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HYPERSURFACES OF LORENTZIAN
PARA-SASAKIAN MANIFOLDS

SELCEN YÜKSEL PERKTAŞ, EROL KILIÇ and SADIK KELEŞ

Abstract
In this paper we study the invariant and noninvariant hypersurfaces of (1, 1, 1) almost contact
manifolds, Lorentzian almost paracontact manifolds and Lorentzian para-Sasakian manifolds,
respectively. We show that a noninvariant hypersurface of an (1, 1, 1) almost contact manifold
admits an almost product structure. We investigate hypersurfaces of affinely cosymplectic and
normal (1, 1, 1) almost contact manifolds. It is proved that a noninvariant hypersurface of a
Lorentzian almost paracontact manifold is an almost product metric manifold. Some necessary and
sufficient conditions have been given for a noninvariant hypersurface of a Lorentzian para-Sasakian
manifold to be locally product manifold. We establish a Lorentzian para-Sasakian structure for an
invariant hypersurface of a Lorentzian para-Sasakian manifold. Finally we give some examples
for invariant and noninvariant hypersurfaces of a Lorentzian para-Sasakian manifold.

1. Introduction

Hypersurfaces of an almost contact manifold have been studied by D. E. Blair
[2], S. S. Eum [5], S. I. Goldberg and K.Yano [7], G. D. Ludden [8] and others.
In 1970, S. I. Goldberg and K. Yano [7] defined noninvariant hypersurfaces of
almost contact manifolds. A hypersurface such that the transform of a tangent
vector of the hypersurface by the tensor ϕ defining the almost contact structure
is never tangent to the hypersurface is called a noninvariant hypersurface of
the almost contact manifold [7]. The authors [7] showed that a noninvariant
hypersurface of an almost contact manifold admits an almost complex struc-
ture and a distinguished 1-form induced by the contact form of the manifold.
They also investigated noninvariant hypersurfaces of an almost contact metric
manifold.

In 1976, I. Sato [13] studied a structure similar to the almost contact struc-
ture, namely almost paracontact structure. In [1], T. Adati studied hypersur-
faces of an almost paracontact manifold. A. Bucki [3] considered hypersurfaces
of an almost r-paracontact Riemannian manifold. Some properties of invariant
hypersurfaces of an almost r-paracontact Riemannian manifold were invest-
igated in [4] by A. Bucki and A. Miernowski. Moreover, in [10], I. Mihai and
K. Matsumoto studied submanifolds of an almost r-paracontact Riemannian
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manifold of P-Sasakian type. In [6] the authors studied invariant and nonin-
variant hypersurfaces of almost r-paracontact manifolds. R. Singh [14] defined
(e1, e2, r) almost contact structure as a generalization of many known struc-
tures, which are obtained by taking particular values of (e1, e2) and r (see also
[15]). The study of Lorentzian almost paracontact manifolds was initiated by
K. Matsumoto in 1989 [9]. Also he introduced the notion of Lorentzian para-
Sasakian (for short, LP-Sasakian) manifold. I. Mihai and R. Rosca [11] defined
the same notion independently and thereafter many authors ([18], [12], [16],
[17]) studied Lorentzian para-Sasakian manifolds and their submanifolds.

In the present paper, we study the invariant and noninvariant hypersurfaces
of (1, 1, 1) almost contact manifolds, Lorentzian almost paracontact manifolds
and Lorentzian para-Sasakian manifolds, respectively. We investigate the in-
variant hypersurfaces with two different conditions: when the characteristic
vector field ξ is everywhere tangent to the hypersurfaces and when the char-
acteristic vector field ξ is not tangent the hypersurfaces. Section 2 is devoted
to preliminaries. In Section 3 we show that a noninvariant hypersurface of an
(1, 1, 1) almost contact manifold with the characteristic vector field ξ nowhere
tangent to the hypersurface admits an almost product structure. In Section 4 we
study hypersurfaces of affinely cosymplectic and normal (1, 1, 1) almost con-
tact manifolds. In Section 5 it is proved that a noninvariant hypersurface of a
Lorentzian almost paracontact manifold is an almost product metric manifold.
We also find a necessary and sufficient condition for a noninvariant hypersur-
face of a Lorentzian para-Sasakian manifold to be locally product manifold.
Moreover, in this section we establish a Lorentzian para-Sasakian structure
for an invariant hypersurface of a Lorentzian para-Sasakian manifold with the
characteristic vector field ξ tangent to the hypersurface. In the last section
we give some examples for invariant and noninvariant hypersurfaces of an
(1, 1, 1) almost contact manifold, a Lorentzian almost paracontact manifold
and a Lorentzian para-Sasakian manifold.

2. Preliminaries

LetM be an n-dimensional differentiable manifold. If there exist a tensor field
ϕ of type (1, 1), r-linearly independent vector fields ξα and r 1-forms ηα on
M such that [15]

ϕ(ξα) = 0,(2.1)

ϕ2 = e1I + e2η
α ⊗ ξα,(2.2)

where e1, e2 take values ±1 independently, I denotes the identity map of
�(TM) and ⊗ is the tensor product, then the structure (ϕ, ξα, ηα) is said to
be an almost (e1, e2)-r-contact structure or in short (e1, e2, r) AC-structure
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and the manifold M with the (e1, e2, r) AC-structure is called an (e1, e2, r)

AC-manifold.
Let M be an (e1, e2, r)AC-manifold. Then the following relations hold on

M [14]:

ηα ◦ ϕ = 0,(2.3)

ηα(ξβ) = −e1e2δ
α
β ,(2.4)

rank(ϕ) = n− r.(2.5)

Now, consider thatM is an (1, 1, 1)AC-manifold. ThenM admits a Lorent-
zian metric g, such that

η(X) = g(X, ξ),(2.6)

g(ϕX, ϕY ) = g(X, Y )+ η(X)η(Y ),(2.7)

for all X, Y ∈ �(TM). In this case M is said to admit a Lorentzian almost
paracontact structure (ϕ, ξ, η, g). Then we get

	(X, Y ) ≡ g(X, ϕY ) ≡ g(ϕX, Y ) ≡ 	(Y ,X),(2.8)

(∇X	)(Y , Z) = g(Y , (∇Xϕ)Z) = (∇X	)(Z, Y ),(2.9)

where ∇ is the Levi-Civita connection with respect to g. It is clear that the
Lorentzian metric g makes ξ a timelike unit vector field, i.e., g(ξ, ξ) = −1.
The manifold M equipped with a Lorentzian almost paracontact structure
(φ, ξ, η, g) is called a Lorentzian almost paracontact manifold (for short, LAP-
manifold) [9], [19].

A Lorentzian almost paracontact manifold M endowed with the struc-
ture (ϕ, ξ, η, g) is called a Lorentzian paracontact manifold (for short, LP-
manifold) [9] if

(2.10) 	(X, Y ) = 1
2

(
(∇Xη)Y + (∇Y η)X

)
.

A Lorentzian almost paracontact manifold M endowed with the structure
(ϕ, ξ, η, g) is called a Lorentzian para Sasakian manifold (for short, LP-
Sasakian) [9] if

(2.11) (∇Xϕ)Y = η(Y )X + g(X, Y )ξ + 2η(X)η(Y )ξ.

We note that in a LP-Sasakian manifold the 1-form η is closed.
Let M × R be a product manifold, where M is an (1, 1, 1) AC-manifold.

The tensor field J ′ of type (1, 1) on M × R defined by

(2.12) J ′
(
X, f

d

dt

)
=

(
ϕX − f ξ, η(X)

d

dt

)
,
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where f is a C∞ real-valued function and X ∈ �(TM), satisfies J ′2 = I and
thus provides an almost product structure on M × R. If the induced almost
product structure onM ×R is integrable then the (1, 1, 1)AC-structure onM
is said to be normal [15]. Since the vanishing of the Nijenhuis tensor [J ′, J ′]
is a necessary and sufficient condition for integrability, the condition of the
normality in terms of the Nijenhuis tensor [ϕ, ϕ] of ϕ is (see [15])

(2.13) [ϕ, ϕ] + dη ⊗ ξ = 0,

where

(2.14) [ϕ, ϕ](X, Y ) = [ϕX, ϕY ] − ϕ[ϕX, Y ] − ϕ[X, ϕY ] + ϕ2[X, Y ],

for all X, Y ∈ �(TM).

3. Noninvariant Hypersurfaces of (1, 1, 1) AC-Manifolds

LetM be an (1, 1, 1)AC-manifold. Consider an (n−1)-dimensional manifold
M imbedded in M with the immersion i : M → M and assume that for each
p ∈ M the vector ξi(p) is not tangent to the hypersurface. Then we have

(3.1) ϕi∗X = i∗JX + α(X)ξ,

where J is a tensor field of type (1, 1), α is a 1-form on M and i∗ is the
differential of the immersion i of M into M . If α �= 0, then the submanifold
i(M) is called a noninvariant hypersurface of M . On the other hand, if the
1-form α vanishes, then i(M) is called an invariant hypersurface of M (see
[7]). A hypersurface may, of course, be neither invariant nor noninvariant.
Throughout this section, unless specified otherwise i(M)will be a noninvariant
hypersurface of the (1, 1, 1)AC-manifold M .

Theorem 3.1. If M is a noninvariant hypersurface of an (1, 1, 1) AC-
manifold M with ξ nowhere tangent to M , then M admits an almost product
structure.

Proof. By applying ϕ to (3.1) and using (2.1)–(2.4), we have

(3.2) i∗X + η(i∗X)ξ = i∗(J 2X)+ α(JX)ξ.

Then from (3.1), we get
J 2X = X

and

(3.3) α(JX) = η(i∗X) = i∗(ηX),
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whereX ∈ �(TM) and i∗ is the dual map of i∗. So J acts as an almost product
structure on M . This completes the proof.

If we define a 1-form Cα on M by Cα(X) = α(JX) then from (3.3) we
can write

Cα = i∗η.

Thus, the hypersurface M admits a 1-form α whose vanishing means that the
tangent hyperplane of the hypersurface is invariant under ϕ.

Now, let ∇ be a symmetric affine connection on M and define an affine
connection ∇ on M with respect to the affine normal ξ by

(3.4) ∇ i∗Xi∗Y = i∗∇XY + h(X, Y )ξ,

where h is a symmetric tensor field of type (0, 2) on M which is called the
second fundamental form of M with respect to ξ .

Suppose that the (1, 1, 1)AC-structure is normal. Then, the torsion field S
of type (1, 2) on M which is defined by

(3.5) S(X, Y ) = [ϕX, ϕY ]−ϕ[ϕX, Y ]−ϕ[X, ϕY ]+ϕ2[X, Y ]+dη(X, Y )ξ,
for all X, Y ∈ �(TM), vanishes. By taking Y = ξ in (3.5), we get

Lξϕ = 0 and Lξη = 0,

whereLξ is the Lie derivative operator with respect to ξ . From (3.5) the tensor
field S is also expressed by

(3.6)

S(X, Y ) = ∇ϕX(ϕY )− ∇ϕY (ϕX)− ϕ(∇ϕXY − ∇Y (ϕX))

− ϕ(∇X(ϕY )− ∇ϕYX)+ ϕ2(∇XY − ∇YX)

+ (∇Xη(Y )− ∇Y η(X)− η([X, Y ]))ξ,

or

(3.7)
S(X, Y ) = (∇ϕXϕ)Y − (∇ϕY ϕ)X + ϕ(∇Y ϕ)X

− ϕ(∇Xϕ)Y + [(∇Xη)Y − (∇Y η)X]ξ.

By using (3.1) and (3.4), we obtain

(3.8)
S(i∗X, i∗Y ) = i∗[J, J ](X, Y )+ Lξϕ{α(X)i∗Y − α(Y )i∗X}

+ {dα(JX, Y )+ dα(X, JY )− 2i∗η([X, Y ])}ξ.
Therefore, we have the following:
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Theorem 3.2. A noninvariant hypersurface of a normal (1, 1, 1) AC-mani-
fold M is a locally product manifold which has a 1-form α = C−1i∗η such
that its differential satisfies

(3.9) dα(JX, Y )+ dα(X, JY ) = 2Cα([X, Y ]).

Corollary 3.3. An invariant hypersurface of an (1, 1, 1) AC-manifold is
an almost product manifold. If the (1, 1, 1) AC-manifold is normal, then the
almost product structure is integrable.

Theorem 3.4. Let ξ be an infinitesimal automorphism of the (1, 1, 1)
AC-manifold M . If, for every noninvariant hypersurface, the induced almost
product structure J is integrable and the differential of the induced 1-form
α = C−1i∗η satisfies (3.9) then M is normal.

4. Hypersurfaces of affinely cosymplectic and normal (1, 1, 1) AC-
manifolds

LetM be an (1, 1, 1)AC-manifold with a symmetric affine connection ∇ and
∇ denotes the induced connection on the noninvariant hypersurface M . If we
write

(4.1) (∇Xi∗)Y = ∇ i∗Xi∗Y − i∗(∇XY ),

then the Gauss and Weingarten equations are

(4.2) (∇Xi∗)Y = h(X, Y )ξ, h(X, Y ) = h(Y,X)

and

(4.3) ∇ i∗Xξ = −i∗AX + w(X)ξ,

where h and A are the second fundamental tensors of type (0, 2) and (1, 1),
respectively of M with respect to ξ , and w is a 1-form on M defining the
connection on the affine normal bundle.

By using (3.1), (4.2) and (4.3) we get

(4.4)

(∇ i∗Xϕ)i∗Y = ∇ i∗Xϕi∗Y − ϕ(∇ i∗Xi∗Y )
= [h(X, JY )+ (∇Xα)(Y )+ w(X)α(Y )]ξ

+ i∗[(∇XJ )Y − α(Y )AX].

Then we will investigate the following two cases:
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Case I: Let M be an affinely cosymplectic (1, 1, 1) AC-manifold, that is,
M be an (1, 1, 1)AC-manifold with a symmetric affine connection ∇ such that

(4.5) ∇ϕ = 0, ∇η = 0.

From (3.7) we can easily see that an affinely cosymplectic (1, 1, 1)AC-mani-
fold is normal. Also by using (2.1) and (2.2), we can show that (4.5) implies
that ∇ξ = 0.

Therefore, by (4.3), we have

AX = 0 and w(X) = 0.

Moreover, since ∇ϕ = 0 then from (4.4) we have

∇J = 0 and (∇Xα)(Y ) = −h(X, JY ).
Case II: LetM be a normal (1, 1, 1)AC-manifold such that ϕ = ∇ξ . Then

by using (3.1) and (4.3), we have

i∗JX + α(X)ξ = −i∗AX + w(X)ξ,

that is, J = −A and α = w.
If AX = 0, for all X ∈ �(TM), then from (4.3) it is obvious that ∇ i∗Xξ

and ξ are proportional. So affine normals are parallel along the hypersurface.
In this case, the hypersurface M is said to be totally flat.

Proposition 4.1. Let M be a noninvariant hypersurface of an affinely
cosymplectic (1, 1, 1) AC-manifold. Then M is totally flat and

∇J = 0, (∇Xα)(Y ) = −h(X, JY ), w = 0.

Corollary 4.2. Let M be an invariant hypersurface of an affinely cosym-
plectic (1, 1, 1) AC-manifold. Then

∇J = 0, h = 0, w = 0.

Proposition 4.3. LetM be a noninvariant hypersurface of a normal (1,1,1)
AC-manifold such that ϕ = ∇ξ . Then

J = −A and α = w.
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5. Hypersurfaces of Lorentzian almost paracontact manifolds

An (1, 1, 1)AC-manifold M admitting a Lorentzian metric g such that

g(X, ξ) = η(X),(5.1)

g(X, ϕY ) ≡ g(ϕX, Y ),(5.2)

where X, Y ∈ �(TM), is called Lorentzian almost paracontact manifold and
denoted by (M, ϕ, η, g).

Proposition 5.1. Let (M, J, α, g) be a noninvariant hypersurface of
(M, ϕ, η, g) where g is the induced metric on M , that is, i∗g = g. Then
the hypersurface (M, J, α, g) admits an almost product metric

(5.3) G = g + α ⊗ α.

Proof. From (5.2), we can write

(5.4) g(ϕi∗X, i∗Y ) = g(ϕi∗X, i∗Y ).

By using (2.1) in (5.4), we obtain

(5.5) g(i∗JX, i∗Y )+ α(X)η(i∗Y ) = g(i∗X, i∗JY )+ α(Y )η(i∗X).

The induced metric g on (M, J, α) can be defined by

g(X, Y ) = g(i∗X, i∗Y ).

So if we use (3.3) and (5.4) in (5.5), then we have

g(JX, Y )+ α(X)Cα(Y ) = g(X, JY )+ α(Y )Cα(X),

that is,
(g + α ⊗ α)(JX, Y ) = (g + α ⊗ α)(X, JY ).

If we denote g + α ⊗ α by G, the proof is completed.

Corollary 5.2. A noninvariant hypersurface of a Lorentzian almost para-
contact manifold is an almost product metric manifold.

Now, let define 2-forms

	(X, Y ) = g(ϕX, Y ), X, Y ∈ �(TM)
and

�(X, Y ) = G(JX, Y ), X, Y ∈ �(TM).
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	 and� are called the fundamental forms of the Lorentzian almost paracontact
manifold (M, ϕ, η, g) and the submanifold (M, J,G) ofM , respectively. Then
we have the following:

Lemma 5.3. Let 	 and � be the fundamental forms of (M, ϕ, η, g) and
(M, J, α,G), respectively. Then

(5.6) i∗	 = �− Cα ∧ α.

Proof. ForX, Y ∈ �(TM), by using definitions of the fundamental forms,
(3.1) and (5.3), we get

	(i∗X, i∗Y ) = �(X, Y )− (Cα ∧ α)(X, Y ).
Hence, we obtain

i∗	(X, Y ) = (�− Cα ∧ α)(X, Y ).

Theorem 5.4. Let (M, J, α,G) be a noninvariant hypersurface of the
Lorentzian para-Sasakian manifold (M, ϕ, η, g). Then

(a) J = −A,
(b) α = w.

Proof. Since (M, ϕ, η, g) is a Lorentzian para-Sasakian manifold, we have

∇ i∗Xξ = ϕi∗X.

By using (4.3) and (3.1), we get

−i∗AX + w(X)ξ = i∗JX + α(X)ξ,

which completes the proof.

Theorem 5.5. If M is a noninvariant hypersurface of a Lorentzian para-
Sasakian manifold (M, ϕ, η, g), then

(a) (∇XJ )(Y ) = α(Y )JX − Cα(Y )X,

(b) g(i∗X, i∗Y )+ 2Cα(X)Cα(Y ) = h(X, JY )+ (∇Xα)(Y )+ α(X)α(Y ).

Proof. By using (3.1) and (4.1) we obtain

(5.7)
(∇ i∗Xϕ)(i∗Y ) = [i∗(∇XJ )(Y )+ α(Y )i∗JX]

+ [h(X, JY )+ (∇Xα)(Y )+ α(X)α(Y )]ξ.
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On the other hand, since (M, ϕ, η, g) is a Lorentzian para-Sasakian manifold,
from (2.11) we also have

(5.8) (∇ i∗Xϕ)(i∗Y ) = η(i∗Y )i∗X + g(i∗X, i∗Y )ξ + 2η(i∗X)η(i∗Y )ξ.

By considering Cα = i∗η and equating the components of (5.7) and (5.8), we
get (a) and (b) in the assertion theorem. This completes the proof.

As an immediate consequence we have the following:

Corollary 5.6. Let M be a noninvariant hypersurface of the Lorentzian
para-Sasakian manifold (M, ϕ, η, g) with the induced almost product struc-
ture J . Then M is a locally product manifold if and only if

(5.9) α(Y )JX = α(JY )X.

Now, letM be a (1, 1, 1)AC-manifold andM be an invariant hypersurface
of M . Assume that for each p ∈ M the vector ξi(p) belongs to the tangent
hyperplane of the hypersurface. For an invariant hypersurface of an (1, 1, 1)
AC-manifold we can write

(5.10) ϕi∗X = i∗ψX,

where ψ is a tensor of type (1, 1) on the hypersurface M and X ∈ �(TM).
Applying ϕ to the both sides of the equation (5.10), we get

(5.11) i∗ψ2X = ϕ2i∗X = i∗X + η(i∗X)ξ.

If we denote

(5.12) i∗ξ ∗ = ξ

and

(5.13) η∗(X) = η(i∗X),

then we have

(5.14) ψ2X = X + η∗(X)ξ ∗.

Furthermore,

η∗(ψX) = η(i∗ψX) = η(ϕi∗X) = 0,(5.15)

η∗(ξ ∗) = η(i∗ξ ∗) = η(ξ) = −1(5.16)
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and
i∗ψξ ∗ = ϕi∗ξ ∗ = ϕξ = 0,

that is,

(5.17) ψξ ∗ = 0.

Thus we have

Theorem 5.7. Let M be an invariant hypersurface of an (1, 1, 1) AC-
manifold (M, ϕ, η, ξ) and ξ ∈ �(TM). Then M is an (1, 1, 1) AC-manifold
with the structure (ψ, ξ ∗, η∗) where i∗ξ ∗ = ξ and η∗(X) = η(i∗X), for all
X ∈ �(TM).

Theorem 5.8. Let M be an invariant hypersurface of an (1, 1, 1) AC-
manifold (M, ϕ, η, ξ) with ξ ∈ �(TM). If M is normal, then M is also
normal.

Proof. By using (3.5), we can write

(5.18)

S(i∗X, i∗Y ) = [ϕ, ϕ](i∗X, i∗Y )+ dη(i∗X, i∗Y )ξ
= [ϕi∗X, ϕi∗Y ] − ϕ[ϕi∗X, i∗Y ] − ϕ[i∗X, ϕi∗Y ]

+ ϕ2[i∗X, i∗Y ] + dη(i∗X, i∗Y )ξ.

for all X, Y ∈ �(TM). If we use (5.10), (5.12) and (5.13) in (5.18), we get

S(i∗X, i∗Y ) = i∗ψ2[X, Y ] + [i∗ψX, i∗ψY ] − i∗ψ[X,ψY ] − i∗ψ[ψX, Y ]

+ {(i∗X)(η∗(Y ))− (i∗Y )(η∗(X))− η∗([X, Y ])}i∗ξ ∗

= i∗{[ψ,ψ](X, Y )+ dη∗(X, Y )ξ∗}.
Hence, we have the assertion of the theorem.

Theorem 5.9. Let M be an invariant hypersurface of a Lorentzian almost
paracontact manifold (M, ϕ, η, g) where ξ ∈ �(TM). Then M is also a
Lorentzian almost paracontact manifold.

Proof. From Theorem 5.7 it follows that an invariant hypersurface M of
M is an (1, 1, 1) AC-manifold with the structure (ψ, ξ ∗, η∗). Let g∗ be the
induced metric on M . Then we have

(5.19) g∗(ψX,ψY) = g(i∗ψX, i∗ψY) = g(ϕi∗X, ϕi∗Y ).

Since M is a Lorentzian almost paracontact manifold, then by using (5.13) in
(5.19) we get

(5.20) g∗(ψX,ψY) = g∗(X, Y )+ η∗(X)η∗(Y ).
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Moreover,

(5.21) g∗(X, ξ ∗) = g(i∗X, i∗ξ ∗) = η(i∗X) = η∗(X),

which completes the proof.

Theorem 5.10. Let (M, ϕ, η, g) be a Lorentzian para Sasakian manifold.
Then an invariant hypersurface with ξ ∈ �(TM) of M is also a Lorentzian
para Sasakian manifold.

Proof. Let M be a Lorentzian para-Sasakian manifold. Then we have

∇ i∗Xξ = ϕi∗X,

where ∇ is a Levi-Civita connection with respect to g. From (5.10) and (5.12),
we can write ∇ i∗Xi∗ξ

∗ = i∗ψX.

By using (3.4) in the last equation, we obtain

i∗∇Xξ
∗ + h(X, ξ ∗)N = i∗ψX,

where ∇ is the induced connection onM andN is normal toM . If we consider
normal and tangent components of above equation we get

∇Xξ
∗ = ψX,

h(X, ξ ∗) = 0.

Since M be a Lorentzian para Sasakian manifold from (2.11), we have

(5.22) (∇ i∗Xϕ)i∗Y = η(i∗Y )i∗X + g(i∗X, i∗Y )ξ + 2η(i∗X)η(i∗Y )ξ,

for all X, Y ∈ �(TM). By using (5.10), (5.12) and (5.13) in (5.22), we obtain

(5.23) (∇ i∗Xϕ)i∗Y = i∗{η∗(Y )X + g(X, Y )ξ ∗ + 2η∗(X)η∗(Y )ξ ∗}.
On the other hand, from (3.4) and (5.10), one can get

(∇ i∗Xϕ)i∗Y = ∇ i∗Xϕi∗Y − ϕ(∇ i∗Xi∗Y )
= ∇ i∗Xi∗ψY − ϕ(i∗∇XY + h(X, Y )N)

= i∗(∇XψY − ψ(∇XY ))+ h(X,ψY)N − h(X, Y )ϕN,(5.24)

where ∇ is the induced connection on M and N is normal to M . By equating
right hand sides of equations (5.23) and (5.24), we have

(∇Xψ)Y = η∗(Y )X + g(X, Y )ξ ∗ + 2η∗(X)η∗(Y )ξ ∗.
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This completes the proof.

6. Examples

Example 6.1. LetM , be the 5-dimensional real number space with a coordin-
ate system (x, y, z, t, s). Defining

η = ds − dx − dz, ξ = − ∂

∂s
,

ϕ

(
∂

∂x

)
= − ∂

∂x
− ∂

∂s
, ϕ

(
∂

∂y

)
= − ∂

∂y

ϕ

(
∂

∂z

)
= − ∂

∂z
− ∂

∂s
, ϕ

(
∂

∂t

)
= − ∂

∂t
, ϕ

(
∂

∂s

)
= 0,

the set (ϕ, ξ, η) becomes a (1, 1, 1)AC-structure in M .
LetM1 be a hypersurface ofM which is given by s = x with the immersion

i : M1 → M . Then

{u1 = (1, 0, 0, 0, 1), u2 = (0, 1, 0, 0, 0),

u3 = (0, 0, 1, 0, 0), u4 = (0, 0, 0, 1, 0)}
is a local basis for the tangent hyperplane of M1 and N1 = (1, 0, 0, 0,−1) is
the normal vector field of the hypersurface. It is obvious that the characteristic
vector field ξi(p), p ∈ M1, is not tangent to hypersurface of M1. A tangent
vector field of the hypersurface can be written by X ≡ i∗X = f1u1 + f2u2 +
f3u3 + f4u4 for some smooth functions fi , 1 ≤ i ≤ 4, on M . Then we have

ϕi∗X = −f1u1 − f2u2 − f3u3 − f4u4 + f3ξ,

which shows that M1 is a noninvariant hypersurface of M .
Now let us consider the hypersurface M2 of the (1, 1, 1) AC-manifold M

defining by x = y and let i : M2 → M be the immersion of M2 into M . In
this case the set

{v1 = (1, 1, 0, 0, 0), v2 = (0, 0, 1, 0, 0),

v3 = (0, 0, 0, 1, 0), v4 = (0, 0, 0, 0, 1)}
is a local basis for the tangent hyperplane and N2 = (1,−1, 0, 0, 0) is the
normal vector field of M2. The characteristic vector field is tangent to the the
hypersurface. For any tangent vector field X ≡ i∗X = h1v1 + h2v2 + h3v3 +
h4v4 of the hypersurface we have

(6.1) ϕi∗X = −h1v1 − h2v2 − f3v3 + (h1 + h2)ξ,
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where hi , 1 ≤ i ≤ 4, are some smooth functions on M2. From (6.1) we see
that M2 is an invariant hypersurface of M .

Example 6.2. Let M be the 5-dimensional real number space with a co-
ordinate system (x, y, z, t, s). In M we define

η = ds − dx, ξ = − ∂

∂s
,

ϕ

(
∂

∂x

)
= ∂

∂x
+ ∂

∂s
, ϕ

(
∂

∂y

)
= ∂

∂y
,

ϕ

(
∂

∂z

)
= ∂

∂z
, ϕ

(
∂

∂t

)
= ∂

∂t
, ϕ

(
∂

∂s

)
= 0,

g = (dx)2 + (dy)2 + (dz)2 + (dt)2 − η ⊗ η.

Then (ϕ, ξ, η, g) is a Lorentzian almost paracontact structure in M .
LetM be a hypersurface ofM which is defined by s = x with the immersion

i : M → M . Then the set

{u1 = (1, 0, 0, 0, 1), u2 = (0, 1, 0, 0, 0),

u3 = (0, 0, 1, 0, 0), u4 = (0, 0, 0, 1, 0)}
is a local basis for the tangent hyperplane ofM andN = (1, 0, 0, 0,−1) is the
normal vector field of the hypersurface. Since ξi(p) = 1

2 (u1 −N)i(p), it can be
easily seen that the characteristic vector field ξi(p), p ∈ M , is not tangent to
M . Moreover, since ϕu1 = u1, ϕu2 = u2, ϕu3 = u3, ϕu4 = u4, then M is an
invariant hypersurface of M with the characteristic vector field ξi(p), p ∈ M ,
which is not tangent to the hypersurface.

Example 6.3. Let M be the 3-dimensional real number space with a co-
ordinate system (x, y, z). If we define

η = dz, ξ = − ∂

∂z
,

ϕ

(
∂

∂x

)
= − ∂

∂x
, ϕ

(
∂

∂y

)
= − ∂

∂y
, ϕ

(
∂

∂s

)
= 0,

g = (dx)2 + (dy)2 − η ⊗ η.

on M , then (ϕ, ξ, η, g) is a Lorentzian almost paracontact structure in M .
Assume thatM be a surface ofM given by x = arcsin y with the immersion

i : M → M . Then {
u1 = (

1,
√

1 − y2, 0
)
, u2 = (0, 0, 1)

}
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forms a local basis for the tangent plane of M and N = (√
1 − y2,−1, 0

)
is

the normal vector field of the surface. For any tangent vector field X of the
surface we have

(6.2) ϕi∗X = −f1u1,

whereX ≡ i∗X = f1u1 +f2u2 for some smooth functions f1, f2 onM . From
(6.2) we obtain that M is an invariant surface of M with the characteristic
vector field ξi(p), p ∈ M , belonging to the tangent plane of the surface.

Example 6.4. Let M = R3 be the 3-dimensional real number space with
a coordinate system (x, y, z). We define

η = dz, ξ = − ∂

∂z
,

(6.3) ϕ

(
∂

∂x

)
= ∂

∂x
, ϕ

(
∂

∂y

)
= − ∂

∂y
, ϕ

(
∂

∂z

)
= 0,

g = e−2z(dx)2 + e2z(dy)2 − (dz)2.

Then (ϕ, ξ, η, g) is a Lorentzian para-Sasakian structure on M .
Let M1 be a surface of M with the immersion i : M1 → M which is given

by
z = x + y.

Then u1 = (1, 0, 1), u2 = (0, 1, 1) is a local basis for the tangent plane of the
surface. The vector field

N = (e2(x+y), e2(x+y), 1)

is a normal vector field of M1. Since

ξ = − 1

e2(x+y) + e−2(x+y) − 1

(
(e2(x+y))u1 + (e−2(x+y))u2 −N

)

then for each p ∈ M1 the characteristic vector field ξi(p) is not tangent to the
surface. A tangent vector field of the surface can be written by X ≡ i∗X =
f1u1 + f2u2 for some smooth functions f1, f2 on M . By using (6.3) we have

(6.4) ϕi∗X = f1u1 − f2u2 + (f1 − f2)ξ.

From (3.1) and (6.4) we get

i∗JX = f1u1 − f2u2
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and
α(X) = f1 − f2,

where J acts an almost product structure on M1. Consequently, M1 is a non-
invariant surface of the Lorentzian para-Sasakian manifoldM with ξ nowhere
tangent to M1.

Let M2 be another surface of M which is given by

x = arctan y.

Then v1 = (
1

1+y2 , 1, 0
)
, v2 = (0, 0, 1) forms a local orthogonal basis for the

tangent plane of the surface and

N =
(
e2z,− 1

1 + y2
e−2z, 0

)

is a normal vector field ofM2. It is obvious that the characteristic vector field of
the manifold is tangent to the surfaceM2. For any tangent vector field i∗Y ≡ Y

of the surface where i : M2 → M is an immersion into the Lorentzian para-
Sasakian manifold M we can write i∗Y = γ1v1 + γ2v2 for some smooth
functions γ1, γ2 on M2. By using (6.3) we have

ϕi∗Y = −γ1

(
v1 − 2(1 + y2)

(1 + y2)2e2z − e−2z
N

)
,

which shows thatM2 is a noninvariant surface of the Lorentzian para-Sasakian
manifold M with ξ tangent to the surface.
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