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QUASI-MULTIPLIERS OF HILBERT AND BANACH
C∗-BIMODULES
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Abstract
Quasi-multipliers for a HilbertC∗-bimodule V were introduced by L. G. Brown, J. A. Mingo, and
N.-T. Shen [3] as a certain subset of the Banach bidual module V ∗∗. We give another (equivalent)
definition of quasi-multipliers for Hilbert C∗-bimodules using the centralizer approach and then
show that quasi-multipliers are, in fact, universal (maximal) objects of a certain category. We also
introduce quasi-multipliers for bimodules in Kasparov’s sense and even for Banach bimodules over
C∗-algebras, provided these C∗-algebras act non-degenerately. A topological picture of quasi-
multipliers via the quasi-strict topology is given. Finally, we describe quasi-multipliers in two
main situations: for the standard Hilbert bimodule l2(A) and for bimodules of sections of Hilbert
C∗-bimodule bundles over locally compact spaces.

1. Introduction

There are several equivalent ways to introduce quasi-multipliers (left as well as
right and (double) multipliers) for a C∗-algebra A. It may be done in terms of
centralizers ([4]), via universal representations treating A as a C∗-subalgebra
of its enveloping von Neumann algebra A∗∗ (cf., e.g., [15, § 3.12]) and by
a categorical approach describing multipliers as universal objects in suitable
categories ([11, Ch. 2], [13]). These theories were extended to the category
of Hilbert C∗-(bi)modules. More precisely, in this context multipliers were
defined and studied in [2], [16], left multipliers in [8] and quasi-multipliers in
[3]. These concepts coincide with the theories forC∗-algebras in the particular
situation when the Hilbert (bi)module under consideration is nothing else but
the underlying C∗-algebra.

Our aim in this work is to define and study quasi-multipliers for Hilbert
C∗-bimodules, Hilbert bimodules in Kasparov’s sense and, more generally,
even for Banach bimodules over C∗-algebras, on which both algebras act non-
degenerately. For Hilbert C∗-bimodules our definition of quasi-multipliers
differs from the one of [3], but, as we show, these definitions are actually
equivalent. We introduce quasi-multipliers using the centralizer approach, and
then show that these objects are, in fact, universal (maximal) objects of some
categories. Note that in [3] quasi-multipliers of a Hilbert C∗-bimodule V are
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considered as a certain subset of the Banach bidual module V ∗∗ that allows to
characterize embeddings of Hilbert C∗-bimodules into C∗-algebras, [3, The-
orem 4.3]. We study also the quasi-strict topology and give the topological
picture of quasi-multipliers in terms of this topology.

Finally, we give the description for quasi-multipliers in two main situations:
for standard bimodules l2(A) (actually, we obtain a much more general result
concerning quasi-multipliers of infinite direct sums of bimodules) and for the
“commutative” case. The latter means that, for a given locally compact spaceX
and a HilbertA-B bimoduleV , we treat quasi-multipliers of the HilbertA0(X)-
B0(X)-bimodule V0(X) = C0(X,V ). These are the continuous sections of a
HilbertA-B-bimodule bundle V overXwith typical fiberV . Moreover,A0(X)

and B0(X) denote the set of continuous A-valued and B-valued functions on
X vanishing at infinity.

2. Quasi-multipliers of Hilbert C∗-bimodules

Given a C∗-algebra A and a Banach space Q, recall that Q is said to be
an involutive Banach space if it is equipped with a sesqui-linear involution
∗:Q → Q such that ‖q∗‖ = ‖q‖ for any q ∈ Q. We will also need some
definitions of [13].

Definition 2.1. An involutive Banach space Q with involution q �→ q∗
is called an A-bimodule if there is a map, which is conjugate linear in the first
variable and linear in the second variable

A×Q → Q, (a, q) �→ a � q,

and a bilinear map

Q× A → Q, (q, a) �→ q � a

such that

(ba) � q = a � (b � q),

q � (ab) = (q � a) � b,

(a � q) � b = a � (q � b),

(a � q � b)∗ = b � q∗ � a,

‖a � q‖ ≤ ‖a‖‖q‖,
‖q � b‖ ≤ ‖q‖‖b‖

for all a, b ∈ A, q ∈ Q.

Definition 2.2. Let Q be a bimodule over A. Moreover assume that A ⊂
Q is an involutive Banach subspace. A is said to be a quasi-ideal of Q if

a � b = a∗b, b � a = ba for a, b ∈ A
and A � q � A ⊂ A for any q ∈ Q.
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Proposition 2.3 ([13, comments to Definition 3]). Let A ⊂ Q be a quasi-
ideal and Q(0) = {q ∈ Q : A � q � A = 0}. Then Q(0) is a sub-bimodule of
Q and the following conditions are equivalent.

(i) Q(0) = 0;

(ii) For any A-sub-bimodule X of Q the condition X ∩ A = {0} implies
X = {0}.

Definition 2.4. A quasi-ideal A ⊂ Q is essential if it satisfies one of the
equivalent conditions above.

Definition 2.5. A quasi-ideal A ⊂ Q is strictly essential if

sup{‖a � q � b‖ : a, b ∈ A, ‖a‖ ≤ 1, ‖b‖ ≤ 1} = ‖q‖
for all q ∈ Q.

Quasi-multipliers QM(A) ofAmay be, actually, introduced in several equi-
valent ways, but we prefer here to use their original definition in terms of
quasi-centralizers (cf. [4]).

Definition 2.6. A quasi-multiplier ofA is a bilinear bounded map q:A×
A → A such that

q(ca, bd) = cq(a, b)d for a, b, c, d ∈ A.

The set of quasi-multipliers QM(A) is an involutive Banach space with
respect to the operator norm ‖q‖ := sup{‖q(a, b)‖ : ‖a‖ ≤ 1, ‖b‖ ≤ 1} and
the involution: q∗(a, b) = q(b∗, a∗)∗, where a, b ∈ A, q ∈ QM(A) (cf. [15,
3.12.2]).

Proposition 2.7 ([13]). A is embedded into QM(A) as an involutive
Banach subspace via the ∗-inclusion

a �→ qa, qa(b, c) = bac,

a, b, c ∈ A. Moreover, A is actually a strictly essential quasi-ideal of QM(A)
and QM(A) is maximal (with respect to injective homomorphisms of involut-
ive Banach spaces acting identically on A) among all quasi strictly essential
extensions of A.

Now we are going to adopt the considerations of [2], [8] about double and
left multipliers of Hilbert C∗-modules to introduce quasi-multipliers in the
C∗-module context. But, as we saw before, even for C∗-algebras we need a
bimodule structure for the definition of quasi-multipliers. Consequently, we
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need HilbertC∗-bimodules (moreover, equipped with some involution) instead
of usual Hilbert C∗-modules for the following considerations. Thus, we come
to the following definition.

Definition 2.8. A Hilbert A-B-bimodule V is both: a left Hilbert A-
module and a right Hilbert B-module with commuting actions such that its
left A〈·, ·〉 and right 〈·, ·〉B inner products satisfy the condition

A〈x, y〉z = x〈y, z〉B
for all x, y, z ∈ V . If V is a Hilbert A-A-bimodule and a Banach involutive
space such that

(ax)∗ = x∗a∗, (xa)∗ = a∗x∗ for a ∈ A, x ∈ V,

is said to be an involutive Hilbert A-bimodule.

The two norms defined on V , one from each inner product necessarily
coincide by [3, Corollary 1.11].

Example 2.9. Any C∗-algebra may be considered as an involutive Hilbert
bimodule over itself with respect to the inner products A〈a, b〉 = ab∗ and
〈a, b〉A = a∗b, where a, b ∈ A. Obviously, any free moduleAn is an involutive
Hilbert bimodule. Observe, however, that the standard module l2(A) in general
is not involutive, as was pointed out to us by the referee.

Example 2.10. Any right Hilbert A-module V may be considered as a
Hilbert K(V )-A-bimodule with respect to the inner product

K(V )〈x, y〉 = x〈y, ·〉A.

Example 2.11. LetA be aC∗-subalgebra of aC∗-algebraB andE:B → A

be a conditional expectation, i.e., a surjective projection of norm one satisfying
the following conditions:

E(ab) = aE(b), E(ba) = E(b)a, E(a) = a,

for a ∈ A, b ∈ B (cf. [18]). Then B (with its C∗-algebra involution) is an
involutive pre-HilbertA-bimodule with respect to the inner products A〈x, y〉 =
E(xy∗) and 〈x, y〉A = E(x∗y). This module is Hilbert if and only if E is
topologically of index-finite type, i.e., the mapping (K · E − idB) is positive
for some real number K ≥ 1 (cf. [6], [7]).
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Definition 2.12. Given two C∗-algebras A and B and a Hilbert A-B-
bimodule V , the quasi-multipliers of V are defined as the set of all bounded
A-B-bilinear homomorphisms from A× B to V ,

(1) QM(V ) = HomA,B(A× B,V ),

with norm ‖q‖ := sup{‖q(a, b)‖ | a ∈ A, b ∈ B with ‖a‖ ≤ 1, ‖b‖ ≤ 1}.
V is isometrically embedded into QM(V ) by the map

(2) �:V → QM(V ), �(x)(a, b) = axb,

and we will identify V with its image under this embedding. If V is an invol-
utive Hilbert A-A-bimodule, then QM(V ) carries an involution T ∗(a, b) =
T (b∗, a∗)∗ with respect to which quasi-multipliers QM(V ) form an involutive
Banach space.

Remark 2.13. In [3] quasi-multipliers were defined via the bidual V ∗∗ of
V as a Banach space by the formula

Q̃M(V ) = {t ∈ V ∗∗ | atb ∈ V for all a ∈ A, b ∈ B}.
This definition actually coincides with the one above in the following sense.
Clearly, every element t ∈ Q̃M(V ) defines a bimodule homomorphism

qt :A× B −→ V, (a, b) �→ atb.

That means there is a linear map

ϕ: Q̃M(V ) → QM(V ), t �→ qt ,

which, in fact, is an isometry, because

‖qt‖ = sup{‖atb‖ : ‖a‖ ≤ 1, ‖b‖ ≤ 1} = ‖t‖
for any t ∈ Q̃M(V ) by [3, Lemma 4.1(iii)]. To see that ϕ is surjective, let q ∈
QM(V )be given, choose approximate units {eα} inA and {uβ} inB. Then by [3,
Lemma 4.1(iv)] there is t ∈ Q̃M(V ) such that q(a, b) = limα,β aq(eα, uβ)b =
atb. Such t is just a σ(V ∗∗, V ∗) cluster point of the bounded net {q(eα, uβ)},
which has to exist by the Banach-Alaoglu theorem.

Definition 2.14. Given two Banach algebras A and B, a Banach space
W is called a Banach-A -B-bimodule if it is equipped with a norm continuous
left action of A and a norm continuous right action of B, such that both actions
commute.
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Definition 2.15. Let V be a Hilbert A-B-bimodule. The left multipliers
of V are

LM(V ) = Hom−,B(B, V ),

i.e., the B-linear homomorphisms from B to V . The corresponding right mul-
tipliers are given by

RM(V ) = HomA,−(A, V ).

In particular LM(A), whereA is considered as anA-A-bimodule is a Banach
algebra with multiplication given by composition of homomorphisms. In a
similar way, we turn RM(A) into a Banach algebra, but here we will use the
opposite multiplication, i.e.,

α1 · α2 := α2 ◦ α1

for αi ∈ RM(A). With this convention A is a left ideal in LM(A) and a right
ideal in RM(A).

Define QM(V ) := HomA,B(A × B,V ) as the set of bounded (A,B)-
bilinear maps as in (1).

QM(V ) comes equipped with an A-B-bimodule structure in the following
way. Let a, a′ ∈ A, b, b′ ∈ B, q ∈ QM(V ), then

(q � b)(a′, b′) := q(a′, b b′), (a � q)(a′, b′) = q(a′a, b′).

This can be extended to a Banach RM(A)-LM(B)-bimodule structure via

(q � β)(a, b) := q(a, β(b)), (α � q)(a, b) = q(α(a), b).

for α ∈ RM(A), β ∈ LM(B).

Remark 2.16. Obviously, if A is unital, then QM(V ) = LM(V ). If B is
unital, then QM(V ) = RM(V ). And if bothA andB are unital, then QM(V ) =
V .

Define a locally convex quasi-strict topology (we will denote it by the
abbreviation q.s.) on HomA,B(A× B,V ) by the family of semi-norms

{νa,b : a ∈ A, b ∈ B},
where νa,b(q) = ‖a � q � b‖, q ∈ HomA,B(A × B,V ), and define
X := [V ]q.s. as the completion of V with respect to the quasi-strict topo-
logy, restricted to V . Now consider a Cauchy net x = {xi} in the topological
space (V , q.s.). For any a ∈ A, b ∈ B the net {axib} converges to some vector
qx(a, b) ∈ V .
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Proposition 2.17. The correspondence x �→ qx is a linear isometric map
fromX onto QM(V ). In the other words, quasi-multipliers of V coincide with
the completion of V with respect to the quasi-strict topology.

Proof. Obviously, qx is a bilinear map for any Cauchy net x = {xi} of
the space (V , q.s.). By the Banach-Steinhaus theorem the set of real numbers
{‖xi‖} is bounded, say by a constantC. Then ‖qx(a, b)‖ ≤ C‖a‖‖b‖, so qx ac-
tually belongs to QM(V ). Now let q ∈ QM(V ) be given, choose approximate
units {eα} in A and {uβ} in B. Since

(a � q � b)(eα, uβ) = q(eαa, buβ) → q(a, b)

for all a ∈ A, b ∈ B, the net y = {q(eα, uβ)} is a Cauchy net in (V , q.s.) and
q = qy, so X = QM(V ) as required.

Consider also the locally convex strong topology (we will denote it by the
abbreviation s) of point-wise convergence on HomA,B(A× B,V ) defined by
the family of semi-norms

{μa,b : a ∈ A, b ∈ B},
where μa,b(q) = ‖q(a, b)‖, q ∈ HomA,B(A × B,V ). Both these topologies
– quasi-strict and strong – coincide on V considered as a subspace of QM(V ).
This assertion may be strengthened in the following way.

Lemma 2.18. νa,b(q) = μa,b(q), i.e., ‖q(a, b)‖ = ‖a � q � b‖, for any
q ∈ QM(V ), a ∈ A, b ∈ B.

Proof. Let q ∈ QM(V ), a ∈ A, b ∈ B be given, choose approximate units
{eα} in A and {uβ} in B. Then the net q(eαa, buβ) = (a � q � b)(eα, uβ)

converges in norm to q(a, b). It implies that ‖q(a, b)‖ = lim ‖a � q �
b(eα, uβ)‖ ≤ ‖a � q � b‖. On the other hand,

‖a � q � b‖ = sup{‖(a � q � b)(c, d)‖ : ‖c‖ ≤ 1, ‖d‖ ≤ 1, c∈A, d ∈B}
= sup{‖q(ca, bd)‖ : ‖c‖ ≤ 1, ‖d‖ ≤ 1, c ∈ A, d ∈ B}
= sup{‖cq(a, b)d‖ : ‖c‖ ≤ 1, ‖d‖ ≤ 1, c ∈ A, d ∈ B}
≤ ‖q(a, b)‖,

which proves the inverse inequality.

Consider the canonical embedding �:V → QM(V ) given by (2). This way
QM(V ) provides an extension of V .

Definition 2.19. A quasi extension of a HilbertA-B-bimoduleV consists
of:
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(i) two Banach algebras A and B, such that A ⊂ A is a right ideal and
B ⊂ B is a left ideal,

(ii) a Banach A -B-bimodule W

(iii) and an isometric bimodule homomorphism �:V −→ W with

Im(�) = AWB := span{axb : a ∈ A, x ∈ W, b ∈ B}.

Definition 2.20. A quasi extension (W,A ,B,�) of V is said to be
strictly essential if A ⊂ A is a right strictly essential ideal, i.e.,

(3) ‖α‖ = sup{‖aα‖ : a ∈ A, ‖a‖ ≤ 1} for all α ∈ A ,

B ⊂ B is a left strictly essential ideal, i.e.,

‖β‖ = sup{‖βb‖ : b ∈ B, ‖b‖ ≤ 1} for all β ∈ B

and the following condition holds
(4)
‖y‖ = sup{‖ayb‖ : a ∈ A, b ∈ B, ‖a‖ ≤ 1, ‖b‖ ≤ 1} for all y ∈ W.

Definition 2.21. A strictly essential quasi extension (Ŵ , Â , B̂, �̂) of
V is said to be maximal if for any other strictly essential quasi extension
(W,A ,B,�) there are an isometric homomorphism λ: A → Â , which is
the identity on A, an isometric homomorphism μ: B → B̂, which is the
identity on B and an isometric linear map
:W → Ŵ such that it satisfies the
condition

(5) 
(ayb) = λ(a)
(y)μ(b) for all a ∈ A , y ∈ W, b ∈ B,

and such that the diagram

W



Ŵ

V

��

is commutative.

Theorem 2.22. Given an A-B-bimodule V . Then (QM(V ),RM(A),
LM(B), �) is a maximal strictly essential quasi extension of V , where � is
defined by (2).

Proof. A ⊂ RM(A) is a right strictly essential ideal and B ⊂ LM(B) is
a left strictly essential ideal by [13, Lemma 6]. Using approximate units of A
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and B a straightforward verification yields the formula (4). Now let us check
the third condition of Definition 2.19. Obviously, Im � ⊂ AQM(V )B and we
only have to ensure the inverse inclusion. Given arbitrary q ∈ QM(V ), a ∈
A, b ∈ B. Then for any c ∈ A, d ∈ B one has

(a � q � b)(c, d) = q(ca, bd) = cq(a, b)d = �(q(a, b))(c, d).

Because � is an isometry, Im(�) is closed, hence

Im � = AQM(V )B

and (QM(V ),RM(A),LM(B), �) is a strictly essential quasi extension of
V . To establish its maximality one chooses any other strictly essential quasi
extension (W,A ,B,�) of V . By [13] LM(B) is a maximal left strictly es-
sential extension ofB and, consequently, there is an isometric homomorphism
μ: B → LM(B), which restricts to the identity on B. Similarly, there is an
isometric homomorphism λ: A → RM(A), which acts identically on A. Now
for y ∈ W, a ∈ A, b ∈ B put

�(y)(a, b) = �−1(ayb).

Obviously, �(y) is a bilinear map from A× B to V . Moreover, � is actually
an isometry, because

‖�(y)‖ = sup{‖�−1(ayb)‖ : a ∈ A, b ∈ B, ‖a‖ ≤ 1, ‖b‖ ≤ 1}
= sup{‖ayb‖ : a ∈ A, b ∈ B, ‖a‖ ≤ 1, ‖b‖ ≤ 1}
= ‖y‖,

where we have used item (iii) of Definition 2.19 and condition (4). Now choose
a ∈ A, α ∈ A , b ∈ B, β ∈ B and y ∈ W . On the one hand one has

�(αyβ)(a, b) = �−1(aαyβb)

and on the other hand

(λ(α) � �(y) � μ(β))(a, b) = �(y)(λ(α)(a), μ(β)(b))

= �−1([λ(α)(a)]y[μ(β)(b)])

= �−1(aαyβb).

So, the map � satisfies the condition (5). The theorem is proved.
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3. Quasi-multipliers of Hilbert C∗-bimodules in Kasparov’s sense

Let us begin by recalling the definition of HilbertC∗-bimodules in Kasparov’s
sense, which is the starting point for KK-theory (cf., e.g., [10]). Given two
C∗-algebras A and B, one considers a right Z/2Z-graded Hilbert B-module
V and a ∗-homomorphism ρ:A → End∗

B(V )
(0), where End∗

B(V )
(0) denotes

the 0-homogeneous adjointable operators in V . We will additionally assume
that this representation is faithful and non-degenerate. Then, in particular, the
C∗-algebra ρ(A) is isomorphic to A, and its left action on V is given by the
formula

a � x = ρ(a)(x), a ∈ A, x ∈ V.
The right action of B on V will sometimes be denoted by

x � b = xb, b ∈ B, x ∈ V.
Let us remark that, in fact, we may restrict our considerations concerning (left,
right or quasi) multipliers of V to the non-graded case, because End∗

B(V )
(0) =

End∗
B(V1)⊕ End∗

B(V2), where V = V1 ⊕V2 means the given Z/2Z-graduation
of V . So henceforth we assume that the module V is non-graded and the
(faithful, non-degenerate) representation ρ is of the form ρ:A → End∗

B(V ).

Definition 3.1. Quasi-multipliers QM(A,ρ,B)(V ) of V are defined as the
set of all bimodule homomorphisms from A× B to V , i.e.,

QM(A,ρ,B)(V ) = HomA,B(A× B,V ).

The Banach space of quasi-multipliers QM(A,ρ,B)(V ) carries an RM(A)-
LM(B)-bimodule structure via

(q � β)(a, b) = q(a, β(b)), (α � q)(a, b) = q(α(a), b)

for α ∈ RM(A), β ∈ LM(B).

Proposition 3.2. V is isometrically embedded into QM(A,ρ,B)(V ) by the
bimodule map

(6)
�(A,ρ,B):V → QM(A,ρ,B)(V ),

�(A,ρ,B)(x)(a, b) := a � x � b := ρ(a)(xb).

Proof. Given x ∈ V , a, a′ ∈ A, b, b′ ∈ B. Denote the quasi-multiplier
�(A,ρ,B)(x) by qx for brevity. Then

qa′�x�b′(a, b) = ρ(a)(ρ(a′)(xb′)b)
= qx(ρ(a)ρ(a

′), b′b)
= (a′ � qx � b′)(a, b),
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so�(A,ρ,B) is a bimodule map and it only remains to check that it is an isometry.
Then

‖qx‖ = sup{‖ρ(a)(xb)‖ : ‖a‖ ≤ 1, ‖b‖ ≤ 1, a ∈ A, b ∈ B} ≤ ‖x‖
and we have to show that this supremum achieves the value ‖x‖. For this it is
enough to verify that

(7) ‖x‖ = sup{‖ρ(a)(x)‖ : ‖a‖ ≤ 1, a ∈ A}.
Because the representation ρ is non-degenerate, the sub-bimodule W =
span{ρ(a)(x) : a ∈ A, x ∈ V } is dense in V and, consequently, we need
to prove (7) only for the vectors x ∈ W . So, choose an arbitrary x ∈ W , i.e.,
x = ∑

ρ(ai)yi with yi ∈ V . Let {eα} be an approximate unit of A. Then
ρ(eα)x = ∑

ρ(eαai)yi converges to x, and the supremum in (7) achieves the
norm ‖x‖ on the approximate unit {ρ(eα)} of ρ(A).

In fact, we may carry out these considerations even for the category of
Banach bimodules over C∗-algebras, which act non-degenerately. More pre-
cisely, given two C∗-algebras A and B and a Banach A-B-bimodule X such
that the following conditions hold

(8) span{ax : a ∈ A, x ∈ X} = X

and

(9) span{xb : b ∈ B, x ∈ X} = X.

Then quasi-multipliers QM(X) ofX are defined again as the set HomA,B(A×
B,X).

Lemma 3.3. The two conditions (8) and (9) are equivalent to the following
one

span{axb : a ∈ A, b ∈ B, x ∈ X} = X.

Proof. LetX satisfy both (8) and (9) and let an arbitrary y ∈ X and ε > 0
be given. There are ai ∈ A, xi ∈ X such that

∥∥∥y −
n∑
i=1

aixi

∥∥∥ < ε

and for any i there are b(i)j ∈ B, z(i)j ∈ X such that

∥∥∥xi −
mi∑
j=1

z
(i)
j b

(i)
j

∥∥∥ < ε

‖ai‖n.
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Then

∥∥∥y−
n∑
i=1

mi∑
j=1

aiz
(i)
j b

(i)
j

∥∥∥ ≤
∥∥∥y−

n∑
i=1

aixi

∥∥∥+
∥∥∥

n∑
i=1

aixi−
n∑
i=1

mi∑
j=1

aiz
(i)
j b

(i)
j

∥∥∥ < 2ε.

The inverse implication of the lemma is trivial.

Proposition 3.4.X is isometrically embedded into QM(X) by the bimodule
map

�:X → QM(X), �(x)(a, b) = axb.

Proof. We only have to check that for any x ∈ X one has

‖x‖ = sup{‖axb‖ : ‖a‖ ≤ 1, ‖b‖ ≤ 1, a ∈ A, b ∈ B}.
By Lemma 3.3 the vector x may be approximated in norm by vectors of the
form

∑
ciyidi with ci ∈ A, yi ∈ X, di ∈ B. Then∥∥∥∑

ciyidi

∥∥∥ = sup
{∥∥∥eα ∑

ciyidiuβ

∥∥∥ : α, β
}
,

where {eα} and {uβ} stand for approximate units in A and B respectively.

4. Quasi-multipliers of direct sums of bimodules

Given two C∗-algebras A and B and a Hilbert A-B-bimodule V . Consider
another A-B-bimodule Ṽ and a bimodule homomorphism θ :V → Ṽ . Then
there is a homomorphism θ∗: QM(V ) → QM(Ṽ ) of Banach RM(A)-LM(B)-
bimodules given by the formula

θ∗(q) = θq, q ∈ QM(V ).

So, quasi-multipliers provide a covariant functor QM from the category of
HilbertA-B-bimodules to the category of Banach RM(A)-LM(B)-bimodules.
Obviously, these observations are still valid for Banach (instead of Hilbert)A-
B-bimodules, on which both C∗-algebras A and B act non-degenerately. If V
is given as a direct sum V = V1 ⊕V2 of its (closed) sub-bimodules V1 and V2,
then one straightforwardly verifies that QM(V ) = QM(V1)⊕QM(V2), in other
words the functor QM is additive. In particular, for the free A-A-bimodule An

one has QM(An) = QM(A)n.
Now we are investigating what happens with quasi-multipliers if we map

eitherA or B to other C∗-algebras. So, consider two C∗-algebras Ã and B̃ and
two surjective ∗-homomorphisms

ϕ:A → Ã, ψ :B → B̃.
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Assume V is a Banach Ã-B̃-bimodule equipped with non-degenerate actions
of theseC∗-algebras. Define a left action �ϕ ofA twisted by ϕ and right action
�ψ of B twisted by ψ on V as follows

a �ϕ x = ϕ(a) � x, x �ψ b = x � ψ(b),

where a ∈ A, b ∈ B, x ∈ V . Surjectivity of ϕ andψ ensures that these actions
are non-degenerate. Then (V ,�ϕ,�ψ) is a Banach A-B-bimodule and quasi-
multipliers of this bimodule are called twisted quasi-multipliers of the original
Ã-B̃-bimodule (V ,�,�) and are denoted by QM(ϕ,ψ)(V ).

With this construction, quasi-multipliers are contravariant in both variables
A and B.

Now we are going to study the behavior of the functor QM with respect to
infinite direct sums of bimodules. As a corollary, in particular, we will obtain
a description of quasi-multipliers for the standard A-A-bimodule l2(A). So
given A-B-bimodules Vi . Obviously, for a sequence (xi), xi ∈ Vi the series∑

i A〈xi, xi〉 converges in norm if and only if the series
∑

i〈xi, xi〉B does,
moreover, their norms have to coincide. Set

V =
{
(xi) : xi ∈ Vi,

∑
i

A〈xi, xi〉 converges in norm
}
.

Then V is a Hilbert A-B-bimodule with respect to the inner products

A〈x, y〉 =
∑
i

A〈xi, yi〉 and 〈x, y〉B =
∑
i

〈xi, yi〉B,

where x = (xi), y = (yi) ∈ V (cf. [12, Example 1.3.5]).

Theorem 4.1. Set

W =
{
(qi) : qi ∈ QM(Vi), the norms of the operators

ρn = (q1, . . . , qn, 0, . . .):A× B →
n⊕
i=1
Vi are uniformly bounded

over n, and (qi(a, b)) ∈ V for any a ∈ A, b ∈ B
}
.

In particular, if (qi) ∈ W then both series
∑

i A〈qi(a, b), qi(a, b)〉 and∑
i〈qi(a, b), qi(a, b)〉B converge in norm for any a ∈ A, b ∈ B. Then W ,

with norm defined by (10) below, is a Banach RM(A)-LM(B)-bimodule with
entry-wise action, isometrically isomorphic to the Banach RM(A)-LM(B)-
bimodule QM(V ).
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Proof. Suppose r ∈ RM(A), l ∈ LM(B) and q = (qi) ∈ W . Then
∑
i

A〈(r � qi � l)(a, b), (r � qi � l)(a, b)〉
=

∑
i

A〈qi(r(a), l(b)), qi(r(a), l(b))〉

and r � q � l := (r � qi � l) belongs to W . Set

‖q(a, b)‖ :=
∥∥∥∑

i

A〈qi(a, b), qi(a, b)〉
∥∥∥1/2

and

(10) ‖q‖ := sup{‖q(a, b)‖ : ‖a‖ ≤ 1, ‖b‖ ≤ 1, a ∈ A, b ∈ B}.
This supremum is finite, because q is a point-wise limit of the sequence

{ρn = (q1, . . . , qn, 0, . . .)}
and ‖ρn‖ ≤ C for any n. Thus, W is a normed RM(A)-LM(B)-bimodule.
Note, moreover, that q considered as a map q:A × B → V is bounded and
thus a quasi-multiplier.

An isometric isomorphism�: QM(V ) → W may be defined in the follow-
ing way. Denote by pi :V → Vi the natural projection and consider any quasi-
multiplier T ∈ QM(V ), i.e., T :A×B → V . Then, clearly, Ti = piT belongs
to QM(Vi) for any i and the sequence {Fn = (T1, . . . , Tn, 0, . . .)} ⊂ QM(V )
quasi-strictly converges to T . By definition set �(T ) = (Ti).

Because T (a, b) = (T1(a, b), T2(a, b), . . .) ∈ ⊕
Vi for any a ∈ A, b ∈ B,

the sequence (Ti) belongs to W . Obviously, � is an isometry. Now take an
arbitrary (qi) ∈ W . Define T (a, b) := (q1(a, b), q2(a, b), . . .) for a ∈ A, b ∈
B. Then T is an element of QM(V ) and �(T ) = (qi), proving surjectivity of
�.

Corollary 4.2. Quasi-multipliers of the standard bimodule l2(A) over a
C∗-algebraA coincide with the set of sequences {(qi), qi ∈ QM(A)} such that
the norms of

{⊕n
i=1 qi

}
are uniformly bounded over n and

∑
i (aqic)

∗(aqic)
converges in norm for any a, c ∈ A.

Let V be a right Hilbert module over a C∗-algebra B. Then its multipliers
were defined in [2], [16] as Hom∗

B(B, V ). It is a Hilbert module over the
C∗-algebra M(B). Likewise, the left multipliers of V were defined in [8] as
HomB(B, V ) being a Banach module over the Banach algebra LM(B). The
arguments above imply the following assertion.
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Theorem 4.3. Assume that V = ⊕
Vi is a direct sum of HilbertB-modules

Vi . Then

LM(V ) =
{
(λi) : λi ∈ LM(Vi), the norms of the operators

θn = (λ1, . . . , λn, 0, . . .):B →
n⊕
i=1
Vi are uniformly bounded

over n, and (λi(b)) ∈ V for any b ∈ B
}
,

M(V ) =
{
(μi) : μi ∈ M(Vi), the norms of the operators

τn = (μ1, . . . , μn, 0, . . .):B →
n⊕
i=1
Vi are uniformly bounded

over n, and (μi(b)) ∈ V for any b ∈ B
}
.

This theorem in its part concerning multipliers generalizes [2, Theorem 2.1],
where the crucial case of the standard module was considered. Our description
being applied to V = l2(A) differs from the one of [2], but is just its equivalent
reformulation. Indeed, let V = l2(A), mi ∈ M(A) and the sequence {τn =
(m1, . . . , mn, 0, . . .)} be given. Then one has

(11)

‖τn‖2 = sup{‖〈τn(a), τn(a)〉‖ : a ∈ A, ‖a‖ ≤ 1}

= sup
{∥∥∥

n∑
i=1

mi(a)
∗mi(a)

∥∥∥ : a ∈ A, ‖a‖ ≤ 1
}

= sup
{∥∥∥

n∑
i=1

a∗m∗
i mia

∥∥∥ : a ∈ A, ‖a‖ ≤ 1
}

=
∥∥∥

n∑
i=1

m∗
i mi

∥∥∥.

Now, [2, Theorem 2.1] claims that

M(l2(A)) =
{
(mn) : mn ∈ M(A),∑

am∗
nmn,

∑
m∗
nmna converge in A for any a ∈ A

}
.

But the norm-convergence of a series
∑
a∗m∗

nmna and uniform boundedness
of the sequence

{∥∥∑
m∗
nmn

∥∥}
(say by a constant C), which is ensured by the

equality (11), imply the norm convergence of the series
∑
ax∗

nxn and
∑
x∗
nxna
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because of the Cauchy-Schwartz inequality

∥∥∥∑
m∗
nmna

∥∥∥ ≤
∥∥∥∑

m∗
nmn

∥∥∥1/2 ·
∥∥∥∑

a∗m∗
nmna

∥∥∥1/2

≤
∥∥∥∑

a∗m∗
nmna

∥∥∥1/2
C1/2.

5. Quasi-multipliers of continuous sections of Hilbert C∗-bimodule
bundles

Given a locally compact Hausdorff space X. For the commutative C∗-algebra
C0(X) of continuous functions on X vanishing at infinity its set of multipliers
(as well as its set of left (or right) multipliers and quasi-multipliers) coincides
with the C∗-algebra Cb(X) of bounded continuous functions on X. On the
other hand Cb(X) is nothing else but the C∗-algebra C(βX) of continuous
functions on the Stone-Čech compactification of X (cf. [15, 3.12.6]). This
result was extended in [1] to C∗-algebras A0(X) = C0(X,A) of continuous
A-valued functions vanishing at infinity, where A is a C∗-algebra (actually
in [1] there was considered the even more general case of continuous cross
sections of fiber spaces). Denote byM(A)β theC∗-algebra of multipliers ofA,
equipped with the strict topology, and by Cb(X,M(A)β) the set of continuous
bounded M(A)-valued functions on X. Then

(12) M(A0(X)) = Cb(X,M(A)β)

(cf. [1, Corollary 3.4]). But Cb(X,M(A)β) is not isomorphic to C(βX,

M(A)β), becauseC(βX)⊗M(A) = M(C0(X))⊗M(A)�M(C0(X)⊗A) =
M(A0(X))wheneverX is σ -compact,A is infinite dimensional and the tensor
products are considered with respect to the minimal (spatial) norm, [1, The-
orem 3.8].

And in turn formula (12) was extended in [5] in the following way. Let V be
a HilbertA-module and V0(X) = C0(X, V ) be the set of continuous V -valued
functions vanishing at infinity. It is, obviously, a Hilbert A0(X)-module. De-
note by End∗

A(V )β theC∗-algebra of allA-linear bounded adjointable operators
in V , equipped with the ∗-strict module topology (cf. [12, § 5.5]). Then

(13) End∗
A0(X)

(V0(X)) = Cb(X,End∗
A(V )β).

Because by Kasparov’s theorem End∗
A(V ) = M(KA(V )) (cf. [9]) for any

Hilbert A-module V , where KA(V ) stands for the C∗-algebra of compact
operators of V , the formula (12) is a particular case of (13) for V = A. Our
aim in this paragraph is to find the proper analogue of formula (12) for quasi-
multipliers of continuous sections of Hilbert C∗-bimodule bundles.
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In order to define this notion, take a locally compact Hausdorff spaceX and
two C∗-algebras A and B, set A0(X) := C0(X,A) and B0(X) := C0(X,B).
Equipped with the supremum norm, these are again C∗-algebras.

In view of the above observations we want sections in our still to be defined
bundles of Hilbert A-B-bimodules to form a Hilbert A0(X)-B0(X)-bimodule
with the inner product induced by the pointwise operations in the fibers. The
corresponding structure group should therefore reduce to unitary A-B-linear
operators, which raises the question whether these are well-defined, since we
have two inner products. This is settled by the following lemma.

Lemma 5.1. Let V be a Hilbert A-B-bimodule and T ∈ EndA,B(V ) be a
boundedA- andB-linear operator, which has an adjoint T ∗,B for theB-valued
inner product. Then T ∗,B coincides with the adjoint of T for theA-valued inner
product (i.e., T ∗,A = T ∗,B).

Proof. We follow [3, Remark 1.9]. Let x, y, z ∈ V , then we have

A〈x, T ∗,By〉z = x〈T ∗,By, z〉B = x〈y, T z〉B = A〈x, y〉T z = T (A〈x, y〉z)
= T (x〈y, z〉B) = T x〈y, z〉B = A〈T x, y〉z

Clearly a = A〈x, T ∗,B y〉 − A〈T x, y〉 ∈ A〈V, V 〉, where the latter denotes
the closure of the linear span of all possibleA-valued inner products. Moreover
az = 0 for all z ∈ V by the previous calculation. This implies a = 0 by the
approximate unit argument given in [3, Remark 1.9].

Definition 5.2. Let V be a Hilbert A-B-bimodule. By the above lemma,
the adjointable A-B-linear operators End∗

A,B(V ) are well-defined. Denote the
unitary elements in this C∗-algebra by UA,B(V ).

Definition 5.3. Given a locally compact Hausdorff spaceX and a Hilbert
A-B-bimoduleV . A HilbertA-B-bimodule bundle V overXwith typical fiber
V is a triple (V , p,X), where V is a Hausdorff space and p: V → X maps
V onto X such that the following holds:

(i) there is an open cover {Ui}i∈I ofX such that there exist homeomorphisms

ϕi :p
−1(Ui) −→ Ui × V

with pr1 ◦ ϕi = p|p−1(Ui ).

(ii) let ϕij be defined via ϕj ◦ ϕ−1
i (x, v) = (x, ϕij (x)(v)) for x ∈ Ui ∩ Uj

and v ∈ V , then ϕij is a continuous map

ϕij :Ui ∩ Uj −→ UA,B(V ).
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Condition (i) implies that V is fiberwise isomorphic to V , condition (ii)
encodes the reduction of the structure group to the unitary operators. The con-
tinuous sections V0(X) = C0(X,V ) indeed yield a A0(X)-B0(X)-bimodule.
Let x ∈ X be in the set Ui of the cover, then there is an A0(X)-valued inner
product on V0(X) defined via

A0(X)〈σ, τ 〉(x) = A〈pr2 ◦ ϕi ◦ σ(x), pr2 ◦ ϕi ◦ τ(x)〉,
where pr2 stands for the projection of Ui × V onto V . This does not depend
on the particular choice of (Ui, ϕi). Indeed, if x lies in Ui ∩ Uj we have:

A〈pr2 ◦ ϕi ◦ σ(x), pr2 ◦ ϕi ◦ τ(x)〉
= A〈ϕji(x)(pr2 ◦ ϕj ◦ σ(x)), ϕji(x)(pr2 ◦ ϕj ◦ τ(x))〉
= A〈pr2 ◦ ϕj ◦ σ(x), pr2 ◦ ϕj ◦ τ(x)〉

due to the unitarity of the structure group. There is a similar B0(X)-valued
inner product on V0(X). With these additional structures V0(X) is indeed an
A0(X)-B0(X)-bimodule.

Associated to V we have the bundle of quasi-multipliers QM(V ). To define
this, note that for a unitaryu ∈ UA,B(V ) and a quasi-multiplier q ∈ QM(V ) the
map u ◦ q is again a quasi-multiplier due to the A-B-linearity of u. Therefore
the space ∐

i∈I
Ui × QM(V )

may be equipped with the equivalence relation

(x, q) ∼ (x, ϕij (x) ◦ q),
where i, j ∈ I , x ∈ Uij and q ∈ QM(V ). The quotient QM(V ) = ∐

i∈I Ui ×
QM(V )/∼ is a locally trivial bundle with typical fiber QM(V ). Moreover the
canonical map ι:V → QM(V ) extends to a bundle morphism

V −→ QM(V ); v �→ [x, ι ◦ pr2 ◦ ϕi(v)],
where v belongs to the fiber over x ∈ X and [x, q] ∈ QM(V ) denotes the equi-
valence class of (x, q). We may consider the quasi-strict topology on QM(V ),
the quotient topology induced by this on the space QM(V )will again be called
the quasi-strict topology on the bundle QM(V ). This is the last ingredient to
phrase the analogue of (12) in the case of bundles.

Theorem 5.4. For the quasi-multipliers of V0(X) we have an isometric
bimodule isomorphism

QM(V0(X)) ∼= Cb(X,QM(V )),
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where QM(V )on the right-hand side is equipped with the quasi-strict topology.

Proof. We are going to construct explicit maps in both directions and
show that they are inverse to each other. Denote by π : QM(V ) → X the
bundle projection. For the map from the left hand side to the right we need
an evaluation map turning a quasi-multiplier on sections QM(V0(X)) into a
quasi-multiplier on a fixed fiber QM(V )y = π−1(y). Therefore we need to be
able to construct sections of A0(X), B0(X) with a prescribed value at a given
point y ∈ X. Local compactness enables us to achieve this. Let a ∈ A, b ∈ B
be given. By passing to the one-point compactification X+ (which is normal)
we can construct a function

χy :X+ −→ [0, 1]

which is 1 at y and vanishes at ∞. In particular, we may set α = χya ∈ A0(X)

and β = χyb ∈ B0(X).
If Vy denotes the fiber of V over y ∈ X, then QM(V )y is by construction

canonically isomorphic to QM(Vy). Let α, β be sections of A0(X), B0(X) as
above and set

ϕy : QM(V0(X)) −→ QM(V )y; ϕy(G)(a, b) = G(α, β)(y).

To see that this does not depend on the choice of α note thatG(·, β):A0(X) →
V0(X) is left A0(X)-linear and bounded for any β ∈ B0(X), therefore

A0(X)〈G(α, β),G(α, β)〉 ≤ ‖G(·, β)‖2 · A0(X)〈α, α〉.
If α(y) = 0 this implies A0(X)〈G(α, β),G(α, β)〉(y) = 0. Thus, ϕy does not
depend on the choice of α. The same argument shows that different choices of
β will lead to the same map ϕy . Furthermore

(14) ‖ϕy(G)(a, b)‖ = ‖G(α, β)(y)‖ ≤ ‖G‖‖α‖‖β‖ = ‖G‖‖a‖‖b‖
proves that ϕy(G) is bounded and therefore indeed defines an element of
QM(Vy) = QM(V )y . Note that the upper bound can be chosen independ-
ently of y ∈ X.

Recall that a section σ :X → QM(V ) is continuous at y ∈ Y if and only if
there exists a trivialization ψU : QM(V )|U → U × QM(V ) such that the map
pr2 ◦ ψU ◦ σ |U :U → QM(V ) is continuous. Let φU : V |U → U × V be a
local trivialization of V . By construction of QM(V ) there is a corresponding
trivialization ψU such that for y ∈ U, q ∈ QM(V )y = QM(Vy), a ∈ A and
b ∈ B we have

(pr2 ◦ ψU(q))(a, b) = pr2 ◦ φU(q(a, b)).
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Now let ε > 0. Since G(α, β) ∈ V0(X) is continuous at y, we can find an
open neighborhood U � y and a trivialization φU : V |U → U × V , such that∥∥pr2 ◦ φU(G(α, β)(y))− pr2 ◦ φU(G(α, β)(y ′))

∥∥ ≤ ε

for all y ′ ∈ U . In view of our above observation this proves continuity of y �→
ϕy(G) with respect to the quasi-strict topology, since applying Lemma 2.18
one has

‖a �
(
pr2 ◦ ψU(ϕy(G))− pr2 ◦ ψU(ϕy ′(G))

)
� b‖

= ‖pr2 ◦ ψU(ϕy(G))(a, b)− pr2 ◦ ψU(ϕy ′(G))(a, b)‖
= ‖pr2 ◦ φU(ϕy(G)(a, b))− pr2 ◦ φU(ϕy ′(G)(a, b))‖
= ‖pr2 ◦ φU(G(α, β)(y))− pr2 ◦ φU(G(α, β)(y ′))‖ ≤ ε.

By the independence of the bound in (14) the section constructed above is also
bounded. Therefore

S: QM(V0(X)) −→ Cb(X,QM(V )), G �→ (y �→ ϕy(G)).

is well-defined, linear and satisfies ‖S(G)‖ ≤ ‖G‖. For the inverse direction
consider

�:Cb(X,QM(V )) → QM(V0(X)),

�(F )(α, β)(x) := F(x)(α(x), β(x)).

First, we have to check that the element�(F)(α, β) belongs to V0(X), i.e. that
the function

x �→ F(x)(α(x), β(x))

vanishes at infinity and is continuous. For any ε > 0 there is a compactK ⊂ X

such that ‖α(x)‖ < ε and ‖β(x)‖ < ε for x ∈ X \K . Then

(15)

‖�(F)(α, β)(x)‖ = ‖F(x)(α(x), β(x))‖
≤ ‖F(x)‖‖α(x)‖‖β(x)‖
≤ ‖F‖ε2

for x ∈ X \K proving that it vanishes at infinity.
For the verification of continuity let ε > 0 and x ∈ X. There is a neighbor-

hood U1 of x such that

‖α(x)− α(y)‖ < ε and ‖β(x)− β(y)‖ < ε whenever y ∈ U1.

On the other hand by Lemma 2.18 there is a neighborhood U2 ⊂ U1 of x such
that

‖(pr2 ◦ ψU2 ◦ F |U2)(x)(α(x), β(x))− (pr2 ◦ ψU2 ◦ F |U2)(y)(α(x), β(x))‖
= ‖pr2 ◦ φU2(F (x)(α(x), β(x)))− pr2 ◦ φU2(F (y)(α(x), β(x)))‖ < ε
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whenever y ∈ U2. One has

‖pr2 ◦ φU2(�(F )(α, β)(x))− pr2 ◦ φU2(�(F )(α, β)(y))‖
= ‖pr2 ◦ φU2(F (x)(α(x), β(x)))− pr2 ◦ φU2(F (y)(α(y), β(y)))‖
≤ ‖pr2 ◦ φU2(F (x)(α(x), β(x)))− pr2 ◦ φU2(F (y)(α(x), β(x)))‖

+ ‖pr2 ◦ φU2(F (y)(α(x), β(x)))− pr2 ◦ φU2(F (y)(α(y), β(x)))‖
+ ‖pr2 ◦ φU2(F (y)(α(y), β(x)))− pr2 ◦ φU2(F (y)(α(y), β(y)))‖

≤ ε + ‖F‖‖β‖ε + ‖F‖‖α‖ε
for y ∈ U2, which proves continuity of �(F)(α, β). Together with the norm
estimates (15), this completes the proof of well-definedness of �. Clearly, �
is the inverse of S. Moreover, the inequalities (14) and (15) ensure that S is an
isometry.

Remark 5.5. The evaluation map ϕy used in the proof coincides with the
extension of

ϕy : V0(X) −→ Vy

with respect to the quasi-strict topology.

Let V be a bundle of right Hilbert B-modules for a C∗-algebra B. By a
similar construction as the one given above there is a bundle LM(V ) of left
multipliers and a bundle M(V ) of double multipliers. The above arguments
may be used to prove the following analogue of Theorem 5.4 for left and
(double) multipliers.

Theorem 5.6. There are the following isometric B-module isomorphisms

LM(V0(X)) ∼= Cb(X,LM(V )),

M(V0(X)) ∼= Cb(X,M(V )),

where LM(V ) (resp.,M(V )) on the right-hand side are equipped with the left
strict (resp., strict) topology.
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