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C∗-ALGEBRAS ARISING FROM DYCK SYSTEMS OF
TOPOLOGICAL MARKOV CHAINS

KENGO MATSUMOTO∗

Abstract
Let A be an N × N irreducible matrix with entries in {0, 1}. We define the topological Markov
Dyck shift DA to be a nonsofic subshift consisting of bi-infinite sequences of the 2N brackets
(1, . . . , (N , )1, . . . , )N with both standard bracket rule and Markov chain rule coming from A.
It is regarded as a subshift defined by the canonical generators S∗

1 , . . . , S∗
N , S1, . . . , SN of the

Cuntz-Krieger algebra OA. We construct an irreducible λ-graph system �Ch(DA) that presents
the subshift DA so that we have an associated simple purely infinite C∗-algebra O�Ch(DA) . We
prove that O�Ch(DA) is a universal unique C∗-algebra subject to some operator relations among 2N

generating partial isometries.

1. Introduction

Let � be a finite set with its discrete topology, that is called an alphabet.
Each element of � is called a symbol. Let �Z be the infinite product space∏∞

i=−∞ �i , where �i = �, endowed with the product topology. The trans-
formation σ on �Z given by σ((xi)i∈Z) = (xi+1)i∈Z is called the full shift over
�. Let � be a closed subset of �Z such that σ(�) = �. The topological dy-
namical system (�, σ |�) is called a subshift or a symbolic dynamical system.
It is written as � for brevity. There is a class of subshifts called sofic shifts,
that contains the class of topological Markov shifts. Sofic shifts are presented
by finite labeled graphs, called λ-graphs. In [19], the author has introduced
a notion of λ-graph system as a generalization of λ-graph. A λ-graph system
� = (V , E, λ, ι) over � consists of a vertex set V = V0 ∪ V1 ∪ V2 ∪ . . ., an
edge set E = E0,1 ∪ E1,2 ∪ E2,3 ∪ . . ., a labeling map λ : E → � and a
surjective map ιl,l+1 : Vl+1 → Vl for each l ∈ Z+, where Z+ denotes the set of
all nonnegative integers. An edge e ∈ El,l+1 has its source vertex s(e) in Vl ,
its terminal vertex t (e) in Vl+1 and its label λ(e) in �.

The theory of symbolic dynamical system has a close relationship with
formal language theory. In the theory of formal language, there is a class of
universal languages due to W. Dyck. The symbolic dynamics generated by the
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languages are called the Dyck shifts DN (cf. [3], [10], [11], [12]). They are non-
sofic subshifts. Its alphabet consists of the 2N brackets: (1, . . . , (N , )1, . . . , )N .
The forbidden words consist of words that do not obey the standard bracket
rules. In [14], a λ-graph system �Ch(DN ) that presents the subshift DN has been
introduced. The λ-graph system is called the Cantor horizon λ-graph system
for the Dyck shift DN . The K-groups for �Ch(DN ), that are invariant under
topological conjugacy of the subshift DN , have been computed ([14]).

In [20], a nuclear C∗-algebra O� associated with a λ-graph system � has
been introduced. The class of the C∗-algebras contain the class of the Cuntz-
Krieger algebras. They are universal unique concrete C∗-algebras generated
by finite families of partial isometries and sequences of projections subject
to certain operator relations encoded by structure of the λ-graph systems. Its
K-groups Ki(O�), i = 0, 1 are realized as the K-groups of the λ-graph system
�. The results of [14] imply that the C∗-algebras O�Ch(DN ) for N = 2, 3, . . . are
unital, simple and purely infinite whose K-groups are

(1.1) K0(O�Ch(DN ) ) ∼= Z/NZ ⊕ C(�, Z), K1(O�Ch(DN ) ) ∼= 0

where C(�, Z) denotes the abelian group of all integer valued continuous func-
tions on a Cantor discontinuum �. Let u1, . . . , uN be the canonical generating
isometries of the Cuntz algebra ON that satisfy the relations:

∑N
j=1 uju

∗
j = 1,

u∗
i ui = 1 for i = 1, . . . , N . Then the bracket rule of the symbols (1, . . . , (N ,

)1, . . . , )N of the Dyck shift DN may be interpreted as the relations

(1.2) u∗
i uj =

{
1 if i = j ,

0 otherwise

for i, j = 1, . . . , N in ON through the correspondence (i−→ u∗
i , )i −→ ui

(cf. (2.1)).
In the present paper, we consider a generalization of the Dyck shifts DN by

using the canonical generating partial isometries of the Cuntz-Krieger algebras
OA for N × N matrices A with entries in {0, 1}. The generalized Dyck shift
is denoted by DA and called the topological Markov Dyck shift for A (cf. [7],
[11], [15], [16]). Let α1, . . . , αN, β1, . . . , βN be the alphabet of DA, corres-
ponding to the brackets (1, . . . , (N , )1, . . . , )N respectively. Let t1, . . . , tN be
the canonical generating partial isometries of OA satisfying the relations

N∑
j=1

tj t
∗
j = 1, t∗i ti =

N∑
j=1

A(i, j)tj t
∗
j for i = 1, . . . , N.

Consider the correspondence ϕ(αi) = t∗i , ϕ(βi) = ti , i = 1, . . . , N. Then a
word w of {α1, . . . , αN, β1, . . . , βN } is defined to be admissible for the subshift
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DA precisely if the corresponding element to w through ϕ in OA is not zero.
If A satisfies condition (I) in the sense of [5], the subshifts DA are not sofic
(Proposition 2.1). If all entries of A are 1’s, DA is reduced to DN . We con-
sider the Cantor horizon λ-graph system �Ch(DA) for the topological Markov
Dyck shift DA. The λ-graph system will be proved to be λ-irreducible with
λ-condition (I) in the sense of [23] if the matrix A is irreducible with condition
(I) (Proposition 2.5). Hence the associated C∗-algebra O�Ch(DA) is simple and
purely infinite. We will show:

Theorem 1.1. Let A be an N ×N matrix with entries in {0, 1}. Suppose that
A is irreducible with condition (I). The C∗-algebra O�Ch(DA) associated with the
λ-graph system �Ch(DA) is unital, separable, nuclear, simple and purely infinite.
It is the unique C∗-algebra generated by 2N partial isometries Si, Ti, i =
1, . . . , N subject to the following relations:

(1.3)

N∑
j=1

(SjS
∗
j + TjT

∗
j ) = 1,

(1.4)

N∑
j=1

S∗
j Sj = 1,

(1.5) T ∗
i Ti =

N∑
j=1

A(i, j)S∗
j Sj , i = 1, 2, . . . , N,

(1.6) Eμ1...μk
=

N∑
j=1

A(j, μ1)SjS
∗
j Eμ1...μk

SjS
∗
j + Tμ1Eμ2...μk

T ∗
μ1

, k > 1

where Eμ1...μk
= S∗

μ1
. . . S∗

μk
Sμk

. . . Sμ1 for μ1, . . . , μk ∈ {1, . . . , N}.
Let XA be the right one-sided topological Markov shift

XA = {(xi)i∈N ∈ {1, . . . , N}N | A(xi, xi+1) = 1, i ∈ N}
for the matrix A and σA the shift on XA defined by σA((xi)i∈N) = (xi+1)i∈N

for (xi)i∈N ∈ XA. Let σ�A
and λ�A

be endomorphisms of the abelian group
C(XA, Z) of all Z-valued continuous functions on XA defined by

σ�A
(f )(x) = f (σA(x)), λ�A

(f )(x) =
N∑

j=1

A(j, x1)f (jx)

for f ∈ C(XA, Z) and x = (xi)i∈N ∈ XA, where jx = (j, x1, x2, . . .) ∈ XA

for A(j, x1) = 1. Then we will show:
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Theorem 1.2.
(i) K0(O�Ch(DA) ) = C(XA, Z)/(id −(σ�A

+ λ�A
))C(XA, Z).

(ii) K1(O�Ch(DA) ) = Ker(id −(σ�A
+ λ�A

)) in C(XA, Z).

If all entries of A are 1’s, the λ-graph system �Ch(DA) becomes �Ch(DN )

so that the C∗-algebra O�Ch(DA) goes to O�Ch(DN ) . If A is the Fibonacci matrix
F = [

1 1
1 0

]
, the C∗-algebra O�Ch(DF ) is simple and purely infinite. Its K-groups

are K0(O�Ch(DF ) ) ∼= Z ⊕ C(�, Z)∞, K1(O�Ch(DF ) ) ∼= 0 where C(�, Z)∞ denotes
the countable infinite direct sum of the group C(�, Z) (cf. [25]). In general,
the C∗-algebra O� associated with a λ-graph system � has an infinite family
of generators. Both of the C∗-algebras O�Ch(DN ) , O�Ch(DF ) are finitely generated,
and their K0-groups however are not finitely generated. Therefore they are
not semiprojective whereas Cuntz algebras and Cuntz-Krieger algebras are
semiprojective (cf. [1], [2], [21], [26]).

2. The topological Markov Dyck shifts

Throughout the paper N is a fixed positive integer larger than 1.
We consider the Dyck shift DN with alphabet � = �− ∪ �+ where

�− = {α1, . . . , αN }, �+ = {β1, . . . , βN }. The symbols αi, βi correspond
to the brackets (i, )i respectively, and have the relations

(2.1) αiβj =
{

1 if i = j ,

0 otherwise

for i, j = 1, . . . , N (cf. (1.2), [11],[12]). A word γ1 . . . γn of � is defined to
be admissible for DN precisely if

∏n
m=1 γm 	= 0, where

∏n
m=1 γm means the

product γ1 . . . γn obtained by applying (2.1).
Let A = [A(i, j)]i,j=1,...,N be an N ×N matrix with entries in {0, 1} having

no zero rows or columns. Consider the Cuntz-Krieger algebra OA for the matrix
A that is the universal C∗-algebra generated by N partial isometries t1, . . . , tN
subject to the following relations ([5]):

(2.2)

N∑
j=1

tj t
∗
j = 1, t∗i ti =

N∑
j=1

A(i, j)tj t
∗
j for i = 1, . . . , N.

Define a correspondence ϕA : � −→ {t∗1 , . . . , t∗N, t1, . . . , tN } by setting

ϕA(αi) = t∗i , ϕA(βi) = ti for i = 1, . . . , N.

We denote by �∗ the set of all words γ1 . . . γn of elements of �. Define the set

�A = {γ1 . . . γn ∈ �∗ | ϕA(γ1) . . . ϕA(γn) = 0}.
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Let DA be the subshift over � whose forbidden words are �A. The subshift is
called the topological Markov Dyck shift defined by A. These kinds of sub-
shifts have first appeared in [7] in semigroup setting and in [15] in more general
setting without using C∗-algebras. If all entries of A are 1’s, the partial iso-
metries ϕA(α1), . . . , ϕA(αN), ϕA(β1), . . . , ϕA(βN) satisfy the same relations
as (2.1) so that the subshift DA becomes the Dyck shift DN . We note the fact
that αiβj ∈ �A if i 	= j , and αin . . . αi1 ∈ �A if and only if βi1 . . . βin ∈ �A.
Consider the following two subsystems of DA

D+
A = {(γi)i∈Z ∈ DA | γi ∈ �+ for all i ∈ Z},

D−
A = {(γi)i∈Z ∈ DA | γi ∈ �− for all i ∈ Z}.

The subshift D+
A is identified with the topological Markov shift

�A = {(xi)i∈Z ∈ {1, . . . , N}Z | A(xi, xi+1) = 1, i ∈ Z}
defined by A through the one block code βi −→ i. Similarly D−

A is identified
with the topological Markov shift �At defined by the transposed matrix At of
A. Hence the subshift DA contains copies of both of the topological Markov
shifts �A and �At . The following proposition implies that most irreducible
matrices A yield non Markov subshifts DA.

Proposition 2.1. If A satisfies condition (I) in the sense of [5], the subshift
DA is not sofic.

Proof. Recall that XA is the right one-sided topological Markov shift
{(xi)i∈N | (xi)i∈Z ∈ �A} for A. Put XD+

A
= {(γi)i∈N | (γi)i∈Z ∈ D+

A }.
Since A satisfies condition (I), we can find elements (n(i))i∈N ∈ XA such
that n(i)i∈N 	= k(i)i∈N for n 	= k. Put x(n) = (βn(i))i∈N ∈ XD+

A
for n ∈ N. Let

�−(x(n)) be the predecessor set of x(n) in DA, that is,

�−(x(n)) = {(. . . , y−2, y−1, y0) | (. . . , y−2, y−1, y0, βn(1), βn(2), . . .) ∈ DA}.
The left one-sided sequence (. . . , αk(2), αk(1)) belongs to �−(x(n)) if and only
if n = k. Thus the predecessor sets �−(x(n)), n = 1, 2, . . . are mutually
distinct, so that DA is not sofic (cf. [18, Theorem 3.2.10]).

A λ-graph system � is said to present a subshift � if the set of all admissible
words of � coincides with the set of all finite labeled sequences appearing in
concatenating edges of �. There are many λ-graph systems that present a given
subshift. Among them the canonical λ-graph system is a generalization of the
left-Krieger cover graph for a sofic shift([19]). The canonical λ-graph system
�C(DN ) for the Dyck shift DN together with its K-groups has been studied
in [22]. One however sees that the λ-graph system �C(DN ) is not irreducible,
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so that the resulting C∗-algebra O�C(DN ) is not simple. The Cantor horizon λ-
graph system �Ch(DN ) for DN is an irreducible component of �C(�) so that the
associated C∗-algebra O�Ch(DN ) is simple and purely infinite whose K-groups
have been computed as (1.1) [24].

In the paper we will study the Cantor horizon λ-graph systems �Ch(DA) for
the topological Markov Dyck shifts DA and its associated C∗-algebras O�Ch(DA) .
In what follows we fix an N × N matrix A with entries in {0, 1} having no
zero rows or columns. We denote by Bl(DA) and Bl(�A) the set of admissible
words of length l of DA and that of �A respectively. Let m(l) be the cardinal
number of Bl(�A). We use lexicographic order from the left on the words of
Bl(�A), so that we assign a word μ1 . . . μl ∈ Bl(�A) the number N(μ1 . . . μl)

from 1 to m(l). For example, if A = [
1 1
1 0

]
, then

B1(�A) = {1, 2},
B2(�A) = {11, 12, 21},

N(1) = 1, N(2) = 2,

N(11) = 1, N(12) = 2, N(21) = 3,

and so on. Hence the set Bl(�A) bijectively corresponds to the set of natural
numbers less than or equal to m(l). Let us now describe the Cantor horizon
λ-graph system �Ch(DA) of DA. The vertices Vl at level l for l ∈ Z+ are given by
the admissible words of length l consisting of the symbols of �+. We regard
V0 as a one point set of the empty word {∅}. Since Vl is identified with Bl(�A),
we may write Vl as

Vl = {vl
N(μ1...μl )

| μ1 . . . μl ∈ Bl(�A)}.
The mapping ι (= ιl,l+1) : Vl+1 → Vl is defined by deleting the rightmost
symbol of a corresponding word such as

ι(vl+1
N(μ1...μl+1)

) = vl
N(μ1...μl )

for vl+1
N(μ1...μl+1)

∈ Vl+1.

We define an edge labeled αj from vl
N(μ1...μl )

∈ Vl to vl+1
N(μ0μ1...μl )

∈ Vl+1

precisely if μ0 = j , and an edge labeled βj from vl
N(jμ1...μl−1)

∈ Vl to

vl+1
N(μ1...μl+1)

∈ Vl+1. For l = 0, we define an edge labeled αj from v0
1 to v1

N(j),
and an edge labeled βj from v0

1 to v1
N(i) if A(j, i) = 1. We denote by El,l+1

the set of edges from Vl to Vl+1. Set E = ⋃∞
l=0 El,l+1. It is easy to see that the

resulting labeled Bratteli diagram with ι-map becomes a λ-graph system over
�, that is denoted by �Ch(DA).

In the λ-graph system �Ch(DA), we consider two λ-graph subsystems �Ch(D+
A )

and �Ch(D−
A ). Both of the λ-graph subsystems have the same vertex sets as

�Ch(DA) together with the same ι-maps as �Ch(DA). The edge set of �Ch(D+
A )

consists of edges labeled �+ in the edges of �Ch(DA), whereas that of �Ch(D−
A )
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consists of edges labeled �−. Hence �Ch(D+
A ) and �Ch(D−

A ) are λ-graph systems
over �+ and over �− respectively. The latter λ-graph system �Ch(D−

A ) is called
the word λ-graph system in [15]. Since the union of the edge sets of �Ch(D+

A )

and �Ch(D−
A ) coincides with the edge set of �Ch(DA), we may write �Ch(DA) as

�Ch(DA) = �Ch(D+
A ) � �Ch(D−

A ).

We will prove that �Ch(DA) presents the subshift DA.

Lemma 2.2. For γ1 . . . γk ∈ Bk(DA) and μ1 . . . μl ∈ Bl(�A), if the word
γ1 . . . γkβμ2 . . . βμl

is admissible in DA, so is the word γ1 . . . γkαμ1βμ1βμ2 . . .

βμl
.

Proof. As the word γ1 . . . γkβμ2 . . . βμl
is admissible in DA, one has

ϕA(γ1) . . . ϕA(γk)tμ2 . . . tμl
t∗μl

. . . t∗μ2
	= 0.

By the condition μ1 . . . μl ∈ Bl(�A) with the relations (2.2), one sees

t∗μ1
tμ1 tμ2 . . . tμl

t∗μl
. . . t∗μ2

= tμ2 . . . tμl
t∗μl

. . . t∗μ2

so that
ϕA(γ1) . . . ϕA(γk)t

∗
μ1

tμ1 tμ2 . . . tμl
t∗μl

. . . t∗μ2
	= 0

and hence the word γ1 . . . γkαμ1βμ1βμ2 . . . βμl
is admissible in DA.

For μ1 . . . μl ∈ Bl(�A) and k ≤ l we set

�k
DA

(βμ1 . . . βμl
) = {γ1 . . . γk ∈ Bk(DA) | γ1 . . . γkβμ1 . . . βμl

∈ Bk+l(DA)}
the k-predecessor set of the word βμ1 . . . βμl

in DA and

�k
�Ch(DA) (v

l
N(μ1...μl )

)

= {
γ1 . . . γk ∈ Bk(DA) | there exist ei ∈ E, i = 1, . . . , k such that γi = λ(ei)

for i = 1, . . . , k, t (ei) = s(ei+1) for i = 1, . . . , k − 1 and t (ek) = vl
N(μ1...μl )

}

the k-predecessor set of the vertex vl
N(μ1...μl )

in �Ch(DA).

Lemma 2.3. �k
DA

(βμ1 . . . βμl
) = �k

�Ch(DA) (v
l
N(μ1...μl )

).

Proof. We will prove the desired equality by induction on the length k.
(1) Assume that k is 1.
For μ0 ∈ {1, . . . , N}, one sees αμ0 ∈ �1

DA
(βμ1 . . . βμl

) if and only if
μ0 = μ1, which is equivalent to αμ0 ∈ �1

�Ch(DA) (v
l
N(μ1...μl )

). Similarly βμ0 ∈
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�1
DA

(βμ1 . . . βμl
) if and only if A(μ0, μ1) = 1, which is equivalent to βμ0 ∈

�1
�Ch(DA) (v

l
N(μ1...μl )

).
(2) Assume next that the desired equality holds for a fixed k with k + 1 ≤ l.

For a word γ1 . . . γk+1 ∈ Bk+1(DA), we have two cases.
Case 1: γk+1 = αμ0 for some μ0 ∈ {1, . . . , N}.
Assume γ1 . . . γk+1 ∈ �k+1

DA
(βμ1 . . . βμl

) and hence γ1 . . . γkαμ0βμ1 . . . βμl

is admissible in DA so that μ0 = μ1. Since t∗μ0
tμ0 is a projection in the algebra

OA, the word γ1 . . . γkβμ2 . . . βμl
is admissible in DA. Hence

γ1 . . . γk ∈ �k
DA

(βμ2 . . . βμl
).

By the hypothesis of induction, one has

γ1 . . . γk ∈ �k
�Ch(DA) (v

l−1
N(μ2...μl )

).

Since μ1μ2 . . . μl is admissible in �A, there exists an edge e ∈ El−1,l in
�Ch(DA) such that λ(e) = αμ1 and s(e) = vl−1

N(μ2...μl )
, t (e) = vl

N(μ1...μl )
. Hence

we know that
γ1 . . . γk+1 ∈ �k+1

�Ch(DA) (v
l
N(μ1...μl )

).

Conversely assume γ1 . . . γk+1 ∈ �k+1
�Ch(DA) (v

l
N(μ1...μl )

) so that μ0 = μ1. Hence

γ1 . . . γk ∈ �k
�Ch(DA) (v

l−1
N(μ2...μl )

).

By the hypothesis of induction, the word γ1 . . . γkβμ2 . . . βμl
is admissible in

DA. By the preceding lemma, γ1 . . . γkαμ1βμ1βμ2 . . . βμl
is admissible in DA

so that
γ1 . . . γk+1 ∈ �k+1

�Ch(DA) (βμ1 . . . βμl
).

Case 2: γk+1 = βμ0 for some μ0 ∈ {1, . . . , N}.
Assume γ1 . . . γk+1 ∈ �k+1

DA
(βμ1 . . . βμl

). Then

γ1 . . . γk ∈ �k
DA

(βμ0βμ1 . . . βμl−2).

By the hypothesis of induction, we have

γ1 . . . γk ∈ �k
�Ch(DA) (v

l−1
N(μ0...μl−2)

).

Since μ0μ1 . . . μl is admissible in �A, there exists an edge e ∈ El−1,l in
�Ch(DA) such that λ(e) = βμ0 and s(e) = vl−1

N(μ0...μl−2)
, t (e) = vl

N(μ1...μl )
. Hence

we know
γ1 . . . γk+1 ∈ �k+1

�Ch(DA) (v
l
N(μ1...μl )

).
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Conversely assume γ1 . . . γk+1 ∈ �k+1
�Ch(DA) (v

l
N(μ1...μl )

). Hence

γ1 . . . γk ∈ �k
�Ch(DA) (v

l−1
N(μ0...μl−2)

).

As �k
�Ch(DA) (v

l−1
N(μ0...μl−2)

) = �k
�Ch(DA) (v

l+1
N(μ0...μl )

), by the hypothesis of induction

γ1 . . . γk ∈ �k
DA

(βμ0 . . . βμl
).

Hence we have
γ1 . . . γk+1 ∈ �k+1

DA
(βμ1 . . . βμl

).

Therefore the desired equality holds for all k with k ≤ l.

Proposition 2.4. The λ-graph system �Ch(DA) presents the subshift DA.

Proof. Put XA = {(μi)i∈N | (μi)i∈Z ∈ �A} and XDA
= {(γi)i∈N |

(γi)i∈Z ∈ DA}. Let � be the Hilbert space � whose complete orthonormal
basis are given by the vectors

eμ1 ⊗ eμ2 ⊗ · · · for (μ1, μ2, . . .) ∈ XA.

We faithfully represent OA on � by using the creation operators ti , i =
1, . . . , N defined by

ti(eμ1 ⊗ eμ2 ⊗ · · ·) =
{

ei ⊗ eμ1 ⊗ eμ2 ⊗ · · · if A(i, μ1) = 1,

0 otherwise.

We may identify ϕA(αi) and ϕA(βi) with the operators t∗i and ti on � re-
spectively. For a word γ1 . . . γk ∈ �∗, it follows that γ1 . . . γk is admissible
in DA if and only if there exists a sequence (μ1, μ2, . . .) ∈ XA such that
ϕA(γ1) . . . ϕA(γk)eμ1 ⊗ eμ2 ⊗ . . . is a nonzero vector. The latter condition is
equivalent to the condition (γ1, . . . , γk, μ1, μ2, . . .) ∈ XDA

. This is equivalent
to the condition γ1 . . . γk ∈ �k

DA
(βμ1βμ2 . . . βμl

) for all l ≥ k. Therefore by
the preceding lemma, the subshift ��Ch(DA) presented by the λ-graph system
�Ch(DA) is DA.

We automatically know that the λ-graph systems �Ch(D+
A ) and �Ch(D−

A ) pre-
sent the subshifts D+

A and D−
A respectively. A λ-graph system � satisfies λ-

condition (I) if for every vertex v ∈ Vl of � there exist at least two paths with
distinct label sequences starting with the vertex v and terminating with a same
vertex. � is said to be λ-irreducible if for an ordered pair of vertices u, v ∈ Vl ,
there exists a number Ll(u, v) ∈ N such that for a vertex w ∈ Vl+Ll(u,v) with
ιLl(u,v)(w) = u, there exists a path ξ in � such that s(ξ) = v, t (ξ) = w, where
ιLl(u,v) means the Ll(u, v)-times compositions of ι, and s(ξ), t (ξ) denote the
source vertex, the terminal vertex of ξ respectively ([23]).
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Proposition 2.5. Let A be an N × N matrix with entries in {0, 1}.
(i) If A satisfies condition (I) in the sense of [5], the λ-graph system �Ch(D+

A )

satisfies λ-condition (I).

(ii) If A is irreducible, the λ-graph system �Ch(D+
A ) is λ-irreducible.

Hence if A is an irreducible matrix with condition (I), then both the λ-graph
systems �Ch(D+

A ) and �Ch(DA) are λ-irreducible with λ-condition (I).

Proof. (i) Suppose that A satisfies condition (I). In the λ-graph system
�Ch(D+

A ), let vl
i be a vertex in Vl . We write i = N(i1 . . . il) for i1 . . . il ∈ Bl(�A).

By condition (I) for A, there exist μ = μ1 . . . μr, ν = ν1 . . . νr ∈ Br(�A) such
that μ 	= ν, μ1 = ν1 = il and μr = νr . Take ηr+1 . . . η2l+2r−1 ∈ B2l+r−1(�A)

such that μrηr+1 . . . η2l+2r−1 ∈ B2l+r (�A). We put μn = νn = ηn for n =
r+1, . . . , 2l+2r−1 and L′ = 2l+2r−1. Let vL′

j ∈ VL′ be the vertex in �Ch(D+
A )

such that j = N(μrμr+1 . . . μ2l+2r−2)(= N(νrνr+1 . . . ν2l+2r−2)). Then there
exist two paths labeled βi1 . . . βil βμ1 . . . βμr−1 and βi1 . . . βil βν1 . . . βνr−1 whose
sources are both vl

i and terminals are both vL′
j . Hence �Ch(D+

A ) satisfies λ-
condition (I).

(ii) In the λ-graph system �Ch(D+
A ), let vl

i , v
l
j be vertices in Vl . We write

i = N(i1 . . . il), j = N(j1 . . . jl) for i1 . . . il, j1 . . . jl ∈ Bl(�A) respect-
ively. As �A is irreducible, there exists a word η1 . . . ηL ∈ BL(�A) such that
j1 . . . jlη1 . . . ηLi1 . . . il ∈ B2l+L(�A). We may assume L ≥ l. For v2l+L

h ∈
V2l+L with ιl+L(v2l+L

h ) = vl
i , h = 1, . . . , m(2l + L) we have h =

N(i1 . . . ilμl+1 . . . μ2l+L) for some μl+1 . . . μ2l+L ∈ Bl+L(�A). Then there
exists a path labeled βj1 . . . βjl

βη1 . . . βηL
whose source is vl

j and whose ter-

minal is v2l+L
h . This means that �Ch(D+

A ) is λ-irreducible.

Therefore we have by [23]

Theorem 2.6. Let A be an N × N matrix with entries in {0, 1}. If A is an
irreducible matrix with condition (I), then the C∗-algebra O�Ch(DA) is simple
and purely infinite.

We note that the λ-graph systems �Ch(DA) are examples of λ-synchronizing
λ-graph systems for DA introduced in [17].

3. The C∗-algebra O�Ch(DA)

This section is devoted to studying operator relations among generators of the
algebra O�Ch(DA) to prove Theorem 1.1. A general structure for the C∗-algebra
O� associated with a λ-graph system � has been studied in [20]. For a λ-graph
system � = (V , E, λ, ι) over �, Let {vl

1, . . . , v
l
m(l)} be the vertex set Vl . We
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set for i = 1, 2, . . . , m(l), j = 1, 2, . . . , m(l + 1), γ ∈ �,

Al,l+1(i, γ, j) =
⎧⎨
⎩

1 if s(e) = vl
i , λ(e) = γ , t (e) = vl+1

j

for some e ∈ El,l+1,

0 otherwise,

Il,l+1(i, j) =
{

1 if ιl,l+1(v
l+1
j ) = vl

i ,

0 otherwise.

Lemma 3.1 ([20, Theorem A and B], cf. [23]). Suppose that a λ-graph
system � satisfies λ-condition (I). Then the C∗-algebra O� is the unique C∗-
algebra generated by nonzero partial isometries sγ , γ ∈ � and nonzero pro-
jections el

i , i = 1, 2, . . . , m(l), l ∈ Z+ satisfying the following operator rela-
tions:

∑
γ∈�

sγ s∗
γ = 1,(3.1)

m(l)∑
j=1

el
j = 1, el

i =
m(l+1)∑
j=1

Il,l+1(i, j)el+1
j ,(3.2)

sγ s∗
γ el

i = el
isγ s∗

γ ,(3.3)

s∗
γ el

isγ =
m(l+1)∑
j=1

Al,l+1(i, γ, j)el+1
j ,(3.4)

for i = 1, 2, . . . , m(l), l ∈ Z+, γ ∈ �. If in particular � is λ-irreducible, the
C∗-algebra O� is simple and purely infinite.

We first consider the C∗-algebra O
�Ch(D

+
A

) for the λ-graph system �Ch(D+
A ).

Proposition 3.2. Suppose that A satisfies condition (I). The C∗-algebra
O

�Ch(D
+
A

) is canonically isomorphic to the Cuntz-Krieger algebra OA.

Proof. Both the algebras O
�Ch(D

+
A

) and OA are uniquely determined by cer-
tain operator relations of their canonical generators. We write the canonical
generating partial isometries and the projections in O

�Ch(D
+
A

) as sβi
, i = 1, . . . , N

and el
N(i1...il )

, i1 . . . il ∈ Bl(�A), l ∈ Z+ respectively. By (3.1), (3.3) and (3.4),
one has

el
N(i1...il )

=
N∑

il+1,il+2=1

sβi1
el+1
N(i2...il+1il+2)

s∗
βi1

.
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For l = 1, one sees that by (3.2)

e1
N(i1)

=
N∑

i2,i3=1

sβi1
e2
N(i2i3)

s∗
βi1

= sβi1
s∗
βi1

.

As ι2(vl+1
N(i2...il+1il+2)

) = vl−1
N(i2...il )

, (3.2) implies the equality

N∑
il+1,il+2=1

el+1
N(i2...il+1il+2)

= el−1
N(i2...il )

so that by induction one obtains

el
N(i1...il )

= sβi1
. . . sβil

s∗
βil

. . . s∗
βi1

.

One also sees that (3.4) implies the equality

s∗
βi

sβi
=

N∑
j=1

A(i, j)sβj
s∗
βj

.

As the equality
∑N

i=1 sβi
s∗
βi

= 1 holds, the C∗-algebra generated by partial
isometries sβi

, i = 1, . . . , N is canonically isomorphic to the Cuntz-Krieger
algebra OA.

In what follows, an N×N matrix A is assumed to be irreducible with entries
in {0, 1}, and satisfy condition (I). We will describe concrete operator relations
among the canonical generators of the algebra O�Ch(DA) . Let Al,l+1, Il,l+1 be the
matrices as in Lemma 3.1 for the λ-graph system �Ch(DA). We denote by m(l)

the number of the vertex set Vl = {vl
1, . . . , v

l
m(l)} of �Ch(DA). Let sγ , γ ∈ �

and el
i , i = 1, . . . , m(l), l ∈ Z+ be the canonical generating partial isometries

and projections of O�Ch(DA) . They satisfy the relations (3.1), (3.2), (3.3) and
(3.4) for �Ch(DA). Define the operators Si, , Ti, i = 1, . . . , N by setting

Si := sαi
, Ti := sβi

for i = 1, . . . , N.

Proposition 3.3. The operators Si, Ti, i = 1, . . . , N satisfy the relations
(1.3), (1.4), (1.5) and (1.6), and generate the C∗-algebra O�Ch(DA) .

Proof. The equality (1.3) is nothing but (3.1). To prove (1.4), by the equal-
ity (3.4) and the first equality of (3.2), one has for a fixed l ∈ Z+,

N∑
j=1

S∗
j Sj =

N∑
j=1

m(l)∑
i=1

m(l+1)∑
k=1

Al,l+1(i, αj , k)el+1
k .
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For k = 1, . . . , m(l+1), there exists a unique edge in �Ch(DA) labeled a symbol
in �− whose terminal is vl+1

k . Hence we have
∑N

j=1

∑m(l)
i=1 Al,l+1(i, αj , k) = 1

so that
N∑

j=1

S∗
j Sj =

m(l+1)∑
k=1

el+1
k = 1.

For (1.5), one similarly has

T ∗
i Ti =

m(l)∑
k=1

s∗
βi

el
ksβi

=
m(l+1)∑
h=1

m(l)∑
k=1

Al,l+1(k, βi, h)el+1
h .

On the other hand,

N∑
j=1

A(i, j)S∗
j Sj =

m(l+1)∑
h=1

(m(l)∑
k=1

N∑
j=1

A(i, j)Al,l+1(k, αj , h)

)
el+1
h .

Let h be written as N(h1 . . . hl+1). Then the condition Al,l+1(k, βi, h) = 1 is
equivalent to the condition that ih1 ∈ B2(�A) and k = N(ih1 . . . hl−1). On
the other hand, the condition

∑N
j=1 A(i, j)Al,l+1(k, αj , h) = 1 is equivalent

to the condition that j = h1, A(i, j) = 1 for some j and k = N(h2 . . . hl+1).
Hence one has

m(l)∑
k=1

Al,l+1(k, βi, h) =
m(l)∑
k=1

N∑
j=1

A(i, j)Al,l+1(k, αj , h).

This implies the equality (1.5). For (1.6), we put

Eμ1...μk
= S∗

μ1
. . . S∗

μk
Sμk

. . . Sμ1 .

By using the first equality of (3.2), (3.3) and (3.4) recursively, Eμ1...μk
com-

mutes with SjS
∗
j and TjT

∗
j for j = 1, . . . , N , so that by (1.3)

Eμ1...μk
=

N∑
j=1

SjS
∗
j Eμ1...μk

SjS
∗
j +

N∑
j=1

TjT
∗

j Eμ1...μk
TjT

∗
j .

As S∗
j Eμ1...μk

Sj = A(j, μ1)S
∗
j Eμ1...μk

Sj and Sμ1Tj = sαμ1
sβj

= 0 if μ1 	= j ,
one has

Eμ1...μk
=

N∑
j=1

A(j, μ1)SjS
∗
j Eμ1...μk

SjS
∗
j + Tμ1T

∗
μ1

Eμ1...μk
Tμ1T

∗
μ1

.
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Since A0,1(1, αμ1 , j) = 1 if and only if j = μ1, it follows that by (3.4),

Eμ1 = s∗
αμ1

sαμ1
=

m(1)∑
j=1

A0,1(1, αμ1 , j)e1
j = e1

μ1
.

By (3.2) and (3.4), we similarly have

Eμ1...μk
= s∗

αμ1
. . . s∗

αμk
sαμk

. . . sαμ1

=
m(1)∑
i1=1

. . .

m(k)∑
ik=1

A0,1(1, αμk
, i1) . . . Ak−1,k(ik−1, αμ1 , ik)e

k
ik
.

As
∑m(1)

i1=1 . . .
∑m(k−1)

ik−1=1 A0,1(1, αμk
, i1) . . . Ak−1,k(ik−1, αμ1 , ik) = 1 if and only

if ik = N(μ1 . . . μk), one knows Eμ1...μk
= ek

N(μ1...μk)
. Hence we have

T ∗
μ1

Eμ1...μk
Tμ1 =

m(k+1)∑
j=1

Ak,k+1(N(μ1 . . . μk), βμ1 , j)ek+1
j .

Since Ak,k+1(N(μ1 . . . μk), βμ1 , j) = 1 if and only if j = N(μ2

. . . μkμk+1μk+2) for some μk+1, μk+2 = 1, . . . , N , and the equality
∑

μk+1,μk+2=1,...,N

Eμ2...μkμk+1μk+2 = Eμ2...μk

holds, we have T ∗
μ1

Eμ1...μk
Tμ1 = Eμ2...μk

. Thus we conclude that (1.6) holds.
Consequently the operators Si, Ti, i = 1, . . . , N satisfy the relations (1.3),
(1.4), (1.5) and (1.6).

In the above discussions, we have proved the equality

ek
N(μ1...μk)

= Eμ1...μk
(= S∗

μ1
. . . S∗

μk
Sμk

. . . Sμ1)

for μ1 . . . μk∈Bk(�A). Hence O�Ch(DA) is generated by S1, . . . , SN, T1, . . . , TN .

We next show that the relations (1.3), (1.4), (1.5) and (1.6) imply the rela-
tions (3.1), (3.2), (3.3) and (3.4). Let Si, Ti, i = 1, . . . , N be partial isometries
satisfying the relations (1.3), (1.4), (1.5) and (1.6). In the relation (1.6) for
k = 2, by summing up μ2 over {1, . . . , N} and using (1.4), we have

(3.5) S∗
i Si =

N∑
j=1

A(j, i)SjS
∗
j S∗

i SiSjS
∗
j + TiT

∗
i , i = 1, . . . , N.
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Lemma 3.4.

(i) T ∗
i S∗

j SjTi =
{

T ∗
i Ti if i = j ,

0 otherwise.

(ii) T ∗
i Eμ1...μl

Ti =
{

A(i, μ2)Eμ2...μl
if i = μ1,

0 otherwise
for l > 1, where Eμ1...μl

= S∗
μ1

. . . S∗
μl

Sμl
. . . Sμ1 for μ1 . . . μl ∈ Bl(�A).

Proof. (i) By (3.5), we have

T ∗
i S∗

i SiTi =
N∑

j=1

A(j, i)T ∗
i SjS

∗
j S∗

i SiSjS
∗
j Ti + T ∗

i TiT
∗
i Ti .

The equality (1.3) implies T ∗
i Sj = 0 for i, j = 1, . . . , N and hence we have

T ∗
i S∗

i SiTi = T ∗
i Ti . By (1.4), one has

N∑
j=1

T ∗
i S∗

j SjTi = T ∗
i Ti

so that T ∗
i S∗

j SjTi = 0 for i 	= j .
(ii) By (1.6), we have

T ∗
i Eμ1...μl

Ti =
N∑

j=1

A(j, μ1)T
∗
i SjS

∗
j Eμ1...μl

SjS
∗
j Ti + T ∗

i Tμ1Eμ2...μl
T ∗

μ1
Ti

for l > 1. Since T ∗
i Sj = 0 for i, j = 1, . . . , N and T ∗

i Tμ1 = 0 for i 	= μ1, we
have

T ∗
i Eμ1...μl

Ti = T ∗
i Tμ1Eμ2...μl

T ∗
μ1

Ti =
{

T ∗
i TiEμ2...μl

T ∗
i Ti if i = μ1,

0 otherwise.

By (1.5) one has

T ∗
i TiEμ2...μl

T ∗
i Ti =

N∑
j=1

N∑
k=1

A(i, j)A(i, k)S∗
j SjS

∗
μ2

. . . S∗
μl

Sμl
. . . Sμ2S

∗
k Sk.

By (1.4), one sees that S∗
j SjS

∗
μ2

= 0 for j 	= μ2, and S∗
μ2

Sμ2S
∗
k Sk = 0 for

k 	= μ2. It then follows that

T ∗
i Eμ1...μl

Ti = A(i, μ2)Eμ2...μl
.

Lemma 3.5. Keep the above notations. The projection Eμ1...μl
commutes

with both SjS
∗
j and TjT

∗
j .
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Proof. By (1.6), we have for l > 1

SiS
∗
i Eμ1...μl

=
N∑

j=1

A(j, μ1)SiS
∗
i SjS

∗
j Eμ1...μl

SjS
∗
j + SiS

∗
i Tμ1Eμ2...μl

T ∗
μ1

.

By (1.3), one has S∗
i Tμ1 = 0 for all i, μ1, and S∗

i Sj = 0 for i 	= j .
Hence SiS

∗
i Eμ1...μl

= A(i, μ1)SiS
∗
i Eμ1...μl

SiS
∗
i and similarly Eμ1...μl

SiS
∗
i =

A(i, μ1)SiS
∗
i Eμ1...μl

SiS
∗
i so that SiS

∗
i commutes with Eμ1...μl

. By (1.6) and
(1.3), we have

TiT
∗
i Eμ1...μl

=
N∑

j=1

A(j, μ1)TiT
∗
i SjS

∗
j Eμ1...μl

SjS
∗
j + TiT

∗
i Tμ1Eμ2...μl

T ∗
μ1

=
{

Tμ1Eμ2...μl
T ∗

μ1
if i = μ1,

0 otherwise.

We similarly have the same equality for Eμ1...μl
TiT

∗
i as above so that TiT

∗
i

commutes with Eμ1...μl
. For l = 1, the equality Eμ1 = ∑N

μ2=1 Eμ1μ2 from (1.4)
implies that Eμ1 commutes with both SjS

∗
j and TjT

∗
j by the above discussions.

Lemma 3.6. Keep the above notations. For μ1, . . . , μl ∈ {1, . . . , N} we
have Eμ1...μl

= 0 if μ1 . . . μl 	∈ Bl(�A).

Proof. As we are assuming that the matrix A has no zero rows or columns,
one sees B1(�A) = {1, . . . , N}. By (3.5) one has for μ1 = 1, . . . , N

S∗
μ1

Sμ1 =
N∑

j=1

A(j, μ1)SjS
∗
j S∗

μ1
Sμ1SjS

∗
j + Tμ1T

∗
μ1

so that for μ0 = 1, . . . , N

S∗
μ0

S∗
μ1

Sμ1Sμ0 = A(μ0, μ1)S
∗
μ0

S∗
μ1

Sμ1Sμ0

because S∗
μ0

Sj = 0 if μ0 	= j , and S∗
μ0

Tμ1 = 0 by (1.3). This means that
Eμ0μ1 = 0 if μ0μ1 	∈ B2(�A).

Suppose next that the assertion holds for l = k > 1. By (1.6) one has for
μ1 . . . μk ∈ Bk(�A) and μ0 = 1, . . . , N

S∗
μ0

Eμ1...μk
Sμ0 =

N∑
j=1

A(j, μ1)S
∗
μ0

SjS
∗
j Eμ1...μk

SjS
∗
j Sμ0 +S∗

μ0
Tμ1Eμ2...μk

T ∗
μ1

Sμ0

so that we have
Eμ0μ1...μk

= A(μ0, μ1)Eμ0μ1...μk
.
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For μ1 . . . μk ∈ Bk(�A), we have μ0μ1 . . . μk 	∈ Bk+1(�A) if and only if
A(μ0, μ1) = 0. Hence the assertion holds for l = k + 1, so that it holds for
all l ∈ Z+.

Proposition 3.7. Keep the above notations. Put

sαi
:= Si, sβi

:= Ti for i = 1, . . . , N, and

e0
1 := 1,

el
N(μ1...μl )

:= Eμ1...μl
(= S∗

μ1
. . . S∗

μl
Sμl

. . . Sμ1) for μ1 . . . μl ∈ Bl(�A).

Then the family of operators sγ , γ ∈ �, el
N(μ1...μl )

, μ1 . . . μl ∈ Bl(�A) satisfies
the relations (3.1), (3.2), (3.3) and (3.4) for the λ-graph system �Ch(DA).

Proof. The relation (3.1) is nothing but the equality (1.3). The equality
(1.4) implies

∑
μ1∈B1(�A) e1

N(μ1)
= 1. Suppose that

∑
μ1...μl∈Bl(�A) el

N(μ1...μl )
=

1 holds for l = k. As

S∗
μ1

. . . S∗
μk

Sμk
. . . Sμ1 =

N∑
h=1

S∗
μ1

. . . S∗
μk

S∗
hShSμk

. . . Sμ1 ,

the equality
∑

μ1...μl∈Bl(�A) el
N(μ1...μl )

= 1 holds for l = k + 1 by Lemma 3.6
and hence for all l. The above equality with the equality

Il,l+1(N(μ1 . . . μl), N(ν1 . . . νl+1)) =
{

1 if ν1 . . . νl = μ1 . . . μl ,

0 otherwise

for ν1 . . . νl+1 ∈ Bl+1(�A) implies the second relation of (3.2) by using
Lemma 3.6. The equality (3.3) comes from Lemma 3.5.

We will finally show the equality (3.4). For l = 0, one has e0
1 = 1 by

definition. If γ = αk for some k = 1, . . . , N , one has A0,1(1, αk, j) = 1 if
and only if j = k. Hence

s∗
αk

e0
1sαk

= s∗
αk

sαk
= e1

k =
m(1)∑
j=1

A0,1(1, αk, j)e1
j .

If γ = βk for some k = 1, . . . , N , one has A0,1(1, βk, j) = A(k, j). Hence
by the relation (1.5) one has

s∗
βk

e0
1sβk

= T ∗
k Tk = e1

k =
N∑

j=1

A(k, j)S∗
j Sj =

N∑
j=1

A0,1(1, βk, j)e1
j .
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For l = 1, one sees that e1
i = e1

N(i). If γ = αk for some k = 1, . . . , N , as
A1,2(i, αk, j) = 1 if and only if j = N(ki), one has

s∗
αk

e1
i sαk

= S∗
k S∗

i SiSk = e2
N(ki) =

m(2)∑
j=1

A1,2(i, αk, j)e2
j .

If γ = βk for some k = 1, . . . , N , one has by Lemma 3.4(i) and (1.5)

s∗
βk

e1
i sβk

= T ∗
k S∗

i SiTk =

⎧⎪⎪⎨
⎪⎪⎩

N∑
j=1

A(i, j)S∗
j Sj if k = i,

0 if k 	= i.

By Lemma 3.6 and (1.4), one has

N∑
j=1

A(i, j)S∗
j Sj =

∑
μ1μ2∈B2(�A)

A(i, μ1)A(μ1, μ2)S
∗
μ1

S∗
μ2

Sμ2Sμ1 .

Since A1,2(i, βk, N(μ1μ2)) = 1 if and only if k = i, A(i, μ1) = A(μ1, μ2) =
1, it follows that by S∗

μ1
S∗

μ2
Sμ2Sμ1 = e2

N(μ1μ2)
,

s∗
βk

e1
i sβk

=
m(2)∑
j=1

A1,2(i, βk, j)e2
j .

For μ1 . . . μl ∈ Bl(�A) with l > 1 and αk ∈ �−, the relation (1.6) implies

s∗
αk

el
N(μ1...μl )

sαk
= A(k, μ1)S

∗
k S∗

μ1
. . . S∗

μl
Sμl

. . . Sμ1Sk

= Al,l+1(N(μ1 . . . μl), αk, N(kμ1 . . . μl))e
l+1
N(kμ1...μl )

.

Since Al,l+1(N(μ1 . . . μl), αk, i) = 0 if i 	= N(kμ1 . . . μl), one has

s∗
αk

el
N(μ1...μl )

sαk

=
∑

ν1...νl+1∈Bl+1(�A)

Al,l+1(N(μ1 . . . μl), αk, N(ν1 . . . νl+1))e
l+1
N(ν1...νl+1)

.

We also have by Lemma 3.4 for j = μ1

s∗
βj

el
N(μ1...μl )

sβj

= T ∗
j Eμ1...μl

Tj

= A(j, μ2)Eμ2...μl

=
∑

μl+1μl+2∈B2(�A)

A(j, μ2)S
∗
μ2

. . . S∗
μl

S∗
μl+1

S∗
μl+2

Sμl+2Sμl+1Sμl
. . . Sμ2
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and for j 	= μ1
s∗
βj

el
N(μ1...μl )

sβj
= T ∗

j Eμ1...μl
Tj = 0.

Since one has

Al,l+1(N(μ1 . . . μl), βj , N(ν1 . . . νl+1))

=
{

1 if j = μ1, A(j, μ2) = 1 and νi = μi+1 for i = 1, . . . , l − 1,

0 otherwise,

we have

s∗
βj

el
N(μ1...μl )

sβj

=
∑

ν1...νl+1∈Bl+1(�A)

Al,l+1(N(μ1 . . . μl), βj , N(ν1 . . . νl+1))e
l+1
N(ν1...νl+1)

.

Therefore (3.4) holds.

Proof of Theorem 1.1. By a general theory of the C∗-algebras associated
with λ-graph systems [20], the algebras O�Ch(DA) are nuclear. By Proposition 3.3
and Proposition 3.7, the family of the operator relations (1.3), (1.4), (1.5) and
(1.6) is equivalent to the family of the operator relations (3.1), (3.2), (3.3) and
(3.4). Thus by Lemma 3.1 and Theorem 2.6, we conclude Theorem 1.1.

4. K-Theory

In this section, we will present K-theory formulae of the C∗-algebra O�Ch(DA) in
terms of the topological Markov shift defined by the matrix A. We will prove
Theorem 1.2. Recall that the right one-sided topological Markov shift XA for
the matrix A is naturally identified with XD+

A
as in the proof of Proposition 2.1.

Let Si, Ti, i = 1, . . . , N be the generating partial isometries of the C∗-algebra
O�Ch(DA) as in Theorem 1.1. Let A�Ch(DA) be the C∗-subalgebra of O�Ch(DA) gen-
erated by the projections Eμ1...μl

= S∗
μ1

. . . S∗
μl

Sμl
. . . Sμ1 , μ1 . . . μl ∈ Bl(�A),

l ∈ Z+. Define two endomorphisms λ�− and λ�+ on it by

λ�−(a) =
N∑

j=1

S∗
j aSj , λ�+(a) =

N∑
j=1

T ∗
j aTj for a ∈ A�Ch(DA)

Let C(XA, C) be the abelian C∗-algebra of all C-valued continuous functions
on XA. We note that its K0-group K0(C(XA, C)) is naturally identified with
C(XA, Z).

Lemma 4.1. Let Φ : A�Ch(DA) −→ C(XA, C) be a map defined by

Φ(Eμ1...μl
) = χμ1...μl

for μ1 . . . μl ∈ Bl(�A), l ∈ Z+
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where χμ1...μl
is the characteristic function for the word μ1 . . . μl on XA defined

by
χμ1...μl

((xi)i∈N) =
{

1 if (x1, . . . , xl) = (μ1, . . . , μl),

0 otherwise.

Then we have

(i) Φ gives rise to an isomorphism from A�Ch(DA) onto C(XA, C).

(ii) Both of the diagrams

K0(A�Ch(DA) )
Φ∗−−−−−→ C(XA, Z)

↓
λ

�
−∗ ↓

σ�A

K0(A�Ch(DA) )
Φ∗−−−−−→ C(XA, Z)

,

K0(A�Ch(DA) )
Φ∗−−−−−→ C(XA, Z)

↓
λ

�
+∗ ↓

λ�A

K0(A�Ch(DA) )
Φ∗−−−−−→ C(XA, Z)

are commutative, whereΦ∗ is the induced isomorphism fromK0(A�Ch(DA))

to K0(C(XA, C))(= C(XA, Z)), and λ�−∗ , λ�+∗ are induced endomorph-
isms on K0(A�Ch(DA) ) by λ�− , λ�+ respectively.

Proof. (i) The assertion is straightforward.
(ii)The equality

Φ(λ�−(Eμ1...μl
)) =

N∑
j=1

χjμ1...μl

is immediate. As

σ�A
(χμ1...μl

)(x) =
{

1 if (x2, . . . , xl+1) = (μ1, . . . , μl),

0 otherwise,

for x = (xi)i∈N ∈ XA, the equality

σ�A
(χμ1...μl

) = Φ(λ�−(Eμ1...μl
))

is clear. Hence the first diagram is commutative.
For the second diagram, as

T ∗
j Eμ1...μl

Tj =
{

A(j, μ2)Eμ2...μl
if j = μ1,

0 if j 	= μ1

by Lemma 3.4, it follows that

Φ(T ∗
j Eμ1...μl

Tj )(x) =
{

A(j, μ2)χμ2...μl
(x) if j = μ1,

0 if j 	= μ1

=
{

1 if (μ1, . . . , μl) = (j, x1, x2, . . . , xl−1),

0 otherwise.
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On the other hand, one sees for x = (xi)i∈N ∈ XA

λ�A
(χμ1...μl

)(x) =
N∑

j=1

χμ1...μl
(jx)

=
⎧⎨
⎩

1 if (μ1, . . . , μl) = (j, x1, x2, . . . , xl−1)

for some j = 1, . . . , N

0 otherwise

so that one obtains

λ�A
(χμ1...μl

) =
N∑

j=1

Φ(T ∗
j Eμ1...μl

Tj ) = Φ(λ�+(Eμ1...μl
)).

Hence the second diagram is commutative.

Therefore we have

Theorem 4.2.
(i) K0(O�Ch(DA) ) = C(XA, Z)/(id −(σ�A

+ λ�A
))C(XA, Z).

(ii) K1(O�Ch(DA) ) = Ker(id −(σ�A
+ λ�A

)) in C(XA, Z).

Proof. By discussions in [20, Theorem 5.5], one knows

K0(O�Ch(DA) ) = K0(A�Ch(DA) )/(id −λ�Ch(DA) ∗)K0(A�Ch(DA) ),

K1(O�Ch(DA) ) = Ker(id −λ�Ch(DA) ∗) in K0(A�Ch(DA) )

where λ�Ch(DA) ∗ is an endomorphism on K0(A�Ch(DA) ) induced by the map
λ�Ch(DA) : A�Ch(DA) → A�Ch(DA) defined by

λ�Ch(DA) (a) =
∑

γ∈�−∪�+
S∗

γ aSγ for a ∈ A�Ch(DA) .

As λ�Ch(DA) (a) = λ�−(a) + λ�+(a), one sees the desired formulae by the
previous lemma.

5. Examples

Example 1 (Dyck shifts). For the matrix A all of whose entries are 1’s, The-
orem 1.1 goes to:

Proposition 5.1 ([24]). TheC∗-algebra O�Ch(DN ) associated with the Cantor
horizon λ-graph system �Ch(DN ) for the Dyck shift DN is unital, separable,
nuclear, simple and purely infinite. It is the unique C∗-algebra generated by N
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partial isometries Si, i = 1, . . . , N and N isometries Ti , i = 1, . . . , N subject
to the following operator relations:

N∑
j=1

S∗
j Sj = 1, Eμ1...μk

=
N∑

j=1

SjS
∗
j Eμ1...μk

SjS
∗
j + Tμ1Eμ2...μk

T ∗
μ1

where Eμ1...μk
= S∗

μ1
. . . S∗

μk
Sμk

. . . Sμ1 , μ1, . . . , μk ∈ {1, . . . , N}. The K-
groups are

K0(O�Ch(DN ) ) ∼= Z/NZ ⊕ C(�, Z), K1(O�Ch(DN ) ) ∼= 0.

Proof. The relation (1.5) implies that Ti, i = 1, . . . , N are isometries. By
summing up μ2 over {1, . . . , N} in the second relation above for k = 2, one
has the equalities

S∗
i Si =

N∑
j=1

SjS
∗
j S∗

i SiSjS
∗
j + TiT

∗
i , i = 1, . . . , N

by using the first relation above. By summing up i = 1, 2, . . . , N in the above
equalities, one sees the relation (1.3).

Example 2 (Fibonacci Dyck shift). Let F be the 2 × 2 matrix
[

1 1
1 0

]
. It is

the smallest matrix in the irreducible square matices with condition (I) such
that the associated topological Markov shift �F is not conjugate to any full
shift. The topological entropy of �F is log 1+√

5
2 the logarithm of the Perron

eigenvalue of F . We call the subshift DF the Fibonacci Dyck shift. As the
matrix is irreducible with condition (I), the associated C∗-algebra O�Ch(DF ) is
simple and purely infinite.

Proposition 5.2. The C∗-algebra O�Ch(DF ) associated with the λ-graph sys-
tem �Ch(DF ) is unital, separable, nuclear, simple and purely infinite. It is the
unique C∗-algebra generated by one isometry T1 and three partial isometries
S1, S2, T2 subject to the following operator relations:

2∑
j=1

(SjS
∗
j + TjT

∗
j ) =

2∑
j=1

S∗
j Sj = 1, T ∗

2 T2 = S∗
1S1,

Eμ1...μk
=

2∑
j=1

F(j, μ1)SjS
∗
j Eμ1...μk

SjS
∗
j + Tμ1Eμ2...μk

T ∗
μ1

, k > 1

where Eμ1...μk
= S∗

μ1
. . . S∗

μk
Sμk

. . . Sμ1 , (μ1, . . . , μk) ∈ Bk(�F ) and Bk(�F )

is the set of admissible words of the topological Markov shift �F defined by
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the matrix F . The K-groups are

K0(O�Ch(DF ) ) ∼= Z ⊕ C(�, Z)∞, K1(O�Ch(DF ) ) ∼= 0.

Proof. The operator relations above directly come from Theorem 1.1. The
K-group formulae above are not direct. Its computations need some tecnichal
steps as in [25]. The full proof of the above K-group formulae are written in
[25].
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