̃). In particular, we see thatμ belongs to�+(U/K)
if and only if γμ is trivial. We shall see below that

(2.3) γμ+ν = γμ · γν
for all μ, ν ∈ �+(Ũ/K̃). It follows that �+(U/K) is closed under addition,
and also that γpμ = 1, where p is the order of K∗/K̃ . Hence p�+(Ũ/K̃) ⊂
�+(U/K), and thus the lemma follows from (2.3).

For each μ ∈ �+(Ũ/K̃), let eμ = eπμ ∈ Vμ = Vπμ denote the chosen
K̃-fixed unit vector, and let vμ ∈ Vμ be a highest weight vector normalized
such that 〈vμ, eμ〉 = 1. Then

∫
K̃
πμ(k)vμ dk = eμ.

Consider the tensor productVμ⊗Vν . It is well known that the representation
Vμ+ν occurs with multiplicity one in the tensor product, and that vμ ⊗ vν is a
highest weight vector in Vμ+ν . The vector

e :=
∫
K̃

πμ(k)vμ ⊗ πν(k)vν dk ∈ Vμ+ν

is K̃-fixed. Using Fubini’s theorem and the invariance of Haar measure, we
see that

(2.4)
∫
K̃

(πμ(l)⊗ 1)e dl = eμ ⊗ eν.

In particular, e = 0 and we can identify e as a multiple of the unit vector eμ+ν .
The desired relation (2.3) follows from (2.4), by using that Haar measure on
K̃ is invariant under the adjoint action of K∗.

For μ ∈ �+(M) = �+(U/K) the spherical function associated with μ is
the matrix coefficient

ψμ(x) = (πμ(x)eμ, eμ), x ∈ U.
It is left and rightK-invariant and can therefore be viewed as a leftK-invariant
function on M . It is an eigenfunction of D(M), the algebra of invariant dif-
ferential operators on M . The spherical Fourier transform of a K-invariant
L1-function f on M is the function f̃ : �+(M) → C defined by

f̃ (μ) =
∫
M

f (x)ψμ(x) dx = (f, ψμ),
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where dx is the normalized invariant measure on M (that is,
∫
M
dx = 1).

Notice that if f ∈ Lp(M) then |f̃ (μ)| ≤ ‖f ‖p as |ψμ(x)| ≤ 1. In particular

|f̃ (μ)| ≤ ‖f ‖∞

if f is continuous, and hence bounded. It follows from the Schur orthogonality
relations that

(2.5) ψ̃ν(μ) = δν,μd(μ)
−1

for ν, μ ∈ �+(M), where d(μ) = dim(Vμ).
The spherical Fourier series for f is the series given by

(2.6)
∑

μ∈�+(M)

d(μ)f̃ (μ)ψμ.

Denote by �M the negative definite Laplace operator on M . Then

(2.7) �Mψμ = −〈μ,μ+ 2ρ〉ψμ.
Based on (2.7) it can be shown, see Sugiura [32], that f is smooth if and only
if the Fourier transform f̃ is rapidly decreasing, that is, for each k ∈ Z+ there
exists a constant Ck such that

(2.8) |f̃ (μ)| ≤ Ck(1 + |μ|)−k

for all μ ∈ �+(M). In this case the Fourier series (2.6) converges pointwise
and absolutely to f .

There are different ways to describe the topology on C∞(M)K . First, the
topology on C∞(U) is defined by the seminorms

(2.9) νp(f ) := ‖Lpf ‖∞

where p ∈ U(�). Here L denotes the left regular representation and U(�) the
universal enveloping algebra of �. If C is a closed subspace ofC∞(U) then the
topology on C is given by the same family of seminorms. This applies to the
space C∞(M), viewed as the space of right K-invariant smooth functions on
U , the space C∞(M)K of leftK-invariant functions in C∞(M), as well as the
spaces C∞

r (M) and C∞
r (M)

K , r > 0, where the subscript r indicates that the
support is contained in D̄r(o). Note, if r is big enough thenC∞

r (M) = C∞(M).
According to [32] the topology can also be described using �M :

Lemma 2.3. The topology of C∞(M), C∞(M)K , and C∞
r (M)

K is given by
the seminorms

τm(f ) = ‖�m
Mf ‖∞, m ∈ Z+.
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Proof. This is the corollary to Theorem 4 in [32].

We shall also need the following fact from [35] Lemma 5.6.7 or [32]
Lemma 1.3.

Lemma 2.4. There exists t0 ∈ R such that
∑

μ∈�+(M)(1 + |μ|)−t < ∞ if
t > t0.

By Weyl’s dimension formula, the mapμ �→ d(μ) extends to a polynomial
function on �∗

C. We derive the following consequence from Lemmas 2.3 and
2.4 together with (2.7) and (2.8).

Lemma 2.5. Let f ∈ C∞(M). Then the Fourier series (2.6) converges to
f in C∞(M).

It follows from the KAK-decomposition of U that the restriction map
f �→ f |A·o is injective for f ∈ C∞(M)K . We use the topology on C∞(A · o)
given by the seminorms νu(f ) = ‖Luf ‖∞, u ∈ U(�). Then C∞(A · o) is a
Fréchet space, and C∞(A · o)W is a closed subspace whose topology is given
by the same family of seminorms. The following lemma gives a different way
to describe the topology on C∞(M)K :

Lemma 2.6. The restriction map fromC∞(M)K toC∞(A ·o)W is a topolo-
gical isomorphism. It is also a topological isomorphism from C∞

r (M)
K onto

C∞
r (A · o)W , for each r > 0.

Proof. According to [13], Theorem 1.7, the restriction map is bijective.
It is obviously continuous. By the open mapping theorem for Fréchet spaces
[33], Theorem 17.1., p. 170, it follows that the restriction map is a topological
isomorphism. For the last statement we note first that C∞

r (A · o)W is closed in
C∞(A · o)W and similarly for C∞

r (M)
K in C∞(M)K . Furthermore, the metric

ball inA·o of radius r centered ato is D̄r(o)∩A·o and D̄r(o) = K(D̄r(o)∩A·o).
Hence f �→ f |A·o is a bijectionC∞

r (M)
K → C∞

r (A ·o)W , and it follows from
the first statement that it is an isomorphism.

3. The Fourier series of a distribution

The continuous dual of C∞(M), denoted by C−∞(M), is the space of distri-
butions on M . Recall that U acts on C−∞(M) by

LgF(f ) = F(Lg−1f ), g ∈ U, f ∈ C∞(M), and F ∈ C−∞(M).

Denote by C−∞(M)K the space of K-invariant distributions on M . Since
C∞(M)K is a closed subspace of C∞(M), we obtain a map from C−∞(M)
to [C∞(M)K ]∗, by taking restrictions of linear forms to this subspace. Here



distributions on symmetric spaces 101

[C∞(M)K ]∗ denotes the space of continuous linear forms on C∞(M)K . We
provide C−∞(M) and [C∞(M)K ]∗ with the weak ∗-topology.

Lemma 3.1. The restriction defines a linear isomorphism

C−∞(M)K � [C∞(M)K ]∗.

Proof. The mentioned restriction map is clearly continuous. Let
pr : C∞(M) → C∞(M)K be the projection pr(f )(x) = ∫

K
f (kx) dk. It is

continuous, hence the transposed prt maps [C∞(M)K ]∗ → C−∞(M) is also
continuous. It is easily seen that this provides the inverse to the restriction.

Lemma 3.2. Let F : C∞(M)K → C be linear. Then the following state-
ments are equivalent:

(1) F is a K-invariant distribution.

(2) There exist C > 0 and m ∈ Z+ such that

(3.1) |F(f )| ≤ C max
j=1,...,m

‖�j

Mf ‖∞ (∀f ∈ C∞(M)K).

(3) There exist C > 0 and finitely many u1, . . . , us ∈ U(�) such that

(3.2) |F(f )| ≤ C max
j=1,...,s

‖Luj (f |A·o)‖∞ (∀f ∈ C∞(M)K).

Proof. This follows from Lemmas 2.3 and 2.6.

Let w∗ ∈ W be such that w∗(�+) = −�+. Then μ �→ μ∗ := −w∗(μ)
defines a bijection of�+(M), such thatπμ∗ is the contragradient representation
to πμ. Notice that ψμ = ψμ∗ = ψ∨

μ where f ∨(g) = f (g−1). Furthermore
d(μ∗) = d(μ). We define the Fourier transform of a spherical distribution
F ∈ C−∞(M)K by

(3.3) F̃ (μ) := F(ψμ∗) = F(ψ∨
μ ).

In particular, for smooth K-invariant functions regarded as distributions by
means of the pairing with the invariant measure, the two notions of Fourier
transform agree.

Lemma 3.3. Let F ∈ C−∞(M)K . Then μ �→ F̃ (μ) has at most polynomial
growth.

Proof. This follows from (3.1) and (2.7).

We can now write down the Fourier series for F .



102 gestur ólafsson and henrik schlichtkrull

Lemma 3.4. Let F ∈ C−∞(M)K and f ∈ C∞(M)K . Then

(3.4) F (f ) =
∑

μ∈�+(M)

d(μ)f̃ (μ∗)F̃ (μ)

with absolute convergence. In particular, the distributional Fourier transform
F �→ F̃ is injective.

Proof. It follows from Lemma 2.5 that

f =
∑

μ∈�+(M)

d(μ∗)f̃ (μ∗)ψμ∗

in the topology of C∞(M)K . Since F is continuous we can apply it termwise,
and since d(μ∗) = d(μ) we then obtain (3.4) with convergence in C. The
absolute convergence follows from Lemma 2.4, since d(μ) and F̃ (μ) have at
most polynomial growth with respect to μ.

4. Local Paley-Wiener Theorem for K-invariant functions on M

We recall the main results from [27].

Definition 4.1 (Paley-Wiener space). For r > 0 let PWr (�) denote the
space of holomorphic functions ϕ on �∗

C satisfying the following.

a) For each k ∈ Z+ there exists a constant Ck > 0 such that

|ϕ(λ)| ≤ Ck(1 + |λ|)−ker| Re λ| for all λ ∈ �∗
C.

b) ϕ(w(λ+ ρ)− ρ) = ϕ(λ) for all w ∈ W , λ ∈ �∗
C.

The following is Theorem 4.2 of [27]. As pointed out in [27], Remark 4.3,
the known value for the constantR can be different in each part of the theorem.

Theorem 4.2. There exists R > 0 such that the following holds for each
0 < r < R.

i) Let f ∈ C∞
r (M)

K . Then the Fourier transform f̃ :�+(M) → C extends
to a function in PWr (�).

ii) Let ϕ ∈ PWr (�). There exists a unique function f ∈ C∞
r (M)

K such that
f̃ (μ) = ϕ(μ) for all μ ∈ �+(M).

iii) The functions in the Paley-Wiener space PWr (�)are uniquely determined
by their values on �+(M).

Thus, the Fourier transform followed by the extension gives a bijection

C∞
r (M)

K � PWr (�).
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Remark 4.3. The proof of this theorem in [27] is not entirely correct, as an
error occurs in the proof of Corollary 10.2. The functionψ(λ) = ϕ(λ1)ϕm(λ2),
constructed in the proof of the corollary is not of exponential type r as stated,
but only of type

√
2r . This follows from the estimate |λ1| + |λ2| ≤ √

2|λ|,
which is sharp. However, one can apply the theorem of [11] to construct an
entire function ψ on �∗

C, which is of the proper exponential type, and which
restricts to ϕ on �. The rest of the proof is then unchanged.

5. Analytic continuation of spherical functions

We need some details from [27] concerning the analytic continuation of the
spherical functions ψμ with respect to the parameter μ.

Let �̄ be the closure of

(5.1) � = {
X ∈ � | (∀α ∈ �) |α(X)| < π

2

}
.

AsU is compact, it follows thatU is contained in a complex Lie groupUC with
Lie algebra �C. Denote by K0,C the analytic subgroup of UC corresponding to
�C. Note that we are at this point not assuming that θ extends to an involution on
UC. Let � = � ⊕ i� ⊂ �C and let G be the corresponding analytic subgroup of
UC, then K0 ⊂ G is a maximal compact subgroup. The space Md = G/K0 is
the (noncompact) dual ofU/K0. Note that the center ofG is contained inK0 so
Md is independent of the choice of the complexificationUC. LetKC = KK0,C.
Then M,Md ⊂ MC := UC/KC. Then KC is a closed subgroup of UC. For
each μ ∈ �+(M) the spherical function ψμ has an analytic continuation to
MC = UC/KC, denoted by the same symbol, and ψμ|Md = ϕμ+ρ where ϕλ
denotes the spherical function onMd with spectral parameter λ. According to
[24], [29] (see also the proof due to J. Faraut in [9]) the spherical function ϕλ on
Md has a holomorphic extension as aKC-invariant function onKC exp(2�) ·o
for every λ ∈ �∗

C. For each x ∈ KC exp(2�) · o and λ ∈ �∗
C we define

(5.2) ψλ(x) = ϕλ+ρ(x)

and thus obtain an extension to �∗
C of the mapμ �→ ψμ(x)whereμ ∈ �+(M).

The map (λ, x) �→ ψλ(x) is holomorphic on the open set �∗
C×exp(�+i�)·o ⊂

�∗
C × AC · o and it satisfies the following estimate, cf. [29], Proposition 6.1:

Lemma 5.1. There exists a constant C such that

(5.3) |ψλ(exp(X + iY ) · o)| ≤ Cemaxw∈W Rewλ(X)−minw∈W Imwλ(Y )

for all X ∈ �̄, Y ∈ � and λ ∈ �∗
C .
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Corollary 5.2. Let X1, . . . , Xj ∈ � and X ∈ �. There exists a constant
C such that

(5.4) |LX1...Xj ψλ(exp(X) · o)| ≤ C (1 + |λ|)j e|X|| Re λ|

for all λ ∈ �∗
C. The constant C depends locally uniformly on X.

Proof. Let V be a complex neighborhood of 0 such thatX+V ⊂ �+ i�.
Let Z1, . . . , Z� be an orthonormal basis for �. By considering linear com-
binations and using that � is abelian it is enough to prove the claim for the
derivatives(

∂

∂x1

)m1

. . .

(
∂

∂x�

)m�
ψλ(exp(X + x1Z1 + · · · + x�Z�) · o)|x1=···=x�=0.

To simplify the notation let

fλ(x1, . . . , x�) = ψλ(exp(X + x1Z1 + · · · + x�Z�) · o).
We will also use the following notation for m = (m1, . . . , m�) ∈ (Z+)�
and ζ = (ζ1, . . . , ζ�) ∈ C�: m! := m1! . . . m�!, |m| = m1 + · · · + m�,
m + 1 = (m1 + 1, . . . , m� + 1), and ζm = ζ

m1
1 . . . ζ

m�
� . We also set ∂m =

(∂/∂x1)
m1 . . . (∂/∂x�)

m� .
Let ε0 > 0 be so small that

{z1Z1 + · · · + z�Z� | |zj | < ε0 for j = 1, . . . , �} ⊂ V.

Then fλ is holomorphic on {z = (z1, . . . , z�) | |zj | < ε0 for j = 1, . . . , �}.
By Cauchy’s integral theorem for the derivatives of fλ we get for each ε < ε0

∂mfλ(0) = m!

(2πi)�

∮
|z1|=ε

· · ·
∮

|z�|=ε
fλ(ζ )

ζm+1
dζ1 . . . dζ�.

Thus (5.3) implies, with the same constant C as in (5.3), that∣∣∂mfλ(0)∣∣ ≤ Cm!(2π)−�ε−(|m|+�)e|X|| Re λ|eε�(| Re λ|+| Im λ|)(2πε)�

= Cm!eε�(| Re λ|+| Im λ|)ε−|m|e|X|| Re λ|.

Now, take
ε = ε0

�(1 + |λ|)
then, with a new constant C depending on V , but independent of λ and X, we
get ∣∣∂mfλ(0)∣∣ ≤ C(1 + |λ|)|m|e|X|| Re λ|

as was to be shown.
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6. Paley-Wiener Theorem for Distributions

In this section we state and prove the Paley-Wiener theorem for distributions
on M .

Definition 6.1 (Paley-Wiener space for distributions). For r > 0 let
PW∗

r (�) denote the space of holomorphic functions � on �∗
C satisfying the

following.

a) There exists a k ∈ Z+ and a constant Ck > 0 such that

|�(λ)| ≤ Ck(1 + |λ|)ker| Re λ|

for all λ ∈ �∗
C.

b) �(w(λ+ ρ)− ρ) = �(λ) for all w ∈ W , λ ∈ �∗
C.

Let r > 0. A distribution F has support in D̄r(o) if and only if F(f ) = 0
for all f ∈ C∞(M) with Supp(f ) ⊂ M \ D̄r(o). Denote by C−∞

r (M) the
space of distributions that are supported on D̄r(o).

Remark 6.2. Recall (see (3.2)) that every distribution F onM satisfies an
estimate |F(f )| ≤ C sup

x∈M,j≤k
|�j

Mf (x)|.

If the support of F is contained in some compact subset S ⊂ M , it is tempting
to replace the supremum over x ∈ M by the supremum over x ∈ S, but in
general such an estimate is false. The supremum has to be taken over an open
neighborhood of S (see [31], example p. 95 and discussion p. 98–100). This
causes a minor complication in the proof of Theorem 6.4 (this problem appears
to be overlooked in [12]).

We need the following elementary result.

Lemma 6.3. Let � ⊂ C� be open and let M be a differentiable manifold.
Let f ∈ C∞(�×M), and assume that f is holomorphic in the first variable.
Then z �→ f (z, ·) is holomorphic as a map � → C∞(M).

Proof. We first observe that for a ∈ � ⊂ R2� and f ∈ C∞(� ×M), we
have

f (a + hej , ·)− f (a, ·)
h

→ ∂f

∂xj
(a, ·)

in C∞(M) for h → 0 and j = 1, . . . , 2�. Hence, if T is a continuous linear
form on C∞(M), it follows that a �→ T (f (a, ·)) is differentiable on � with

∂

∂xj
[T (f (a, ·))] = T

(
∂f

∂xj
(a, ·)

)
.
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It follows from this observation that z �→ T (f (z, ·)) is continuously dif-
ferentiable and satisfies the Cauchy-Riemann equations, for each continuous
linear form T on C∞(M). Hence z �→ f (z, ·) is weakly holomorphic into
C∞(M), and, as this space is Fréchet, also strongly holomorphic.

Theorem 6.4 (Local Paley-Wiener theorem for distributions). There exists
R > 0 such that the following holds for each 0 < r < R.

i) Let F ∈ C−∞
r (M)K . Then the Fourier transform F̃ :�+(M) → C ex-

tends to a function in PW∗
r (�).

ii) Let � ∈ PW∗
r (�). There exists a unique distribution F ∈ C−∞

r (M)K

such that F̃ (μ) = �(μ) for all μ ∈ �+(M).
iii) The functions in the Paley-Wiener space PW∗

r (�) are uniquely determ-
ined by their values on �+(M).

Thus, the Fourier transform followed by the extension gives a bijection

C−∞
r (M)K � PW∗

r (�).

Remark 6.5. Note, that as in Theorem 4.2, R can be different in each part
of the above theorem.

Proof. (i) LetR > 0 be such thatDR(o) ⊂ K exp�·o, where� is defined
in (5.1). Let r < R and let ε > 0 be so that r + ε < R. Let ϕ ∈ C∞(M)K be a
function which is 1 on a neighborhood of the closed ball D̄r(o), and supported
on D̄r+ε(o). The product ϕψλ is a globally defined smooth function on M ,
and it belongs to C∞(M)K for all λ ∈ �∗

C. Let F ∈ C−∞
r (M)K . We extend the

Fourier transform of F to a function on �∗
C by

(6.1) F̃ (λ) := F(ϕψ∨
λ ).

The extension is independent of the choice of ϕ. Note also that F̃ (w(λ+ρ)−
ρ) = F̃ (λ) and that

F̃ (λ) = F(ϕϕ∨
λ+ρ) = F(ϕϕ−λ−ρ) = F(ϕψ−λ−2ρ).

Since the map (λ, x) �→ ψλ(x) is smooth on the open subset �∗
C ×exp(�) ·o

of �∗
C × A · o, it follows that (λ, x) �→ ϕ(x)ψλ(x) is smooth on �∗

C × A · o.
By Lemma 6.3 it follows that λ �→ ϕψλ is holomorphic into C∞(A · o), and
as it is alsoW -invariant in the A-variable, it follows from Lemma 2.6 that it is
holomorphic into C∞(M)K . Hence λ �→ F̃ (λ) is holomorphic on �∗

C.
We still need to show that this extension has exponential growth with ex-

ponent r . For that we will choose the function ϕ of (6.1) in such a way that we
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can control the right hand side of equation (6.2) below (this is similar to what
is done in the Euclidean case, see for example [22]).

As F is aK-invariant distribution, it follows by Lemma 3.2 that there exists
finitely many u1, . . . , us ∈ U(�) and a constant C > 0, such that

(6.2) |F̃ (λ)| ≤ C max
i=1,...,s

‖Lui (ϕ|A·oψ∨
λ |A·o)‖∞.

Let m = maxi=1,...,s deg ui . Let h : R → R be such that 0 ≤ h ≤ 1,
h|(−∞,1/3] = 1, and Supp(h) ⊆ (−∞, 2/3]. LetC > 0 be such that ‖h(j)‖∞ ≤
C for j = 0, . . . , m (where m is as above). Finally, for δ > 0 let hδ(t) =
h(t/δ). Then hδ has the properties that

(1) 0 ≤ hδ ≤ 1,

(2) hδ(t) = 1 for all t ≤ δ/3,

(3) hδ(t) = 0 if 2δ/3 ≤ t ,

(4) |h(j)δ (t)| ≤ Cδ−j for all t ∈ R, j = 0, 1, . . . , m and δ > 0.

Recall that r + ε < R and let δ ≤ ε be arbitrary for the moment. Then
r + δ < R. Let

ϕ(x) = hδ(d(x, o)− r)

for x ∈ M . Then Supp(ϕ) ⊂ D̄r+ε(o) and ϕ = 1 on a neighborhood of D̄r(o).
Let j ≤ m and let X1, . . . , Xj ∈ � with |Xi | = 1. By applying the chain and
Leibniz rules we obtain

(6.3) |X1 . . . Xjϕ(x)| ≤ C1δ
−j

for some constant C1 > 0. Note that C1 is independent of δ. In fact it only
depends on the constant C above, and the derivatives of x �→ d(x, o) on the
compact set {x ∈ M | r ≤ d(x, o) ≤ r + ε}. As d(·, o) is smooth away from
o it follows that those derivatives are bounded independently of δ.

For the derivativesX1 . . . Xjψ
∨
λ we note first that | Re(−λ−2ρ)| = | Re λ|

as ρ ∈ i�∗. By Corollary 5.2 we get for X ∈ �, |X| < R:

(6.4) |X1 . . . Xjψ
∨
λ (ExpX)| = D(1 + |λ|)j e(r+δ)| Re(λ)|

for some constant D, independent of λ.
Using (6.1), the estimates (6.2), (6.3), (6.4), and the Leibniz rule, it follows

that there exists a constant C > 0 such that for all λ ∈ �∗
C and every δ ≤ ε we

have
|F̃ (λ)| ≤ Cδ−m(1 + |λ|)me(r+δ)| Im λ|.

We now specialize to δ = (1 + |λ|)−1ε and conclude that F̃ ∈ PW∗
r (�).
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(ii) Let � ∈ PW∗
r (�). The asserted uniqueness of F follows from Lemma

3.4. Motivated by (3.4) in that lemma we define F : C∞(M)K → C by

(6.5) F (f ) :=
∑

μ∈�+(M)

d(μ∗)f̃ (μ∗)�(μ).

We need to justify the convergence of the sum. Let ω(λ) = 〈λ, λ+ 2ρ〉. Then
�Mψμ = −ω(μ)ψμ. Let �1 = �+(M) \ {0}, and observe that ω(μ) > 0 for
all μ ∈ �1. Let D1 > 0 be such that

(∀μ ∈ �1) ω(μ) ≥ D1(1 + |μ|).
By Weyl’s dimension formula, there exists a constant D2 > 0 and m ∈ Z+
such that

d(μ∗) ≤ D2(1 + |μ|)m.
Let k ∈ Z+ be such that

|�(λ)| ≤ C(1 + |λ|)ker| Re λ|,

and let s ∈ Z+ be such that

s > m+ k + t0

where t0 is as in Lemma 2.4, ensuring that
∑

μ∈�1
(1+|μ|)m+k−s < ∞. Using

the fact that �Mψμ = −ω(μ)ψμ we get:

∑
μ∈�1

d(μ∗)|f̃ (μ∗)||�(μ)| =
∑
μ∈�1

d(μ∗)
| ˜(�s

Mf )(μ
∗)|

|ω(μ)|s |�(μ)|(6.6)

≤ Cs

( ∑
μ∈�1

(1 + |μ|)m+k−s
)

‖�s
M(f )‖∞(6.7)

< ∞.(6.8)

Here Cs = CD1D2. It follows that

|F(f )| ≤ |�(0)|‖f ‖∞ + Cs‖�s
Mf ‖∞ < ∞.

Thus F is well defined and continuous. It is linear by definition. It follows
that F ∈ C−∞(M)K . Let μ ∈ �+(M). By application of (6.5) to f = ψ∨

μ it

follows, using (2.5), that F̃ (μ) = �(μ).
To finish the proof of (ii), we need to show Supp(F ) ⊆ Dr(o). For each

ε > 0 such that r + ε < R let fε ∈ C∞(M)K be positive with Supp(fε) ⊆
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Dε(o) and
∫
M
fε(x) dx = 1. Note that |f̃ε(μ)| ≤ 1 for all μ ∈ �+(M) and

that limε→0 f̃ε(μ) → 1 for each μ ∈ �+(M).
Denote the holomorphic extension of f̃ε by the same letter and recall that

f̃ε ∈ PWε(�). Let φε(λ) := �(λ)f̃ε(λ). Then φε ∈ PWr+ε(�). By The-
orem 4.2, part (ii), there exists Fε ∈ C∞

r+ε(M)K such that F̃ε = φε . In particu-
lar ∫

f (x)Fε(x) dx =
∑

μ∈�+(M)

d(μ∗)f̃ (μ∗)f̃ε(μ)�(μ)

for all f ∈ C∞(M)K . Hence, using (6.6) to justify the limit,

lim
ε→0

∫
M

f (x)Fε(x) dx = F(f ).

As the support of Fε is contained in D̄r+ε(o) it follows that the support of F
is contained in ⋂

ε>0

D̄r+ε(o) = Dr(o).

(iii) follows as in the proof of Theorem 4.2 in [27], given in Section 7 of
that paper.

Let F ∈ C−∞(M)K . The singular support of F , is the complement of the
largest open set on which F is given by a smooth function.

Theorem 6.6 (Characterization of singular support). Let R be as in The-
orem 4.2 and 0 < s ≤ r < R. Let F ∈ C−∞

r (M)K . Then the singular support
of F is contained in Ds(o) if and only if there exists N ∈ Z such that for each
m ∈ Z+ the holomorphic extension of F̃ satisfies

|F̃ (λ)| ≤ Cm(1 + |λ|)Nes| Re λ|

for all λ ∈ �∗
C with | Re λ| ≤ m log(1 + |λ|).

Proof. The proof, in which Theorems 4.2 and 6.4 play the crucial roles,
is similar to that of Propositions 1.3 and 1.4 in [12], which is a reduction to
Hörmander’s theorem for the Euclidean case.

IfD is a differential operator onM , then we define the differential operator
D∗ by ∫

M

Df (x)g(x) dx =
∫
M

f (x)D∗g(x) dx

for f, g ∈ C∞(M). Recall also the definition of the Harish-Chandra isomorph-
ism γ ∗ : D(M) → S(�∗)W from Lemma 5.1 in [27].
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Theorem 6.7 (Solvability for distributions). Let 0 < r < R, let F ∈
C−∞
r (M)K , and let D ∈ D(M). Then there exists a T ∈ C−∞

r (M)K such that
DT = F if and only if λ �→ F̃ (λ)/γ (D∗,−μ−ρ) is entire. Moreover, in that
case T is unique.

Proof. The proof is the same as that of Theorem 1.8, p. 419, in [20].

7. Appendix

In this appendix we discuss the extension to compact symmetric spaces of the
preceding results. We begin by generalizing the results from [27].

Let U be a connected compact Lie group, not necessarily semisimple. As
before, let θ be an involution and let M = U/K where Uθ

0 ⊂ K ⊂ Uθ . Let Z
denote the center of U . We assume that Z ∩K = {e}, since otherwise we can
replaceU byU/Z∩K , noticing thatZ∩K acts trivially onU/K . Let � denote
the Lie algebra ofU , then � = �⊕�′ where � is the center of � and �′ = [�,�]
is semisimple. As before we denote by θ also the induced involution of �,
and by � = � ⊕ � the corresponding Cartan decomposition. Then � and �′ are
θ -invariant, and it follows from our assumption that � ⊂ � and �′ ⊃ �. Denote
by Z0 and U ′ the analytic subgroups of U corresponding to � and �′. Then
U = Z0U

′ and Z0 ∩U ′ is finite. It follows that Z0 ×U ′ is a covering of U by
the homomorphism (z, u) �→ zu. The kernel isD = {(z, z−1) | z ∈ Z0 ∩U ′}.
Thus the covering is

Z0 × U ′ → U � (Z0 × U ′)/D.

The identity componentK0 ofK is contained in U ′, hence the subgroupK ′ =
U ′ ∩K is a symmetric subgroup of U . In generalK ′ can be a proper subgroup
ofK , in spite of the assumption that Z ∩K = {e}. LetK× ⊂ Z0 ×U ′ denote
the preimage of K , then it follows that the covering above induces a covering
map

Z0 × U ′/K ′ → U/K � (Z0 × U ′)/K×.

We fix a maximal abelian subspace � of �, then � ⊂ �. As before, � ⊂ i�∗
denotes the sets of restricted roots, and �+ denotes a subset of positive roots.
We donote by �+(U/K) ⊂ i�∗ the set of highest weights of irreducible
K-spherical representations. It is now seen that Lemma 2.2 is valid in the
generalized situation too: For Z0 ×U ′/K ′ this is a straightforward extension,
otherwise we repeat the proof of the lemma, replacing K∗ with K×.

We define the spherical Fourier transform of aK-invariant function onU/K
as before, and for each r > 0 we define the Paley-Wiener space PWr (�) exactly
as in Definition 4.1. In particular,W is the Weyl group associated with the root
system �. We can then state:
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Theorem 7.1. Let U/K be a compact Riemannian symmetric space with
assumptions as described above. Then Theorem 4.2 is valid exactly as stated
in Section 4.

Proof. For Z0 × U ′/K ′ this is a straightforward extension of the proof
given in [27]. For the general case we apply the covering map above. Here it is
used that every smooth function f on U/K supported on a sufficiently small
K-invariant neighborhood of eK lifts to a smooth function F on the cover
Z0 × U ′/K ′, supported in a K ′-invariant neighborhood of eK ′ of the same
size. The lifted function F is K ′-invariant if and only if f is K-invariant, and
the Fourier transform F̃ of the lifted function restricts to the Fourier transform
f̃ of the original function on�+(U/K) ⊂ �+(Z0 ×U ′/K ′). Noticing that by
definition PWr (�) is the same space in the two cases U/K and Z0 × U ′/K ′,
we thus have a commutative diagram of bijective maps

C∞
r (Z0 × U ′/K ′)K ′ −−−−−−→ PWr (�)

↑

C∞
r (U/K)

K −−−−−−→ PWr (�),

for r sufficiently small. The horisontal arrows represent Fourier transform
followed by holomorphic extension, and it follows from Lemma 2.2 by the
argument in [27] Section 7, that functions in PWr (�) are uniquely determined
by their restriction to �+(U/K). The theorem is now easily proved.

The main results of the present paper, Theorems 6.4 and 6.6, can now be
generalized to the present setting by a straightforward extension of the previous
proof. We omit the details.
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