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ON THE COX RING OF P2 BLOWN UP
IN POINTS ON A LINE

JOHN CHRISTIAN OTTEM

Abstract
We show that the blow-up of P2 in n points on a line has finitely generated Cox ring. We give
explicit generators for the ring and calculate its defining ideal of relations.

1. Introduction

In 2000, Hu and Keel [7] introduced the Cox ring of an algebraic variety, aiming
to generalize the Cox construction for toric varieties. If X is a normal variety
with freely finitely generated Picard group Pic(X), this ring is essentially
defined by

Cox(X) =
⊕

D∈Pic(X)

H 0(X, OX(D)),

where the ring product is given by multiplication of sections as rational func-
tions. Varieties whose Cox ring is finitely generated are called Mori dream
spaces, and have interesting properties from the viewpoint of birational geo-
metry.

Even though the definition of the Cox ring is quite explicit, calculating its
presentation for a concrete variety can be a hard problem. For example, the
Cox rings of del Pezzo surfaces have been the subject of much recent literature
in algebraic geometry (e.g., [2], [9] and [11]) and show that the behaviour of
the Cox ring under blow-up is highly non-trivial. For general blow-ups of P2,
Cox(X) may even fail to be finitely generated, since the surfaces may have
infinitely many curves of negative self-intersection.

In this paper, we consider blow-ups of P2 in points p1, . . . , pn lying on
a fixed line Y ⊂ P2. The blow-up π : X → P2 in these points is a smooth
projective surface with Picard group generated by the classes of the exceptional
divisors E1, . . . , En and L, the pullback of a general line in P2. Our first result
is that Cox(X) is finitely generated for any number of points on a line. This
result was first shown in [5] and correlates with recent results of Hausen and
Süss in [8], since the surface X has a complexity one torus action.
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Furthermore, we also find explicit generators for Cox(X), i.e., generat-
ing sections x1, . . . , xr from respective vector spaces H 0(X, OX(D1)), . . . ,

H 0(X, OX(Dr)), so that Cox(X) may be regarded as a quotient

Cox(X) � k[x1, . . . , xr ]/I.

Here we consider a Pic(X)-grading on k[x1, . . . , xr ] and I given by deg(xi) =
Di . In Section 4 we find explicit generators and a Gröbner basis for the ideal
I . Our main result is the following theorem:

Theorem. Let X be the blow-up of P2 in n ≥ 3 distinct points lying on
a line. Then Cox(X) is a complete intersection ring and its defining ideal is
generated by quadric trinomials.

In particular, this means that the Cox ring is Gorenstein and a Koszul al-
gebra.

Notation. We make the following standard shorthand notation for sheaf
cohomology:

Hi(D) := Hi(X, OX(D)), hi(D) := dimk H i(X, OX(D)), i = 0, 1, 2.

2. Nef divisors and vanishing on X

The surface X has good vanishing properties for nef divisors. For example,
H 2(D) = H 0(K − D) = 0 is immediate by Serre duality, since K cannot be
effective on X. It turns out that also H 1(D) = 0 for D nef, so all cohomology
can be calculated from the Riemann-Roch theorem. To prove this, we first need
some preparatory lemmas.

Lemma 2.1. The monoid of effective divisor classes of X is finitely generated
by the classes L − E1 − · · · − En, E1, E2, . . . , En.

Proof. It is clear that the classes above are all effective, so their semigroup
span is in the effective monoid. Conversely, note that these divisor classes
actually form a Z-basis for Pic X. So given an irreducible effective divisor D,
we let

m(L − E1 − · · · − En) + a1E1 + · · · + anEn

represent the corresponding divisor class. If D is not one of the generators
above we have D.Ei = m − ai ≥ 0 and D.(L − E1 − · · · − En) = m −∑n

i=1(m − ai) ≥ 0. Together these inequalities imply that m, ai ≥ 0, and we
are done.

Lemma 2.2. The nef monoid is generated by the divisor classes L, L −
E1, L − E2, . . . , L − En.
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Proof. Let D = dL − ∑
aiEi be a nef divisor class. Intersecting D with

the classes in Lemma 2.1 gives the following set of inequalities:

d ≥ a1 + a2 + · · · + an, ai ≥ 0, ∀i = 1, . . . , n

Now it is easy to see that we can decompose each D as a sum of the L − Ei’s
by using ai of L − Ei and finally add d − a1 − a2 − · · · − an ≥ 0 times L.

Note that since the classes above are effective, so is every nef divisor on X.

Lemma 2.3. Let D = dL − a1E1 − · · · − anEn be a divisor class on X,
with d + 1 ≥ ∑n

i=1 ai and ai ≥ 0. Then h1(D) = 0.

Proof. If D = dL, we have h1(D) = h1(P2, OP2(d)) = 0 for d ≥ −1.
If say a1 > 0, consider the divisor class D′ = D − (L − E1). D′ satisfies
the conditions of the lemma, so by induction on d we have h1(D′) = 0.
Let C be a smooth rational curve with class L − E1, then h1(C, D|C) =
h1(P1, OP1(D.C)) = 0, since D.C ≥ −1. Now taking cohomology of the
exact sequence

0 → OX(D′) → OX(D) → OC(D|C) → 0

gives h1(D) = 0.

This gives us the multigraded Hilbert function of Cox(X) in nef degrees:

Corollary 2.4. For a nef divisor class D, we have h1(D) = 0 and

dimk Cox(X)D = χ(OX(D)).

3. Generators for Cox(X)

We are now in position to find explicit generators for Cox(X) as a k−algebra.
When n = 1, the surface Blp P2 is a toric variety, and by [3], its Cox ring
coincides with the usual homogenous coordinate ring

Cox(Blp P2) = k[x, s1, s2, e]

where deg x = L, deg si = L − E and deg e = E. Therefore, we will in the
following suppose that n ≥ 2.

We first choose generators e1, . . . , en for the 1-dimensional vector spaces
H 0(Ei) for i = 1, . . . , n and a generator l of H 0(L − E1 − · · · − En). For
the classes L − Ei , for which H 0(L − Ei) is 2-dimensional, we need in
addition to the section le1 . . . ei−1ei+1 . . . en, a new section si to form a basis.
To specify these explicitly, we fix a point q ∈ P2 and for each i take a section
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p1

q

p2 p3 pn

s1 s2 s3 . . . sn

Figure 1. The choice of the sections s1, s2, . . . , sn

corresponding to the strict transform of the line going through q and pi . The
projections of these sections to P2 are shown in Figure 1.

We will show that Cox(X) is generated by the sections l, ei, si for i =
1, . . . , n. The following lemma is a variant of Castelnuovo’s base point free
pencil trick ([4, Ex. 17.18]) and will be our main tool for proving this.

Lemma 3.1. Let X be an algebraic variety over a field k, let F be a locally
free sheaf of OX-modules on X, let L be an invertible sheaf on X and V a two-
dimensional base-point free subspace of H 0(X, L ). If H 1(L −1 ⊗ F ) = 0,
then the multiplication map

V ⊗ H 0(X, F ) → H 0(X, L ⊗ F )

is surjective.

Proposition 3.2. Let X be the blow-up of P2 in n ≥ 2 distinct points on
a line. Then there is a multigraded surjection

(1) k[l, e1, . . . , en, s1, . . . , sn] → Cox(X).

where deg(l) = L − E1 − · · · − En, deg ei = Ei and deg si = L − Ei .

Proof. Let D be an effective divisor on X. We need to show that H 0(D)

has a basis of sections which are polynomials in l, ei, si .
We first show that we may take D to be nef. Indeed, suppose E is a curve

such that D ·E < 0. Without loss of generality, we may suppose that E is one of
the divisor classes generating the effective monoid. Let xE ∈ {l, e1, . . . , en} be
the corresponding section in H 0(E). Then since E is a base component of the
linear system |D|, multiplication by xE induces an isomorphism H 0(D−E) →
H 0(X, D). By induction on the number of fixed components, H 0(D − E) is
generated by monomials in the l, ei, si and hence the same applies to H 0(D).
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Now suppose that D is a nef divisor class and write D (uniquely) in terms
of the nef classes of Lemma 2.2:

D = aL + a1(L − E1) + a2(L − E2) + · · · + an(L − En)

where a, ai ≥ 0. If say, a1 ≥ 2, then H 1(D − 2(L − E1)) = 0, since
D − 2(L−E1) is nef, and so applying Lemma 3.1 with V = H 0(L−E1) and
F = OX(D − (L − E1)), we get a surjection

H 0(D − (L − E1)) ⊗ H 0(L − E1) → H 0(D).

By induction on the number D.L ≥ 0, H 0(D − (L − E1)) is generated by
monomials in l, ei, si , and therefore so is H 0(D).

If ai ≤ 1 for all i, and say, a1 = 1, then D − 2(L − E1) = N + E1 for
some divisor N satisfying the assumptions of Lemma 2.3 and N.E1 = 0. In
particular, h1(N) = 0. Now also h1(N + E1) = 0, by the exact sequence

0 → OX(N) → OX(N + E1) → OE1(−1) → 0

and we proceed as above.
If ai = 0 for all i, then D = aL for some a ≥ 1 and H 0(X, OX(D)) �

H 0(P2, OP2(a)). This implies that

H 0(X, (a − 1)L) ⊗ H 0(X, L) → H 0(X, aL).

is surjective. By induction on a, H 0((a − 1)L) is generated by monomials in
l, ei, si , and therefore so is H 0(D).

It remains to show that H 0(L) has a basis of monomials in l, ei, si . But
H 0(L) = π∗H 0(P2, OP2(1)), so it suffices to find three monomials of degree
L that project to linearly independent sections in OP2(1). By construction, this
works for the three sections

σ1 = s1e1, σ2 = s2e2, σ3 = le1e2e3 . . . en.

4. Relations

We now turn to the defining ideal I of relations of Cox(X), i.e., the kernel of
the map (1). Consider again the divisor class L: We have h0(L) = 3, while
there are n + 1 monomials of degree L in k[l, ei, si]:

s1e1, s2e2, . . . , snen, le1e2e3 . . . en

This means that there are n − 2 linear dependence relations between them. To
see what they look like, consider again the projection of these sections in Fig-
ure 1. Of course any three of these lines through q satisfy a linear dependence
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relation, and these pull back via π to relations in Cox(X) of the following
form:

(2)

g1 = s1e1 + a1sn−1en−1 + b1snen = 0

g2 = s2e2 + a2sn−1en−1 + b2snen = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gn−2 = sn−2en−2 + an−2sn−1en−1 + bn−2snen = 0

where each of the coefficientsai, bi are non-zero. We denote the ideal generated
by these relations by J . The leftmost terms above are underlined since as the
next lemma shows, they form an initial ideal for J .

Lemma 4.1. The set {g1, . . . , gn−2} is a Gröbner basis for J with respect to
the graded lexicographical order, and (s1e1, . . . , sn−2en−2) is an initial ideal
of J .

Proof. It is well-known (e.g., see [1]) that a collection of polynomials with
relatively prime leading terms is a Gröbner basis for the ideal they generate.

We will show that that the expressions (2) in fact generate all the rela-
tions, i.e., that I = J . For this, we will make use of the Pic(X)−grading on
R = k[l, ei, si] and I . The next lemma shows that it is sufficient to consider
generators for the ideal of degrees corresponding to nef divisor classes.

Lemma 4.2. The ideal I is generated by elements of degree D, where D is
a nef divisor class.

Proof. Suppose D is an effective divisor class and that there is a negative
curve E such that D.E < 0. Then this implies that E is a fixed component
of |D| and as above every monomial in k[l, si , ei]D is divisible by xE , the
variable corresponding to E. This shows that any element of ID can be written
as a product of xE and a relation in ID−E . Now the claim follows by induction
on the number of fixed components of D.

We will now prove our main theorem.

Theorem 4.3. Let X be the blow-up of n ≥ 2 points on a line. Then Cox(X)

is a complete intersection with n − 2 quadratic defining relations given in (2).

Proof. By Lemma 4.2, it is sufficient to show that ID = JD for all nef
classes D = dL − a1E1 − a2E2 − · · · − anEn, (here d ≥ a1 + · · · + an). Note
that since J ⊆ I , we have in any case a surjective homomorphism

R/J → Cox(X).
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To show that this is an isomorphism in degree D, we calculate the multigraded
Hilbert function of both sides. From Corollary 2.4 and Riemann-Roch, we
have

(3) dimk Cox(X)D = h0(D) =
(

d + 2

2

)
−

(
a1 + 1

2

)
− · · · −

(
an + 1

2

)
.

To calculate dimk(R/J )D , we use the Gröbner basis for J . Since the Hilbert
function is preserved when going to initial ideals, we have

dimk(R/J )D = dimk R/(s1e1, . . . , sn−2en−2)D

We use a counting argument to evaluate this number. Note that any monomial in
R/(s1e1, . . . , sn−2en−2)D corresponds to a way of writing D as a non-negative
sum of divisor classes from

L − E1 − · · · − En, L − E1, . . . , L − En, E1, . . . , En

such that not both L − Ei and Ei occur in the sum for i = 1, . . . , n − 2.
Abusing notation, we let the numbers si, ei, l represents respectively the non-
negative coefficients of L − Ei, Ei, L − E1 − · · · − En in this sum. Working
in Pic(X) � Zn+1, this translates the problem of finding dimk(R/J )D into
following counting problem: finding the number of non-negative solutions of

(4)

s1 + s2 + · · · + sn = d − l

s1 − e1 = a1 − l

. . . . . . . . . . . . . . . . . . . . . . . . .

sn − en = an − l

such that si · ei = 0 for i = 1, . . . , n − 2.

Lemma 4.4. For each l ≤ d we have d − l ≥ ∑n
k=1 max(ai − l, 0).

Proof. For l = 0, this inequality reduces to the nef condition on D. Now,
increasing l by one decreases the left hand side by one, and if there is some
ai − l > 0, then max(ai − l, 0) is decreased by one, as well, if not, the right
hand side is zero, so in any case the inequality is preserved.

For each fixed l, we count the number of non-negative solutions S(l) to the
system (4). Note that si is completely determined as si = max(ai − l, 0) for
1 ≤ i ≤ n − 2 by the condition si .ei = 0. Hence by the first equation in (4),
we are looking for non-negative solutions to

sn + sn−1 = d − l −
n−2∑
k=1

max(ak − l, 0) ≥ 0
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such that sn ≥ max(an − l, 0) and sn−1 ≥ max(an−1 − l, 0), of which there
are in total

d − l −
n−2∑
k=1

max(an−2 − l, 0) + 1 −
∑

k=n−1,n

max(ak − l, 0)

Hence the total number of solutions to (4) is

d∑
l=0

S(l) =
d∑

l=0

(
d + 1 − l −

n∑
k=1

max(ak − l, 0)

)

=
(

d + 2

2

)
−

a1∑
i=0

(a1 − i) −
a1∑

i=0

(a1 − i) − · · · −
an∑

i=0

(an − i)

=
(

d + 2

2

)
−

(
a1 + 1

2

)
−

(
a2 + 1

2

)
− · · · −

(
an + 1

2

)
= h0(D).

This finishes the proof that I = J . Now, from [2, Remark 1.4] we have
dim Cox(X) = n + 3, furthermore by Proposition 3.2 we have that codim
Cox(X) = (2n + 1) − (n + 3) = n − 2, which is exactly the number of
relations in I .

Remark. The above result can also be proved in another way, using the
following lemma, proved by Stillman in [10]:

Lemma 4.5. Let J ⊂ k[x1, x2, . . . , xn] be an ideal containing a polynomial
f = gx1 + h, with g, h not involving x1 and g a non-zero divisor modulo J .
Then, J is prime if and only if the elimination ideal J ∩k[x2, . . . , xn] is prime.

The above lemma can be used to prove that J = (g1, . . . , gn−2) is prime,
using induction on n. For n = 3, this is clear. Next, note that the elimination
ideal J ∩ k[s2, . . . , sn, e2 . . . , en, l] is just (g2, . . . , gn−2) since {g1, . . . , gn−2}
is a Gröbner basis. By induction on n, (g2, . . . , gn−2) is the defining ideal of
Cox(X) for P2 blown up in the points p2, . . . , pn and hence is prime. Taking
now x1 = e1, g = s1, h = a1sn−1en−1 + b1snen shows that J is prime. Then,
since J ⊆ I are two prime ideals with the same Krull dimension, they must
be equal.
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