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C*-ALGEBRAS ARISING FROM DYCK SYSTEMS OF
TOPOLOGICAL MARKOV CHAINS

KENGO MATSUMOTO*

Abstract

Let A be an N x N irreducible matrix with entries in {0, 1}. We define the topological Markov
Dyck shift D4 to be a nonsofic subshift consisting of bi-infinite sequences of the 2N brackets
(155 (Ns)1s--.,)n with both standard bracket rule and Markov chain rule coming from A.
It is regarded as a subshift defined by the canonical generators ST, ..., S,”{,, S1,..., Sy of the

Cuntz-Krieger algebra 04. We construct an irreducible A-graph system 2EN(P4) that presents
the subshift D4 so that we have an associated simple purely infinite C*-algebra Ogcnn,). We
prove that Ogcnn,) is a universal unique C*-algebra subject to some operator relations among 2N
generating partial isometries.

1. Introduction

Let ¥ be a finite set with its discrete topology, that is called an alphabet.
Each element of ¥ is called a symbol. Let %2 be the infinite product space
[T _ =i, where &; = X, endowed with the product topology. The trans-
formation o on X2 given by o ((x;)iez) = (Xi41)iez is called the full shift over
%. Let A be a closed subset of X% such that o(A) = A. The topological dy-
namical system (A, o) is called a subshift or a symbolic dynamical system.
It is written as A for brevity. There is a class of subshifts called sofic shifts,
that contains the class of topological Markov shifts. Sofic shifts are presented
by finite labeled graphs, called A-graphs. In [19], the author has introduced
a notion of A-graph system as a generalization of A-graph. A A-graph system
= (V,E, X, t)over X consists of a vertex set V = Vo UV, UV, U..., an
edgeset E = Ep UE 2 UEy3U..., alabelingmapA : E — ¥ and a
surjective map t; ;41 : Viy1 — V; foreach! € Z, where Z, denotes the set of
all nonnegative integers. An edge e € E; ;4 has its source vertex s(e) in V,,
its terminal vertex 7 (e) in V;,; and its label A(e) in X.

The theory of symbolic dynamical system has a close relationship with
formal language theory. In the theory of formal language, there is a class of
universal languages due to W. Dyck. The symbolic dynamics generated by the
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languages are called the Dyck shifts Dy (cf. [3], [10], [11], [12]). They are non-
sofic subshifts. Its alphabet consists of the 2N brackets: (1, ..., (§, )1, ---» )N~
The forbidden words consist of words that do not obey the standard bracket
rules. In [14], a A-graph system L"(P~) that presents the subshift Dy has been
introduced. The A-graph system is called the Cantor horizon A-graph system
for the Dyck shift Dy. The K-groups for L"PV) that are invariant under
topological conjugacy of the subshift Dy, have been computed ([14]).

In [20], a nuclear C*-algebra Oy associated with a A-graph system ¥ has
been introduced. The class of the C*-algebras contain the class of the Cuntz-
Krieger algebras. They are universal unique concrete C*-algebras generated
by finite families of partial isometries and sequences of projections subject
to certain operator relations encoded by structure of the A-graph systems. Its
K-groups K;(0Og), i = 0, 1 are realized as the K-groups of the A-graph system
L. The results of [14] imply that the C*-algebras Ogcnoy) for N = 2,3, ... are
unital, simple and purely infinite whose K-groups are

(L.1) Ko(Ogcnoy) EZ/NZ P C(K, 2), K1 (Ogenoy)) =0

where C (§, Z) denotes the abelian group of all integer valued continuous func-

tions on a Cantor discontinuum &. Let uy, ..., uy be the canonical generating
isometries of the Cuntz algebra Oy that satisfy the relations: Z;vzl ujuiy =1,
uiu; = 1fori =1,..., N. Then the bracket rule of the symbols (i, ..., (v,
)1, ..., )n of the Dyck shift Dy may be interpreted as the relations

| ifi i
(1.2) ufuj={ nr=s

0 otherwise
fori, j = 1,..., N in Oy through the correspondence (;—> u},); — u;
(cf. (2.1)).

In the present paper, we consider a generalization of the Dyck shifts Dy by
using the canonical generating partial isometries of the Cuntz-Krieger algebras
O4 for N x N matrices A with entries in {0, 1}. The generalized Dyck shift
is denoted by D4 and called the topological Markov Dyck shift for A (cf. [7],
[11], [15], [16]). Let ay, ..., @y, Bi1, ..., By be the alphabet of D4, corres-
ponding to the brackets (i, ..., (y, )1,...,)n respectively. Let ¢, ..., ty be
the canonical generating partial isometries of 04 satisfying the relations

N N
thtj* =1, 4= ZA(i, pytr for i=1,...,N.
j=1 j=1

Consider the correspondence ¢(«;) = t*, ¢(Bi)) = t;,i = 1,..., N. Then a
word w of {«y, ..., ay, Bi, ..., Bn}isdefined to be admissible for the subshift
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D, precisely if the corresponding element to w through ¢ in 04 is not zero.
If A satisfies condition (I) in the sense of [5], the subshifts D, are not sofic
(Proposition 2.1). If all entries of A are 1’s, D, is reduced to Dy. We con-
sider the Cantor horizon A-graph system LMP4) for the topological Markov
Dyck shift D4. The A-graph system will be proved to be A-irreducible with
A-condition (I) in the sense of [23] if the matrix A is irreducible with condition
(I) (Proposition 2.5). Hence the associated C*-algebra Ogcuwo,) is simple and
purely infinite. We will show:

THEOREM 1.1. Let A be an N x N matrix with entries in {0, 1}. Suppose that
A is irreducible with condition (). The C*-algebra Ogcnw,) associated with the
A-graph system QPP js unital, separable, nuclear, simple and purely infinite.
It is the unique C*-algebra generated by 2N partial isometries S;, T;, i =
1, ..., N subject to the following relations:

N
(13 D (S +TTH =1,
j=1
N
(14) Y sis=1,
j=1

N
(1.5) T/ =) AG. )S;S;, i=12....N,
j=1

N
(1.6) E,U-lmllvk = Z A(j’ MI)S]‘S;EMWM Sij + TMIEM2~~~MI< T:p k>1
j=1

where E,, _,, = S;l ...SZkSM oSy forpy, oo uee{l, ... N}
Let X 4 be the right one-sided topological Markov shift

Xa={xien€{l,...., N} | Ax;, x;41) = 1,i € N}

for the matrix A and o4 the shift on X4 defined by o4 ((x;)ien) = (Xit1);en
for (x;)ien € Xa. Let op, and A, , be endomorphisms of the abelian group
C (X4, 2) of all Z-valued continuous functions on X 4 defined by

N
oa (N x) = floalx)), A () = ZA(j,xl)f(jX)

j=1

for f € C(X4,2Z) and x = (x;);ien € X4, Where jx = (j, x1,x2,...) € Xy
for A(j, x;) = 1. Then we will show:
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THEOREM 1.2.
(i) Ko(Ogenny) = C(Xa,2)/(d —(op, + A, ))C (X4, 2).
(i1) K (Ogenoy) = Ker(id —(op, + Ap,)) in C(X 4, 2).

If all entries of A are 1’s, the A-graph system L"P4) becomes LNV
so that the C*-algebra Ogcnn,) goes to Ogcnoy). If A is the Fibonacci matrix
F = [ ! (1)] the C*-algebra Ogcnopy is simple and purely infinite. Its K-groups
are Ko(Ogenwp) EZ260 C(K, 2)*°, K1 (Ogenwp) = 0 where C (8, Z)*° denotes
the countable infinite direct sum of the group C (&, Z) (cf. [25]). In general,
the C*-algebra Oy associated with a A-graph system ¥ has an infinite family
of generators. Both of the C*-algebras Ogcnoy), Ogenoyy are finitely generated,
and their Ky-groups however are not finitely generated. Therefore they are
not semiprojective whereas Cuntz algebras and Cuntz-Krieger algebras are
semiprojective (cf. [1], [2], [21], [26]).

2. The topological Markov Dyck shifts

Throughout the paper N is a fixed positive integer larger than 1.

We consider the Dyck shift Dy with alphabet ¥ = ¥~ U £ where
Y7 = {ap,...,ay}, 2T = {Bi,..., Bn}. The symbols «;, B; correspond
to the brackets (;, ); respectively, and have the relations

1 ifi =,
2.1) o = {
& 0 otherwise

fori,j =1,..., N (cf. (1.2), [11],[12]). A word y; ...y, of X is defined to
be admissible for Dy precisely if [, _; v # 0, where [ ] _, v, means the
product y; ...y, obtained by applying (2.1).

Let A =[A(, j)li j=1,...~ be an N x N matrix with entries in {0, 1} having
no zero rows or columns. Consider the Cuntz-Krieger algebra 04 for the matrix
A that is the universal C*-algebra generated by N partial isometries zq, . . ., ty
subject to the following relations ([5]):

N N
22) D nr=1, =Y AG jpyt;  for i=1,...,N.
j=1 j=1

Define a correspondence ¢4 : ¥ — {t{, ..., 5, t, ..., Iy} by setting
oalay) =17, @a(Bi) =1 for i=1,...,N.
We denote by X* the set of all words y; . ..y, of elements of X. Define the set

Ba=Wi- v 0ay)...0a(yn) =0}
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Let D, be the subshift over ¥ whose forbidden words are % 4. The subshift is
called the topological Markov Dyck shift defined by A. These kinds of sub-
shifts have first appeared in [7] in semigroup setting and in [15] in more general
setting without using C*-algebras. If all entries of A are 1’s, the partial iso-
metries @a(ay), ..., @a(@n), 9a(B1), ..., pa(Bn) satisfy the same relations
as (2.1) so that the subshift D4 becomes the Dyck shift Dy. We note the fact
that Ol,',Bj € Faifi # j, and o ...0 € %4 if and only if ,3,'] ce ,31'” € Fa.
Consider the following two subsystems of D4

DY ={(Vi)icz € Da | v, € T" foralli € Z},
D, ={(Vi)icz € Da | yi € ™ foralli € Z}.

The subshift D} is identified with the topological Markov shift
Ap={(xDicz € {1,.... NV | A(xi, xi0) = 1,i € Z)

defined by A through the one block code 8; —> i. Similarly D, is identified
with the topological Markov shift A 4. defined by the transposed matrix A" of
A. Hence the subshift D4 contains copies of both of the topological Markov
shifts A4 and A4:. The following proposition implies that most irreducible
matrices A yield non Markov subshifts D 4.

PrOPOSITION 2.1. If A satisfies condition (1) in the sense of [5], the subshift
D, is not sofic.

PrOOF. Recall that X, is the right one-sided topological Markov shift
{(xidien | (xi)iez € Aa} for A. Put Xp+ = {(¥i)ien | (Vidiez € D).
Since A satisfies condition (I), we can find elements (n(i));en € X4 such
that n(i);jen 7 k(i)ien for n # k. Put x(n) = (Bngy)ien € XD:{ forn € N. Let
'~ (x(n)) be the predecessor set of x(n) in D4, that is,

() ={C...y2,y-1,5) | (..., y_2,Y-1, Y0, Bu)» Bn2), - - ) € Da}.

The left one-sided sequence (. . ., otk(2), ot(1)) belongs to I'™(x (n)) if and only
if n = k. Thus the predecessor sets I'"(x(n)), n = 1,2, ... are mutually
distinct, so that D, is not sofic (cf. [18, Theorem 3.2.10]).

A A-graph system ¥ is said to present a subshift A if the set of all admissible
words of A coincides with the set of all finite labeled sequences appearing in
concatenating edges of £. There are many A-graph systems that present a given
subshift. Among them the canonical A-graph system is a generalization of the
left-Krieger cover graph for a sofic shift([19]). The canonical A-graph system
LEDN) for the Dyck shift Dy together with its K-groups has been studied
in [22]. One however sees that the A-graph system £€P¥) is not irreducible,
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so that the resulting C*-algebra Ogcwy) is not simple. The Cantor horizon A-
graph system LMPV) for Dy is an irreducible component of €A so that the
associated C*-algebra Oycnwy) is simple and purely infinite whose K-groups
have been computed as (1.1) [24].

In the paper we will study the Cantor horizon A-graph systems "(P4) for
the topological Markov Dyck shifts D4 and its associated C*-algebras Ogchw,) .
In what follows we fix an N x N matrix A with entries in {0, 1} having no
zero rows or columns. We denote by B;(D4) and B;(A 4) the set of admissible
words of length [ of D, and that of A 4 respectively. Let m (/) be the cardinal
number of B;(A 4). We use lexicographic order from the left on the words of
Bi(A4),sothatweassignaword i ... € Bj(A4)thenumber N (wg ... 1)
from 1 to m(!). For example, if A = [} (1)], then

Bi(Aa) = {1, 2}, N() =1, N2) =2,
By(As) ={11,12,21}, N(11) =1, N(12) =2, N(21) = 3,

and so on. Hence the set B;(A 4) bijectively corresponds to the set of natural
numbers less than or equal to m (/). Let us now describe the Cantor horizon
A-graph system L"P4) of D 4. The vertices V; atlevel [ for [ € Z, are given by
the admissible words of length [ consisting of the symbols of 1. We regard
Vo as a one point set of the empty word {#}. Since V; is identified with B;(A 4),
we may write V; as

Vi = {0y | 10111 € Bi(AQ)}.

The mapping ¢ (=t;+1) : Viz1 — V; is defined by deleting the rightmost
symbol of a corresponding word such as

I+1 o 141
I'(UN(MI...IL/H)) - vN(Ml-nlLl) for UN(M1~~~M+1) € Vl"'l'
We define an edge labeled o; from vﬁv(m‘.‘u,) e V,to vf\f(}mmmm € Vi

precisely if uo = j, and an edge labeled B; from vﬁ\,(ju]_”mil) e V to

I+1

v € Vi41. For I = 0, we define an edge labeled «; from v} to v}v(j),

Ny pis1)
and an edge labeled B; from v} to v}v(l.) if A(j,i) = 1. We denote by E; ;1
the set of edges from V; to V4. Set E = U?io E;;41. Itis easy to see that the
resulting labeled Bratteli diagram with (-map becomes a A-graph system over
¥, that is denoted by QCh(Pa),

In the A-graph system £C*P4)| we consider two A-graph subsystems 223
and LP4) Both of the A-graph subsystems have the same vertex sets as
QD) (ogether with the same (-maps as 2CM(P4) The edge set of PN
consists of edges labeled =7 in the edges of L“"P4) whereas that of LPPx)
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consists of edges labeled ¥ ~. Hence QEMDY) and QCMDL) gre A-graph systems
over ¥ and over X~ respectively. The latter A-graph system L"P4) is called
the word A-graph system in [15]. Since the union of the edge sets of LEh(PD)
and LMP4) coincides with the edge set of L“"P4) | we may write LN(P1) as

QCh(Da) QCh(D}) L) QChDy)

We will prove that "P4) presents the subshift D 4.

LEMMA 2.2. For y;...vx € Bir(Da) and iy ... 15 € Bi(An), if the word
Vi ViBu, - - By, is admissible in Dy, so is the word y; . .. yioty, Bu, B, - - -

ﬂﬂl'
PRrROOF. As the word y; ... vk By, - .. By, is admissible in Dy, one has
(pA(j/l) .. .gOA()/k)lm - tﬂlt;, - [/jz 75 0.

By the condition w; ... u; € Bj(A4) with the relations (2.2), one sees

* * * * *
R R TR R S S T AR

so that
AV - @AW by -ty -1, F 0

and hence the word y; ... yror,, By, B, - - - By, 1S admissible in Dy.

For ... u; € Bi(Ay) and k < [ we set

Ty By - Bu) =1+ vk € BiDa) | Vi - ViBuy - - - B € Bist (Do)}

the k-predecessor set of the word B, ... B,, in D4 and

Fﬁch(ufx)(vé\/(mmm))
={v1...% € Bi(Dy) | there existe; € E,i =1, ..., k such that y; = A(e;)

. . 1
fori =1,...,k, t(e;) =s(ejy))fori=1,...,k—1landt(e) = UN(MNM)}
} ! ;0 QCh(Dy)
the k-predecessor set of the vertex UN (uyopy 1 B

LEMMA 2.3. T} (Bu, - - Bu) = Tenon Oy opn)-

Proor. We will prove the desired equality by induction on the length k.

(1) Assume that k is 1.

For o € {1,..., N}, one sees o, € I‘})A(ﬁ#l ... By) if and only if
Mo = M1, which is equivalent to o, € FéCh(DA>(v§V(M14_M)). Similarly B8, €
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Tp, (Bu, - - - By, if and only if A(uo, 1) = 1, which is equivalent to 8, €

réCmDA) (vé\/(ul---uz))'

(2) Assume next that the desired equality holds for a fixed k withk +1 < [.
For a word y; ... yky1 € Bry1(Da), we have two cases.

Case I: yy41 = oy, for some o € {1,..., N}.

Assume y; ... Y41 € 1"/3;1(,4‘3,11 ...By) and hence y; ... yxo, By, - - - Bu
is admissible in D4 so that o = 1. Since £, 1,,, is a projection in the algebra
Oy, the word y; ... i By, - . . By, is admissible in D 4. Hence

ViV €T, Bus - - Bu)-

By the hypothesis of induction, one has

Yi-.-Yk € FLCh(DA)(vN(Mz MI))

Since wipy ... is admissible in A4, there exists an edge e € E;_j; in
LEMD4) guch that A(e) = ,,, and s(e) = v} t(e) = Hence

i
- vN(Mz )’ UN(Ml-nlLI)'
we know that

k+1 l
Yi-- Y+l € FBCh(DA)(vN(M]_._MI))'

Conversely assume y; ... k41 € FwCh DA)(UN(MI m)) so that uy = ;. Hence

Yi...Vk € FLCh(DA)(vN(,Uﬂ M/))'

By the hypothesis of induction, the word y1 ... ¥k By, - . . By, is admissible in
D ,. By the preceding lemma, y; ... ykot,, By, By, - - - By, is admissible in Dy
so that

Y1..-Yk+1 € FSE‘:’A}DA)(ﬂ[.LI ce. ﬁm)-

Case 2: yy41 = By, for some o € {1,..., N}.
Assume y; ... Yit1 € F'jj;l(ﬁm ... By). Then

Vi ¥k €T BuoBus - - - Buia)-

By the hypothesis of induction, we have

Y- Vk € FLC“ ”A>(UN(M0 A 2))

Since oy ... My 1s admissible in A4, there exists an edge e € E;_;; in
LENDA) guch that A(e) = By, and s(e) = vN(M(J sy 1) = Hence
we know

1
UN(Ml )

k+1 l
Yi-- Y+l € FBCh(DA)(vN(M]_._MI))'
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k+1 I
Conversely assume y; ... Vit € FBC}‘(DA)(UN(ILIWMI))' Hence

k -1
Y- Ve € FQCh(DA)(UN(Mommfz))'

k I-1 k I+1 e :
AS Tcung Wy i) = Dsenon (Vn ... un)» bY the hypothesis of induction

ViV €T, Buy - - - Bu)-

Hence we have bl
Vieo Vet €p  (Buy oo Buy)-

Therefore the desired equality holds for all &k with k < [.
PROPOSITION 2.4. The A-graph system L"P) presents the subshift D 4.

PROOF. Put X4 = {(ii)ien | (Ui)iez € Aa} and Xp, = {(Vi)jen |
(Vi)iez € Da}. Let $ be the Hilbert space $ whose complete orthonormal
basis are given by the vectors

e, ey, - for (w1, u2,...) € Xa.

We faithfully represent 04 on $ by using the creation operators t;, i =
1,..., N defined by

: e AG ) = 1
ti(eﬂl®eﬂ2®'.‘): {e ®eﬂl®eﬂz® 1 (l I’Ll)

0 otherwise.

We may identify ¢4 (a;) and ¢4(B;) with the operators #* and #; on £ re-
spectively. For a word y; ...y, € X%, it follows that y; ...y, is admissible
in D4 if and only if there exists a sequence (@, 2, ...) € X4 such that
A1) ... oa(vr)ey, ® ey, @ ... 1s a nonzero vector. The latter condition is
equivalent to the condition (y1, .. ., ¥k, U1, U2, ...) € Xp,. This is equivalent
to the condition y; ...y, € F’BA (Bu, By - - - By,) for all I > k. Therefore by
the preceding lemma, the subshift Agco, presented by the A-graph system
LEDD s Dy,

We automatically know that the A-graph systems 224 and (P pre-
sent the subshifts D} and D respectively. A A-graph system € satisfies A-
condition (I) if for every vertex v € V; of & there exist at least two paths with
distinct label sequences starting with the vertex v and terminating with a same
vertex. ¥ is said to be A-irreducible if for an ordered pair of vertices u, v € V,,
there exists a number L;(u, v) € N such that for a vertex w € Vj4r,¢,.v) With
(F10v) () = u, there exists a path £ in & such that s(§) = v, t(§) = w, where
(F1@) means the L;(u, v)-times compositions of ¢, and s(£), #(§) denote the
source vertex, the terminal vertex of £ respectively ([23]).
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PROPOSITION 2.5. Let A be an N x N matrix with entries in {0, 1}.

() If A satisfies condition (1) in the sense of [5], the A-graph system LP Iy
satisfies A-condition (]).

QCh(D})

(1) If A is irreducible, the L-graph system is A-irreducible.

Hence if A is an irreducible matrix with condition (1), then both the \-graph
systems LENDD) and LD gre ) -irreducible with h-condition D).

PRrOOF. (i) Suppose that A satisfies condition (I). In the A-graph system
QEDD) et vl beavertexin V;. We writei = N(iy ... i) foriy ...i; € Bj(Ay).
By condition (I) for A, thereexist i = ;... Uy, v =Vv;...0, € B.(A4)such
that w # v, w1 = vy = i; and w, = v,. Take N, 1 ... Nuy2r—1 € Bayr—1(A4)
such that w,n,41...m042,—1 € Boyr(Ap). We put u, = v, = 5, forn =
r+1,...,2142r—1land L’ = 2I4+2r—1.Let ij/ € V. be the vertex in Ch(P)
such that j = N(u,fr11 - .- 242, —2)(= N(VpVy1 ... V242,-2)). Then there
exist two paths labeled B;, ... B;,B,, ... By, and B;, ... By, By, ... By, Whose
sources are both vf and terminals are both ij/. Hence £°MP1) gaisfies A-
condition (I).

(ii) In the A-graph system LCMPD et of, v} be vertices in V;. We write
i = N@;...i1),j = N(y...jy) foriy...i;, ji...Ji € Bi(Aa) respect-
ively. As A4 is irreducible, there exists a word n; ... € Br(A4) such that
Jiee Jimi...npiy...i; € Byyp(Aa). We may assume L > [. For vil“ €
Vaypp with @) = ol h = 1,...,m(@2l + L) we have h =
N(@y... i ys1---poyer) for some pyyq ... o € Birp(Aa). Then there
exists a path labeled 8;, ... BBy, . .. By, Whose source is v} and whose ter-

minal is v;' *. This means that QCNDL) i A-irreducible.
Therefore we have by [23]

THEOREM 2.6. Let A be an N x N matrix with entries in {0, 1}. If A is an
irreducible matrix with condition (1), then the C*-algebra Ogcno, is simple
and purely infinite.

We note that the A-graph systems L“"P4) are examples of A-synchronizing
A-graph systems for D4 introduced in [17].

3. The C*-algebra Ogcnw,)

This section is devoted to studying operator relations among generators of the
algebra Ogcno,) to prove Theorem 1.1. A general structure for the C*-algebra
Oy associated with a A-graph system ¥ has been studied in [20]. For a A-graph
system & = (V, E, A, 1) over X, Let {vi, R vfn(l)} be the vertex set V;. We
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setfori =1,2,...,m(),j=1,2,....,m(+ 1),y € %,

1 ifs(e) = vf., AMe) =y, t(e) = vjl*l
Ay, j)= for some e € E; 41,
0 otherwise,
Loifua (07 = v,

LG, j) = i

0 otherwise.

LeEmmMA 3.1 ([20, Theorem A and B], cf. [23]). Suppose that a A-graph
system & satisfies A-condition (I). Then the C*-algebra Oy is the unique C*-
algebra generated by nonzero partial isometries s,,, y € X and nonzero pro-

Jjections ef, i=1,2,....,m(l), | € Z, satisfying the following operator rela-
tions:
(3.1) D sysh =1,

yeX

m(l) m(l+1)
(3.2) Yod=1 = L et

j=1 j=1
(3.3) sys;ell- = efs],s;,

m(l+1)

(3.4) syeisy = D Ay, et

j=1

fori =1,2,...,m(),l € Z,, y € Z. If in particular L is h-irreducible, the
C*-algebra Oy is simple and purely infinite.

We first consider the C*-algebra O ¢y, for the A-graph system QEhDD)

PROPOSITION 3.2. Suppose that A satisfies condition (1). The C*-algebra
0 WO is canonically isomorphic to the Cuntz-Krieger algebra O ,.

ProOF. Both the algebras @uCMDX , and O, are uniquely determined by cer-
tain operator relations of their ‘canonical generators. We write the canonical
generating partial isometries and the projectionsin O qonoh) asSg, i =1,.... N
and eival..iil)v i1...0; € Bi(Aya),l € Z, respectively. By (3.1), (3.3) and (3.4),

one has
N

1 _ I+1 *
CNGy i) — E SBi EN (in.oiiyring2) By

is1,i2=1
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For / = 1, one sees that by (3.2)

1 _ 2 * *
eNG) = Z SBi EN (i), = 5B 5By, -

in,iz=1

20, 0+1
As Uy, iin) = v,\,(l2 > (3.2) implies the equality
N
Z o1 ol
Nigeodigritg?) N(lz .p)
ir1,i42=1

so that by induction one obtains

! _ * *
eN(l-]_._i/) = sﬁil e Sﬁﬁsﬂi, e S,Bi] .

One also sees that (3.4) implies the equality

shsp = D AL Dsgsh -
j=1

As the equality ZlN: 158,85, = 1 holds, the C*-algebra generated by partial
isometries sg,,i = 1, ..., N is canonically isomorphic to the Cuntz-Krieger
algebra 0,.

In what follows, an N x N matrix A is assumed to be irreducible with entries
in {0, 1}, and satisfy condition (I). We will describe concrete operator relations
among the canonical generators of the algebra Ogcuw,. Let Ay 11, I; 141 be the
matrices as in Lemma 3.1 for the A-graph system ¢“"P+) We denote by m (1)
the number of the vertex set V; = {v}, ..., U,ln(z)} of NP Tets,,y € T
and ell., i=1,...,m(),l € Z, be the canonical generating partial isometries
and projections of g, . They satisfy the relations (3.1), (3.2), (3.3) and
(3.4) for LEP4) Define the operators S;,, T;,i = 1,..., N by setting

S i=8q, Ti:=s for i=1,...,N.

ProrosITION 3.3. The operators S;, T;, i = 1, ..., N satisfy the relations
(1.3), (1.4), (1.5) and (1.6), and generate the C*-algebra Ogcnw,).

Proor. The equality (1.3) is nothing but (3.1). To prove (1.4), by the equal-
ity (3.4) and the first equality of (3.2), one has for a fixed / € Z,,

) m(l+1)

N N m(
Z ZZZ Z A1, o, ket
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Fork = 1,..., m(l41), there exists a unique edge in ¢“"P4) labeled a symbol
in ¥~ whose terminal is v,lj'l. Hence we have Z;Vzl Z:":(ll) App1(, o, k) =1

so that 1)

N
ZS; Z elH =
j=1

For (1.5), one similarly has

m(l) m(l+1) m(1)

Tl =) shesn = ) ) Aunk fiet.
k=1 h=1 k=1
On the other hand,
N m(+1) ,mdl) N
D AGDSS =) (ZZA@ DA, aj,m) et
j=1 h=1 “k=l j=1

Let i be written as N (h; ... h;41). Then the condition A; ;4 (k, Bi, h) = 11is
equivalent to the condition that ik} € By(As) and k = N(@hy...h;—1). On
the other hand, the condition ZJNZ 1 AG, )AL +1(k, aj, h) = 1 is equivalent
to the condition that j = hy, A(i, j) = 1 forsome j and k = N(hy ... h;41).
Hence one has

m(l) m() N
D Ak, B hy =YY AG ALK, o, h).
k=1 k=1 j=I

This implies the equality (1.5). For (1.6), we put

Epppoie =S5, .85 S-Sy

1

By using the first equality of (3.2), (3.3) and (3.4) recursively, £, ,, com-
mutes with SjS]?" and T]TJ* for j =1,..., N, sothat by (1.3)

N N
Eul...uk = Z SjS}kEMl~~~Mk Sj S; + Z TJT/*EMMTJTJ*
— o

As SJ*EMI._M,SJ = A(/J, ,ul)S;‘Em._MSj and S, T; = Sa,, Sp; = 0if u; # J,
one has

Epu ZA(J MI)S S* m...uijS;"'TmT;fl EmmukTmT:l-
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Since Ao (1, @y, , j) = 1if and only if j = u, it follows that by (3.4),

m(1)
— o _ NS
E,, = Sq, S, = E Ao (Lo, jlej =e,,, .
j=1

By (3.2) and (3.4), we similarly have

— *
Epie = sOZMI .. .sa“ksa#k - S,
m(1l) m(k)
. . LNk
= E E Aoa (1, oy, i1) oo Ag—r (k=15 Qpy s i), -
ii=1 ir=1

As Zm(l) Zm(k_l) A(),l (1, Qs i1)... Ak*l,k(ikfl s Opys i) =1 if and Only

ii=1-"" ir_1=1
if iy = N(uq ... ), oneknows E,, . = e’;\,wl‘_#k). Hence we have

m(k+1)
T Epp T = Y Arkst (N (- ), Buys el
j=1
Since Ag k1 (N1 ... i), Buy»j) = 1 if and only if j = N(u
v Uk Mps1Mr+2) for some ppir, mrkvo = 1, ..., N, and the equality

E : EﬂZ---Mk#k+ll’«k+2 = E#«z-n#k

Mt gg2=1,...,N

holds, we have T:l Eu . Ty = Eu,. 4. Thus we conclude that (1.6) holds.
Consequently the operators S;, T;,i = 1,..., N satisfy the relations (1.3),
(1.4), (1.5) and (1.6).

In the above discussions, we have proved the equality

k * *
eNGuy ) = E, (= Sm ...SWSM, S

for ;... ur€Br (A 4). Hence Ogenny) is generated by Sy, ..., Sy, T1, ..., T.

We next show that the relations (1.3), (1.4), (1.5) and (1.6) imply the rela-
tions (3.1), (3.2), (3.3) and (3.4). Let S;, T;,i = 1, ..., N be partial isometries
satisfying the relations (1.3), (1.4), (1.5) and (1.6). In the relation (1.6) for
k = 2, by summing up w, over {1, ..., N} and using (1.4), we have

N
(3.5 §S =) AG.DSS;SISS; S+ LT, i=1,....N.
j=1



C*-ALGEBRAS ARISING FROM DYCK SYSTEMS 45

LEMMA 3.4.

T*,I-,l i — .’

otherwise.

A ', E e ’
(i) T Ey, . 0T = { G 1m2)Epy oy U /J.L1
0 otherwise

forl > 1, where E,, ,, = S;l ... S;[Sm oSy for ooy € Bi(Ay).

ProoF. (i) By (3.5), we have

N
TrSESTi =Y AG, DTS S; S8 88T, + T T T} T
j=1
The equality (1.3) implies 7;*S; = O fori, j = 1,..., N and hence we have
T*S*S;T; = T*T;. By (1.4), one has
N
Y TISST = 17T,
j=1
so that T.*S¥S; T; = O fori # j.
(i1) By (1.6), we have
N
Ti*Em...uzTi = ZA(j, Ml)Ti*SjS}kEmmmSjS;Ti + Ti*TmEuz N T: T;
j=1
for! > 1. Since T;*S; = Ofori, j =1,..., Nand T T, = 0fori # uu;, we
have

T'*ENImMIT‘l' = T‘Z'*TMIE T* T —

T*TEy, W TFT, ifi = i,
i Mooy

otherwise.

By (1.5) one has
N N
T'T,E,, T, ZZ G, AGK)SIS;SS o S5 Sy - S, Sy Sk
j=1 k=1

By (1.4), one sees that S7S;S;;, = 0 for j # po, and S} S, S Sk = 0 for
k # wo. It then follows that
Ti*EﬂluﬁlTi = A(, Mz)Euzn-ﬂt'

LEMMA 3.5. Keep the above notations. The projection E,, ,, commutes
with both S;S7 and T;T}".
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Proor. By (1.6), we have for/ > 1

N
SiS{Epy.y = Z A(j, 1S S;ijS;Eﬂl--~M/ Sj S;'ﬁ + S8 T Eppsou T:}
j=1

By (1.3), one has S7T,, = O for all i, u;, and S;S; = 0 fori # j.
Hence S;S'E,,. ., = AU, 11)S;S'E,, . S S’ and similarly E,, ,,S;S" =
A, n)SiSTE,, ., SiS] so that S;S* commutes with E,, ,,. By (1.6) and
(1.3), we have

N
TiT‘*Em-..m = Z A(j, MI)EY}*SJ'S;EM-“/M Sjs;'k + TiTi*TmEuz...m T:,

1

j=1
_ { T, Epy. T;;kl ifi = py,
0 otherwise.

We similarly have the same equality for E,, ,,T;T" as above so that T;T}*
commutes with E,,, ,,. For! = 1, theequality £, = Zl]i:] E,, u, from (1.4)
implies that E},, commutes with both S; S+ and 7; T;* by the above discussions.

LEMMA 3.6. Keep the above notations. For juy, ..., u; € {1,..., N} we
have EM|~-~M/ =0 if,ul ce Ay ¢ B](AA).

PrROOF. As we are assuming that the matrix A has no zero rows or columns,
one sees Bj(Ay) ={1,...,N}.By(3.5) onehasforu, =1,...,N

N
SiiSu = D AU HDS; 7S} S0, + T T,
j=1

sothatfor up =1,..., N

S* §* S, Sue = Ao, 11)S* S* S, Su,

Mo T Ko~ [

because S S; = 0if uo # j, and S, T,, = 0 by (1.3). This means that

o
E o, =0if popr & Ba(Ay).
Suppose next that the assertion holds for / = k > 1. By (1.6) one has for
M1... Uk € Bk(AA)al’ld,lL()= I,....N

N
SZO Epy oy Spy = Z A(J, M1)S;0 Sj S;EML"W: S; S;Suo +SZO T Epyy T:] Suo
j=1

so that we have
Epgpye = Ao, 01D Epgpypuy -
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For wy...ur € Br(Aa), we have wouy ... ur & Bry1(Ay) if and only if
A(iLg, 1) = 0. Hence the assertion holds for [ = k + 1, so that it holds for
alll e Z,.

PRrROPOSITION 3.7. Keep the above notations. Put

Sq, 1=

i

Si, sg =T, for i=1,...,N, and
e) =1,

! .
NGy = Enr (= SZI "'SZISW o Su)  for ..o € Bi(Ag).

Then the family of operators s, , y € X, eﬁv(m-.-m)’ U1 ... 1 € Bi(Ay) satisfies
the relations (3.1), (3.2), (3.3) and (3.4) for the \-graph system LENP»)

Proor. The relation (3.1) is nothing but the equality (1.3). The equality

(1.4) implies 3, cp (a, e}l\l(m) = 1. Suppose that 3 g s, eé\/(m.../u) =
1 holds for [ = k. As

N
S S Sy S =Y S S SESuSu, - S
h=1

the equality ZM]---MIEBI(AA) ei\'(mmm) = 1 holds for / = k + 1 by Lemma 3.6
and hence for all /. The above equality with the equality

1 ifv...v=puy... 0,

Lppin(NQuy - oo), NQup o oovpyg)) = { .
0 otherwise

for vi...v41 € Bi+1(A4) implies the second relation of (3.2) by using
Lemma 3.6. The equality (3.3) comes from Lemma 3.5.

We will finally show the equality (3.4). For [ = 0, one has ¢ = 1 by
definition. If y = o4 for some k = 1,..., N, one has Ay (1, o, j) = 1 if
and only if j = k. Hence

m(1)
* 0 ok 1 A (1 -)l
S €15 = Soy Sy = € = 0,11, Xk, J)€; -
j=1

If y = By forsome k = 1,..., N, one has Ay (1, Bk, j) = A(k, j). Hence
by the relation (1.5) one has

N N
spelsp =TT =e, =Y Atk SIS =Y Aoa(l, i je].
j=1 j=1
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For [ = 1, one sees that e,.1 = e,l\,(i). Ify =a forsomek =1,..., N, as
A12(, ak, j) = 1if and only if j = N(ki), one has
m(2)
Se €S, = SESESiSk = ey = Z Ao, e
j=1

If y = By forsomek =1,..., N, one has by Lemma 3.4(i) and (1.5)

N
A@, )HSTS;, ifk=i,
speisp =TS ST = ,Z; T

0 itk #i.

By Lemma 3.6 and (1.4), one has
N
D AGHSS = Y AG DA, 12)S), S S S
Jj=1 H1n2€B2 (A 4)

SinceAl,Z(i, 181{7 N(/‘LIMZ)) = lifand Only ifk = R A(l7 Ml) = A(Mla /'LZ) =
: * — 2
1, it follows that by SZISMSMSMI = N ()’

m(2)

Shei s = Z Ava(i, Be. e
j=1

For 1 ... € Bj(Ay) withl > 1 and o € X7, the relation (1.6) implies
S sy Sar = Ak, ) SES 8% Sy S, Sk
= Appet (N (- )y o NI ))e -
Since A; 1 (N(y - - ), o, i) = 0ifi #= N(kpy ... ), one has

*
S ON (o) Stk

= Z At (N(uey - o), e, N(vr .. -V1+1))€§v+(]vlmv,+])-

ViV €Brp (A g)
We also have by Lemma 3.4 for j = u,
S;/eé\’(m..-m)sﬁ.f
= Tj*EMu---u/T/
= A(J, m2)Epy.py
= D AGuDS, S S S S Sui S - Sus

i1 i+2€B2(A )
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and for j #

* _ 7k —
SgeNGuuSt = 1j BT = 0.

Since one has

At (N (e« ), Bjs N(vy .. vig)
_ {1 lf] :/,Ll,A(j,/,Lz):landvi = Ui+ fori = 1,...,[— 1,

0 otherwise,

we have

*
Sﬁj EN (1) 5B

= > ANy ) B Nr o ovi)ei, -

Vi V1 €Biy1(Ag)

Therefore (3.4) holds.

ProOOF OF THEOREM 1.1. By a general theory of the C*-algebras associated
with A-graph systems [20], the algebras Ogycnw,) are nuclear. By Proposition 3.3
and Proposition 3.7, the family of the operator relations (1.3), (1.4), (1.5) and
(1.6) is equivalent to the family of the operator relations (3.1), (3.2), (3.3) and
(3.4). Thus by Lemma 3.1 and Theorem 2.6, we conclude Theorem 1.1.

4. K-Theory

In this section, we will present K-theory formulae of the C*-algebra Ogcno,) in
terms of the topological Markov shift defined by the matrix A. We will prove
Theorem 1.2. Recall that the right one-sided topological Markov shift X 4 for
the matrix A is naturally identified with X p+ as in the proof of Proposition 2.1.
LetS;, T;,i =1, ..., N be the generating partial isometries of the C*-algebra
Ogcnny as in Theorem 1.1. Let fgnm,) be the C*-subalgebra of Ogenn,) gen-
erated by the projections E,, _,, = S:jl o S:jl Spp oo Sup 1. g € Bi(Ay),
[ € Z,. Define two endomorphisms Ay- and As+ on it by

N N
Ax-(a) = Z S*aS;, Azp+(a) = Z Tral;  for a € gy
j=1

Jj=1

Let C(X 4, C) be the abelian C*-algebra of all C-valued continuous functions
on X 4. We note that its Ky-group Ko(C (X4, €)) is naturally identified with
C(Xy4,2).

LEMMA 4.1. Let @ : gy —> C(X 4, C) be a map defined by

¢(EM1...M/) = XM[...,u/ f()r /"l’l e l‘Ll € BZ(AA)vl € Z+
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where X, .., is the characteristic function for the word v, . . . j4; on X 4 defined

by .
I oif e, x) = (U, -ovy ),

0 otherwise.

Xy oo ((xi)ieN) = {

Then we have
(1) @ gives rise to an isomorphism from &gcnw, onto C(X 4, Q).
(i) Both of the diagrams
Ko(gonwy) —2— C(X4,2)  Koldgonoy) —2— C(X4,2)

)Lz*—l O’AAJ/ R )nzz—l/ )LAAJ/

Ko(ﬂgcn(pm) L) C(XA, Z) K()((QfQCth)) L) C(XA, Z)

are commutative, where @, is the induced isomorphism from Ko (fgcnw,)
to Ko(C(Xa, Q) (= C(Xa,2)), and ry-, s+ are induced endomorph-
isms on Ko(genwy) by As-, As+ respectively.

PrOOF. (i) The assertion is straightforward.
(i1)The equality

N
P (hs- (EMI-»-HI)) = Z Xjmr o
j=1

is immediate. As

1 if(xz,...,x1+1) = (,ul,...,m),
0 otherwise,

OAs Kpty o) (X) = {

for x = (x;)ien € X4, the equality
UAA (XM|...LL[) = ¢()"2’(EM|...;L[))

is clear. Hence the first diagram is commutative.
For the second diagram, as

A(J, ) Ey,. 1f j =,
Tj*E#lu-Msz = { ratt P
0 if j #

by Lemma 3.4, it follows that

A(J, M2) Xy (X) 1 j = g,

0 if j #

:{1 if (o, ..o ) =, X1, X2, .00, X—1),s
0 otherwise.

O (T Epy. 0 T () = {
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On the other hand, one sees for x = (x;);en € Xa

N
Dea G ) ) =Y X (%)
j=1

Uoif (uy, ooy ) = (Jy X1, X25 ooy X1—1)
= forsome j =1,...,N

0 otherwise

so that one obtains

N
Maa Ouro) = Y (T Epyu T) = (s (Epiy ).
j=1

Hence the second diagram is commutative.
Therefore we have

THEOREM 4.2.
(i) Ko(Ogeny) = C(Xa,2)/(Ad —(op, + Ar,))C (X4, 2).
(ii)) Ki1(Oganvy) = Ker(id —(op, + Ap,)) in C(X 4, 2).

ProoF. By discussions in [20, Theorem 5.5], one knows

Ko(Ogenwy) = Ko(Hoenwy)/(id —Agenoy ) Ko (oo, ),
K1 (Oganny) = Ker(id —ieonoy ) in Ko(oenoy))

where Agcnoy, is an endomorphism on Ko(&geno, ) induced by the map
Ageny = Hgenny —> Hacnw, defined by

)wch(DA)(a) = Z S;CZSV for a e &fyCh(DA).
yeX-uUEt
As Agenoy (@) = Ax-(a) + Ax+(a), one sees the desired formulae by the
previous lemma.
5. Examples

ExAmPLE 1 (Dyck shifts). For the matrix A all of whose entries are 1’s, The-
orem 1.1 goes to:

PROPOSITION 5.1 ([24]). The C*-algebra Ogcnoy) associated with the Cantor
horizon A-graph system L"PN) for the Dyck shift Dy is unital, separable,
nuclear, simple and purely infinite. It is the unique C*-algebra generated by N
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partial isometries S;,i = 1, ..., N and N isometries T;,i = 1, ..., N subject
to the following operator relations:

N N
Z S;'kSJ' =1, Eun.-.uk = Z SJ'S;EMMMSJS; + Tun Euz...uk Tlfl
j=1 j=1

where E,, ., = SZ] ...SZkSM, e Sy sk € {1,..., N} The K-
groups are

Ko(Ogonny)) EZ/NZ D C (8, 2), K1 (Ogenoyy) = 0.

Proor. The relation (1.5) implies that 7;,i = 1, ..., N are isometries. By
summing up w; over {1, ..., N} in the second relation above for k = 2, one
has the equalities

N
SIS =) S;S;SISiS; S+ LTr,  i=1,....N
j=1

by using the first relation above. By summingupi = 1,2, ..., N in the above
equalities, one sees the relation (1.3).

ExaMmpLE 2 (Fibonacci Dyck shift). Let F be the 2 x 2 matrix [ { ¢ ]. It is
the smallest matrix in the irreducible square matices with condition (I) such
that the associated topological Markov shift Ay is not conjugate to any full
shift. The topological entropy of A is log %5 the logarithm of the Perron
eigenvalue of F'. We call the subshift Dy the Fibonacci Dyck shift. As the
matrix is irreducible with condition (I), the associated C*-algebra Ogcnoy) is
simple and purely infinite.

PROPOSITION 5.2. The C*-algebra Ogcvor) associated with the A-graph sys-
tem LML) s unital, separable, nuclear, simple and purely infinite. It is the
unique C*-algebra generated by one isometry Ty and three partial isometries
S1, 82, T, subject to the following operator relations:

2 2
DS +TTH=3 88 =1,  Th=sis,
j=1 =l

2
Ep = Z F(j, Ml)SjS;Em-»-uijS;F + T By T:,’ k>1
j=1
where E,, ., = SZI .. .SZkSM oo oSy (Wi oo k) € Br(Ar) and Br(Ar)
is the set of admissible words of the topological Markov shift A defined by
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the matrix F. The K-groups are

Ko(Ogerop) =2 C(8, 2)*°, K1 (Ogennpy) = 0.

ProoOF. The operator relations above directly come from Theorem 1.1. The
K-group formulae above are not direct. Its computations need some tecnichal
steps as in [25]. The full proof of the above K-group formulae are written in
[25].
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