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STANDARD IDEALS IN WEIGHTED ALGEBRAS OF
KORENBLYUM AND WIENER TYPES

JOSÉ E. GALÉ and ANTONI WAWRZYŃCZYK∗

Abstract
We introduce two types of Banach algebras of analytic functions on the unit disc which can be seen
as weighted versions of closed primary ideals of the Korenblyum and (analytic) Wiener algebras,
respectively. Such types of algebras arise in connection with convolution Banach algebras of
Sobolev type, on the positive half-line, and their discrete analogues defined in terms of higher
order differences. We show that all closed ideals are standard for algebras in the first class, and
that closed ideals with countable hull are standard in algebras of the second class.

Introduction

Let B be a (non necessarily unital) Banach algebra of bounded holomorphic
functions on the unit disc D := {z ∈ C : |z| < 1}, endowed with the pointwise
operations and the norm ‖·‖B . The problem of describing the closed ideals
in B is generally not a simple question, but it is possible to give a complete
classification of ideals in some important examples. In any case, a basic notion
to consider in this setting is that one of standard (closed) ideal, see [2]. Here
we widen slightly the concept of standard ideal as follows.

Fix a nonnegative integer k. Let (Xn)kn=0 be a family of closed subsets of
T with X0 ⊆ X1 ⊆ · · · ⊆ Xk , where T denotes, as usually, the unit circle.
Assume that for every f ∈ B and every n = 0, 1, . . . , k the derivative f (n)

extends continuously to T \Xn (so that the spectrum of regular maximal ideals
of B is assumed to be D \ X0, in particular). For a closed ideal I in B and
0 ≤ n ≤ k, put

Zn(I) := { z ∈ D \Xn : f (z) = f ′(z) = · · · = f (n)(z) = 0,∀f ∈ I },
and

En(I) := Zn(I) ∩ T

(the set Z(I) := Z0(I ) is called the hull of I ). Let QI be the greatest inner
common divisor of all nonzero functions in I (see [12, p. 85]). Then we call
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the ideal I standard in B if

I = { f ∈ B : QI divides f and f (n) = 0 on En(I), (0 ≤ n ≤ k) }.
There are important classes of Banach algebras as the previous B, withXk = ∅,
where all closed ideals are standard; see the introduction and references of [2].
Among them, there is the Korenblyum algebra Ak(D), formed by definition by
all holomorphic functions in D such that f (n) extends continuously to T for
every n = 0, 1, . . . , k.

There are on the other hand interesting Banach algebras B, also withXk =
∅, which contain non-standard ideals and where, for instance, closed ideals
with countable hull are standard [2]. Among these, we pay attention on the
Banach algebraA+(T), which we call here the analyticWiener algebra, formed
by all functions f in A0(D) with absolutely convergent Taylor series f (z) =∑∞

m=0 amz
m, (|z| ≤ 1). The norm in A+(T) is

‖f ‖A+(T) :=
∞∑
m=0

|am|, f ∈ A+(T).

In the present paper we deal with weighted versions of both Korenblyum and
analytic Wiener algebras, separately. More precisely, for a nonnegative integer
k, let �(k)(D) denote the Banach algebra of all functions f in the disc algebra
A(D) := A0(D) such that f (1) = 0,

(1 − z2)nf (n) ∈ A(D) and lim
z→±1

(1 − z2)nf (n)(z) = 0 (1 ≤ n ≤ k).

The norm in this algebra is given by

‖f ‖ :=
k∑
n=0

‖(1 − z2)nf (n)‖∞, f ∈ �(k)(D).

We can see that the algebra �(k)(D) is a Korenblyum type algebra with weight
(1 − z2)n in the n-th derivative, 1 ≤ n ≤ k.

Similarly, we define H
(k),+

1 (T) as the subalgebra of A(D) formed by all
functions f in A(D) such that

(1) (1 − z)nf (n)(z) ∈ A+(T) (n = 0, 1, . . . , k),

provided with the Banach algebra norm

(2) ‖f ‖1,(k) :=
k∑
n=0

‖(1 − z)nf (n)‖A+(T).
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In this case the algebra H
(k),+

1 (T) is a Wiener type algebra with weights (1−z)n
in the corresponding derivatives.

The algebras �(k)(D) and H
(k),+

1 (T) arise in relation with convolution Ba-
nach algebras of Sobolev type on the positive half-line and their discrete ana-
logues, respectively. This is as follows.

Let T
(k)
+ (tk) denote the Banach space obtained as the completion of the

space C(∞)
c [0,∞) of test functions on [0,∞), with respect to the norm

‖f ‖ :=
∫ ∞

0
|f (k)(t)| tk dt , f ∈ C(∞)

c [0,∞).

The space T
(k)
+ (tk) is a non-unital commutative semisimple Banach algebra

for the convolution on (0,∞), and a subalgebra of L1(R+) ≡ T
(0)
+ (t0). It was

introduced in [1], in the realm of integrated/distribution operator semigroup
theory, and its applications to ill-posed Cauchy problems. From the point of
view of the Banach algebra theory, a further study has been carried out in
[6], [7], [8], even in a fractional derivation setting. Among other properties,
we have that the character space of T

(k)
+ (tk) can be identified with C+ and its

Gelfand transform coincides with the Laplace transform L . In fact the image
of T

(k)
+ (tk) by L lies in the Banach algebra �(k)(C+) of analytic functions F

on C+ := {λ ∈ C : �λ > 0} such that λjF (j)(λ) extends continuously up to
the boundary iR of C+ for j = 0, 1, . . . , k, and satisfies

lim
λ→0

λj F (j)(λ) = 0, (1 ≤ j ≤ k); lim
λ→∞ λ

j F (j)(λ) = 0, (0 ≤ j ≤ k).

The norm in �(k)(C+) is given by

‖F‖ :=
n∑
j=0

max�λ≥0
|λ|j |F (j)(λ)|, F ∈ �(k)(C+).

Of course the restricted Laplace transform

L : T
(k)
+ (tk) → �(k)(C+)

is a bounded Banach algebra homomorphism. Moreover, L has dense range:

T
(k)
+ (tk) = �(k)(C+); see [8].
As regards the ideal theory in T

(k)
+ (tk), a Nyman-type characterization of

dense ideals has been given in [7] which raises the question of whether or not
I = L −1(L (I )), for every closed ideal I in T

(k)
+ (tk) with empty zero-set

Z(L (I )), where the closure is taken in �(k)(C+). Such an equality holds in
the case when k = 0, even for more general closed ideals (see [2], [5], [15]).
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In order to eventually undertake the investigation of closed ideals in T
(k)
+ (tk)

(a task which is not simple even for k = 0, see the above references and [3],
[10]) it seems appropriate to understand first the closed ideals of �(k)(C+).
This question looks interesting in its own.

The Möbius mapping μ: z → (1 − z)−1(1 + z) transforms the disc D onto
the half-plane C+ and D onto C+∪{∞}. By composition ofμwith the functions
of �(k)(C+) we get exactly the Banach algebra �(k)(D) introduced formerly.
In this way, we are led to study the closed ideals of �(k)(D).

Analogously, the algebra H
(k),+

1 (T) appears in association with a discrete
analogue of the convolution algebra T

(k)
+ (tk) which we introduce here using

difference operators of higher degree: For a complex sequence a and integers
n,m ≥ 0 put

�0a(n) := a(n); �a(n) := a(n)− a(n+ 1); �m+1 := �1 ◦�m.

Let τ k(nk) be the space of sequences a such that

lim
n→∞ a(n) = 0 and

∞∑
n=1

|�ka(n)| nk < ∞.

The space τ k(nk) is a Banach algebra with respect to the convolution product
of sequences, subalgebra of τ 0(n0) ≡ �1(N0), and the norm

‖a‖ := |a(0)| +
∞∑
n=1

|�ka(n)| nk, a ∈ τ k(nk).

The character space of τ k(nk) is (topologically) isomorphic to the closed unit
D, and the Gelfand transform of each a ∈ τ k(nk) coincides with the Fourier-
Taylor series of a. Moreover, the Banach algebras τ k(nk) and H

(k),+
1 (T) are

isomorphic via that Taylor series mapping. The above facts are proven in
Sections 4 and 5 below.

The algebra τ k(nk) seems to be of interest in its own. There are spaces of
sequences of higher (fractional) bounded variation, defined in terms of higher
fractional difference operators, which have been considered in the context of
Fourier multiplier theory, see [9] (although our space τ k(nk) admits a direct
extension, for any positive real number k, defined in terms of fractional dif-
ference powers, we are not going further in this direction here). In this way
the convolution structure is incorporated to that framework. In a forthcoming
paper we will find out the possible links between closed ideals of τ k(nk) and
those of T

(k)
+ (tk) (for k = 0, see [11]).
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It turns out that we can get information about closed ideals in the algebras
B = �(k)(D),H

(k),+
1 (T) by application of the same method in both cases. It

consists of taking a suitable multiplication operatorM: B → M(B) such that
M(B) is an easily identifiable closed ideal of a convenient Banach algebra A

on the unit disc, and B becomes Banach A -module isomorphic to M(B).
For B = �(k)(D) we take M as the multiplication by (1 + z)k(1 − z)k , so

that A is the Korenblyum algebra. Then we can derive that all closed ideals
of �(k)(D) are standard (Theorem 3.2) from the fact that every closed ideal in
A = Ak(D) is standard [13]. See Section 1 below.

For B = H
(k),+

1 (T) the multiplication operator is realized byM ≡ (1−z)k .
Then the algebra A is a weighted version, A = A+

k (T), of the analytic Wiener
algebra, whence we obtain that any closed ideal in H

(k),+
1 (T) having countable

hull is standard, this time because all such ideals in A+
k (T) are standard, see

[2] and Section 1 below.
The organization of the paper is as follows. Firstly, Section 1 is about

preliminaries, where we expose some material concerning Korenblyum and
analytic Wiener algebras, and their ideals. Then Section 2 is devoted to pre-
paratory results on a certain auxiliary Banach algebra, denoted by H (k)

w (D),
which will be subsequently applied in Section 3 to establish the main result on
the closed ideals of the Banach algebras �(k)(D) and �(k)(C+), Theorem 3.2
and Corollary 3.3. In Section 4, we introduce the Banach space τ k(nk), give its
basic properties, and prove that it is a Banach algebra for the convolution, The-
orem 4.5. Then Section 5 contains the characterization of the range of τ k(nk)
as H

(k),+
1 (T), through the Fourier-Taylor series map (Theorem 5.4). The proof

relies upon the invertibility of a certain matrix, Lemma 5.2. Finally, in Sec-
tion 6 we apply the aforementioned general method, involving a (multiplication
operator) module isomorphism, to show that the closed ideals with countable
hull in τ k(nk) � H

(k),+
1 (T) are standard, Theorem 6.1 and Theorem 6.2.

At this point, an attentive reader will have already noticed that by a Banach
algebra we mean here any Banach space which, in addition, is endowed with a
jointly continuous multiplication (so the submultiplicative norm constant need
not be 1). Throughout the paper we will make use of the constant convention:
the same letter, say C, is used for possibly different constants even in the same
argument.

1. Preliminaries: Standard ideals in the Korenblyum and Wiener
algebras

Let H∞(D) be the Hardy space of bounded analytic functions on D. As is
well known, for every function f ∈ H∞(D) there exists the limit f (eiθ ) :=
limr→1− f (reiθ ) for almost all θ ∈ [−π, π) ≡ T := {z ∈ C : |z| = 1}.
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Recall that a function ψ in H∞(D) is inner if ‖ψ‖∞ ≤ 1 and |ψ(eiθ )| = 1
a. e. on [−π, π). For an arbitrary family � of inner functions there exists a
unique inner function Q which divides f in the sense that f/Q belongs to
H∞(D) for every f ∈ �, and such that every inner function which divides
each element of � also divides Q. The function Q is called the greatest inner
common divisor (g.c.d., for short) of the family �; see [12, p. 85] An analytic
function φ ∈ is called outer if it satisfies

φ(z) = c exp

(
1

2π

∫ 2π

0

eiθ + z

eiθ − z
logφ(eiθ )dθ

)
, z ∈ D,

where c is a constant of absolute value 1 and the function φ is measurable on T
with logφ integrable. Every element g ofH∞ factorizes into g = gigo, where
gi is inner and go is outer.

We next recall how the above notions go into the ideal theory of the Koren-
blyum algebra. LetA(D) be the disc algebra, formed by the analytic functions
on D which admit continuous extension to all of D, endowed with the sup-
norm ‖·‖∞. More generally, we denote by Ak(D) the Korenblyum algebra of
functions f on D such that f (n) ∈ A(D) for every 0 ≤ n ≤ k. In this case the
algebra norm is given by

‖f ‖ =
k∑
n=0

‖f (n)‖∞.

For g ∈ Ak(D), n = 0, 1, . . . , k, and an arbitrary ideal I inAk(D)we define

Ek(g) = { z ∈ T | g(z) = g′(z) = · · · = g(k)(z) = 0 }
and

En(I) =
⋂
g∈I
En(g).

Obviously, Ek(I) ⊆ Ek−1(I ) ⊆ · · · ⊆ E0(I ). Let us choose now an inner
function Q and an arbitrary collection of closed sets

E : Ek ⊆ Ek−1 ⊆ E1 ⊆ · · · ⊆ E0 ⊆ T.

Define

J (Q; E ) = { g ∈ Ak(D) : Q divides gi, En ⊂ En(g), 0 ≤ n ≤ k }.
Then J (Q; E ) is a standard closed ideal in Ak(D), possibly trivial. The fact
that the closed ideals of Ak(D) are all standard was proved by Korenblyum in
his classical paper [13].
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Theorem 1.1 ([13]). For every closed ideal I ⊆ Ak(D) there exists an
inner function QI such that

I = J (QI ;E0(I ), E1(I ) . . . Ek(I )).

The above theorem tells us that every closed ideal in Ak(D) is completely
determined by the collection of the common zeros of its elements and derivat-
ives and by the inner function QI obtained as the g. c. d. of I . As a corollary
of the theorem we obtain that an ideal I in Ak(D) is dense if and only if the
set of common zeros is empty and QI = 1. Hence, a function f generates a
dense principal ideal in Ak(D) if and only if f is outer without zeros.

The standard ideals are defined in the same way as above for the analytic
Wiener algebra A+(T), which, we recall, is formed by the functions in A(D)
whose Fourier-Taylor coefficient series are in �1. More generally, we denote
by A+

k (T) the subalgebra of those functions f in A+(T) such that
∞∑
n=0

|f̂ (n)|(1 + nk) < ∞.

With pointwise operations and the norm defined by the above series, A+
k (T) is

a Banach algebra. As a matter of fact, f ∈ A+
k (T) if and only if f (j) ∈ A+(T)

for every j = 0, 1, . . . , k, and the norm previously indicated is equivalent to∑∞
j=0 ‖f (j)‖A+(T).
Not every closed ideal in A+

k (T) is standard, see [3] for k = 0, but we have
the following partial result in the positive direction.

Theorem 1.2 ([2, Theorem 3.1]). If I is a closed ideal of A+
k (T) with

countable hull then I is standard, that is, there exists an inner function QI

such that
I = J (QI ;E0(I ), . . . , Ek(I )).

2. Banach algebras module-isomorphic to primary ideals in the
Korenblyum algebra

Fix w ∈ T. The following simple lemma gives us the key tool for the sec-
tion. It may be well known, but we include a sketch of proof for the sake of
completeness.

Lemma 2.1. Let ϕ ∈ H∞(D) be such that ϕ(j) extends continuously to V ∩T
for each j = 0, 1, . . . , k, where V = D ∩ B for some disc B centered at w.
Let n ≤ k and suppose that ϕ(w) = ϕ′(w) = · · · = ϕ(n−1)(w) = 0. Then

lim
z→w

ϕ(j)(z)

(w − z)n−j
= (−1)n−j

(n− j)!
ϕ(n)(w).

for all j = 0, 1, . . . , n− 1.
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Proof. Since for every j = 0, 1, . . . , n−1 we have that ϕ(n) = (ϕ(j))(n−j),
it is clearly enough to show the formula for j = 0.

Take m such that 1 ≤ m ≤ n. Since ϕ(m) is continuous and ϕ(m−1)(w) = 0
we have, integrating by parts,

ϕ(z) =
∫

[w,z]

(z− λ)n−1

(n− 1)!
ϕ(n)(λ) dλ (z ∈ V \ {w}).

Hence ∣∣∣∣ ϕ(z)

(w − z)n
− (−1)n

n!
ϕ(n)(w)

∣∣∣∣
≤ 1

|w − z|n
∣∣∣∣
∫

[w,z]
(z− λ)n−1[ϕ(n)(λ)− ϕ(n)(w)] dλ

∣∣∣∣
≤ max

λ∈[w,z]
|ϕ(n)(λ)− ϕ(n)(w)| → 0, as z → w,

as was required.

Fix a natural number k. We define H (k)
w (D) as the space of holomorphic

functions f on the unit disc D such that (w − z)nf (n) ∈ A(D) for 0 ≤ n ≤ k,
and

lim
w→z

(w − z)nf (n)(z) = 0 for 1 ≤ n ≤ k.

Equipped with the norm ‖f ‖ = ∑k
n=0 ‖(w − z)nf (n)‖A(D), the Leibniz

rule applies to show that the space H (k)
w (D) is a unital commutative Banach

algebra which contains continuously Ak(D) as a subalgebra. In fact, H (k)
w (D)

is a Banach Ak(D)-module.
Let us also define the space I (k−1)

w (D) by

I (k−1)
w (D) := { g ∈ Ak(D) | g(j)(w) = 0 (j = 0, 1 . . . , k − 1) }.

Clearly, I (k−1)
w (D) is the standard closed ideal J (1; {w}, . . . , {w},∅) of the

Korenblyum algebra Ak(D), so it is in particular a Banach Ak(D)-module.

Proposition 2.2. The multiplication operator

�: f �→ (w − z)kf, H (k)
w (D) → A(D)

defines a Banach module isomorphism between the Banach Ak(D)-modules
H (k)
w (D) and I (k−1)

w (D).
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Proof. Let f be holomorphic in D such that (1 − zn)f (n) ∈ A(D) for
0 ≤ n ≤ k (in particular this is satisfied by functions in H (k)

w (D)). By the
Leibniz formula

(3) ((w−z)kf )(n)(z) =
n∑
j=0

(−1)j
(
n

j

)(
k

j

)
(w−z)k−n(w−z)n−j f (n−j)(z),

where each term is clearly null at z = w if n < k, and if j < k when n = k.
It follows that there exists the limit limz→w((w − z)kf )(k)(z) = f (w) and so
ϕ := (w − z)kf belongs to I (k−1)

w (D). The continuity of � also follows by
the above formula.

We are going to show that � is surjective. Thus take ϕ ∈ I (k−1)
w (D) and

define f (z) := ϕ(z)(w−z)−k for z ∈ D\{w}. Obviously, each derivative f (n)

extends continuously to D\{w} for every n = 0, 1, . . . , k. Moreover, it follows
directly from Lemma 2.1 applied to the case n = k that the function f extends
continuously to z = w as well. To show the extension of the derivatives of f
we introduce the auxiliary function

φ(z) = ϕ(z)+ (−1)k−1

k!
ϕ(k)(w)(w − z)k, z ∈ D.

It satisfies that φ(w) = φ′(w) = · · · = φ(k)(w) = 0, while f − (w − z)−kφ
is a constant function. Hence, for 1 ≤ n ≤ k, we obtain

(w − z)nf (n)(z) = (w − z)n
(
φ(z)(w − z)−k

)(n)
(z)

=
n∑
j=0

(
n

j

)
k!

(n− j)!
φ(j)(z)(w − z)−(k−j),

so that limz→w(w − z)nf (n)(z) = 0 by Lemma 2.1; that is, f ∈ H (k)
w (D) and

we have that the operator � is bijective. Since � is also continuous it is a
Banach space isomorphism.

Proposition 2.2 contains implicitly the following result.

Corollary 2.3. Let f be holomorphic in D such that (w−z)nf (n) ∈ A(D)
for n = 0, 1, . . . , k. Then

lim
z→w

(w − z)nf (n)(z) = 0 for n = 1, . . . , k.

Proof. As at the beginning of the proof of Proposition 2.2, the function
ϕ := (w − z)kf belongs to I (k−1)

w (D). Now, by the same proposition, f =
�−1(ϕ) ∈ H (k)

w (D).
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Remark 2.4. The above corollary is somehow interesting. It says that, in
the definition of the Banach algebra H (k)

w (D), the only necessary assumption
is (w − z)nf (n) ∈ A(D) for 0 ≤ n ≤ k, since this implies automatically that
(w − z)nf (n) vanishes at w for n = 1, . . . , k. Such an implication is clear
when f is analytic at w because of the local factorization principle.

Proposition 2.2 also implies that there is a bijective correspondence between
the closed ideals of the algebra H (k)

w (D) and the closed ideals in Ak(D) con-
tained in the ideal I (k−1)

w (D). In particular the standard ideals contained in
I (k−1)
w (D) are of the form I = J (Q,E0, . . . , Ek−1, Ek), where w ∈ Ek−1.

Thus we have the following.

Theorem 2.5. If I is a closed ideal in H (k)
w (D) then (w − z)kI is a closed

ideal in Ak(D). Conversely, if J ⊂ I (k−1)
w (D) is a closed ideal in Ak(D) then

the closed ideal I generated in H (k)
w (D) by J satisfies (w − z)kI = J .

In particular all closed ideals in H (k)
w (D) are standard, that is, they are of

the form J (Q; �0, . . . ,�k) where �0 is a closed subset of T, �n is a relatively
closed subset of T \ {w} for 1 ≤ n ≤ k, and �k ⊆ · · · ⊆ �0.

Proof. By Proposition 2.2 we know that for every closed ideal I ⊆ H (k)
w (D)

the set (w−z)kI belongs to I (k−1)
w (D) and is a closed ideal ofAk(D). Therefore

it remains to prove that every closed subideal of I (k−1)
w (D) can be represented in

this form. If J is such an ideal then it is of the form J = J (Q;E0, E1, . . . , Ek)

where w ∈ Ek−1. Denote by I the closed ideal generated in the algebra
H (k)
w (D) by J . All elements of I have the inner factor divisible by Q, hence

this function is the greatest inner common divisor for elements of I as well.
The elements of H (k)

w (D) are holomorphic functions of class C(k) on T \ {w}.
For every n = 0, 1, . . . , k and z0 ∈ T \ {w} the condition ϕ(j)(z0) = 0
(0 ≤ j ≤ n) is satisfied for all ϕ = ψ ∈ J if and only if it is satisfied for
all ϕ = f ∈ I . The set J̃ = (w − z)kI is a closed ideal of Ak(D) with the
same data Q,E0, E1, . . . , Ek as J , so J̃ = J . Moreover, the above argument
tells us that I = J (Q; �0, . . . ,�k) if we take �0 = E0 and �n = En \ {w}
(1 ≤ n ≤ k).

Theorem 2.5 allows us to determine also the dense ideals of the algebra
H (k)
w (D).

Corollary 2.6. An ideal I is dense in H (k)
w (D) if and only if the elements of

I have no common zero in D and there is no non-trivial common inner divisor
of the elements of I .

Proof. An ideal I is dense in H (k)
w (D) if and only if (w − z)kI is dense in

I (k)
w (D). This holds if and only if (w − z)kI has no non-trivial common inner
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divisor and the unique common zero of elements of (w − z)kI is the point w.
Then the elements of I have no common zero.

Denote by A (k)
w (D) the maximal ideal of H (k)

w (D) consisting of functions
which vanish at w. Note that every ideal of the algebra A (k)

w (D) is at the same
time an ideal of the algebra H (k)

w (D). As another application of Lemma 2.1
and Theorem 2.5 we obtain a characterization of the closed ideals of A (k)

w (D).
Details of the proof are left to the reader.

Corollary 2.7. If J = J (Q,E0, . . . , Ek) is a standard ideal in Ak(D)
such that w ∈ Ek then the closed ideal generated in A (k)

w (D) by J is equal to
(w − z)−kJ .

Conversely, all closed ideals I in A (k)
w (D) are of this form; in particular

I = J (Q; �0, . . . ,�k) where �n is a relatively closed subset of T \ {w} for
1 ≤ n ≤ k, �0 is a closed subset of T with w ∈ �0, and �k ⊆ · · · ⊆ �0.

Theorem 2.5 and Corollary 2.7 will be used together in the next section to
get the characterization of closed ideals in �(n)(D).

3. Closed ideals in Korenblyum-like algebras

We show in this section that the closed ideals of the Banach algebra �(k)(D)
are standard. Recall the definition of �(k)(D):

For a nonnegative integer k, the Banach algebra �(k)(D) is formed by those
functions f in the disc algebra A(D) such that f (1) = 0,

(1 − z2)nf (n) ∈ A(D) and lim
z→±1

(1 − z2)nf (n)(z) = 0 (1 ≤ n ≤ k),

and is endowed with the norm given by

‖f ‖ :=
k∑
n=0

‖(1 − z2)nf (n)‖∞, f ∈ �(k)(D),

and the pointwise operations. Notice that the elements of �(k)(D) behave as
functions of H

(k)
−1 (D) in a neighbourhood of −1 and as functions of A

(k)
1 (D)

close to the point 1. Moreover, A
(k)
1 (D) is a subalgebra of �(k)(D).

Every ideal I in �(k)(D) is invariant under the multiplication by elements of
H

(k)
−1 (D) since for each f ∈ H

(k)
−1 (D) the function f −f (1) belongs to �(k)(D)

and, for arbitrary g ∈ I ,

fg = (f − f (1))g + f (1)g ∈ I.
In particular the closed ideals of �(k)(D) are Banach Ak(D)-modules and
Banach A

(k)
1 (D)-modules.
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Next, we characterize the closed ideals of �(k)(D). The proof relies upon
the existence of a Banach Ak(D)-module isomorphism of the algebra with a
certain ideal of Ak(D), and the Korenblyum’s description of closed ideals of
Ak(D). The isomorphism is the content of the following result.

Theorem 3.1. For �(k)(D) as above we have:

(a) The multiplication operator

�: f �→ (1 + z)k(1 − z)kf, �(k)(D) → Ak(D)

is a BanachAk(D)-module isomorphism from �(k)(D) onto the standard
closed ideal J (k)(D) := J (1; {−1, 1}, . . . , {−1, 1}, {1}) of Ak(D).

(b) The map � determines a one-to-one correspondence between closed
ideals of �(k)(D) and the ideals ofAk(D) of the form J (Q;E0, . . . , Ek−1,

Ek) ⊆ Ak(D) such that −1 ∈ Ek−1 and 1 ∈ Ek .
Proof. The Leibniz rule for derivatives implies that the space

(1 − z)k�(k)(D) is contained in H
(k)
−1 (D). By applying Lemma 2.1 we then

have that

(1 − z)k�(k)(D) = {ϕ ∈ H
(k)
−1 (D) | ϕ(1) = ϕ′(1) = · · · = ϕ(k)(1) = 0 }.

The latter space is the ideal J (1; {1}, . . . , {1}) in H
(k)
−1 (D) and multiplication by

(1+z)k maps this ideal onto the standard ideal J (k)(D) ofAk(D), according to
Theorem 2.5. Since� is continuous and bijective from �(k)(D) onto the closed
ideal J (k)(D), it is a Banach isomorphism by the open mapping theorem. Then
� transforms closed ideals I ⊆ �(k)(D) onto closed ideals ofAk(D) contained
in the standard ideal J (k)(D).

Conversely, if J ⊆ J (k)(D) is a closed ideal in Ak(D) then by Theorem 2.5
J generates in H

(k)
−1 (D) an ideal J1 whose elements satisfy f (1) = f ′(1) =

· · · = f (k)(1) = 0 and such that (1 + z)kJ1 = J . By Lemma 2.1, taking
I = (1 − z)−kJ1 we obtain an ideal in �(k)(D) that satisfies �(I) = J .

To obtain a more explicit description of the closed ideals in �(k)(D)we refer
to the definiton of zero-sets of order k as it was given in the Introduction. So,
for g ∈ �(k)(D) and an arbitrary closed ideal I of �(k)(D), put

�n(g) := { z ∈ T \ {−1, 1} : g(j)(z) = 0 (0 ≤ j ≤ n) } if 1 ≤ n ≤ k,

�0(g) := { z ∈ T \ {1} : g(z) = 0 }, and

�n(I ) :=
⋂
g∈I

�n(g).
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Theorem 3.2. For every closed ideal I ⊆ �(k)(D) there exist an inner
function QI and a descending collection �0 ⊇ �1 ⊇ · · · ⊇ �k of subsets of
T, where �0 is a relatively closed subset of T \ {1} and �n, for 1 ≤ n ≤ k, is a
relatively closed subset of T \ {−1, 1}, such that

I = { g ∈ �(k)(D) | QI divides gi and �n ⊆ �n(g), 0 ≤ n ≤ k }.

Proof. Let I be a closed ideal in �(k)(D). By Theorem 3.1,

J := (1 + z)k(1 − z)kI = J (Q;E0(J ), E1(J ), . . . , Ek(J )),

for some inner functionQ, where 1 ∈ Ek(J ), −1 ∈ Ek−1(J ). PutEn = En(J )

and �n := En \ {−1, 1} for 0 ≤ n ≤ k.
Note that (1 + z)k(1 − z)k is an outer function. Thus for any function g in

�(k)(D) we have that

g ∈ I ⇔ ϕ := (1 + z)k(1 − z)kg ∈ J
⇔ Q divides ϕi and En(ϕ) ⊇ En (0 ≤ n ≤ k)

⇔ Q divides gi and �n(g) ⊇ �n (0 ≤ n ≤ k),

as we wanted to show.

The above result tells us that �(k)(D) is another example of a (non-unital)
Banach algebra on the unit disc with all closed ideals of standard form, see
[2].

Next we translate the previous results to the setting of the right-hand half-
plane, which was one of our initial motivation to write this paper.

The Möbius map τ : λ → (λ−1)(λ+1)−1 transforms C+ onto the disc D and
C+ ∪ {∞} onto D. The superposition with τ converts function algebras on the
disc into function algebras on the half-plane. For a given space of functions
F (D) we denote by F (C+) the space of functions f ◦ τ , f ∈ F (D). In
particular, let define �(k)(C+) := �(k)(D) ◦ τ and J (k)(C+) := J (k)(D) ◦ τ .
Note that, via composition with τ , the functions 1 + z and 1 − z on the disc
correspond to the functions 2λ(λ + 1)−1 and 2(λ + 1)−1 on C+ respectively.
Then, it is straightforward to give an internal description of the functions which
belong to �(k)(C+): The Banach algebra �(k)(C+) consists of all holomorphic
functions F : C+ → C such that λnF (n) extends continuously to iR for 0 ≤ n ≤
k, and

lim
λ→0

λnF (n)(λ) = 0 (1 ≤ n ≤ k) and lim
λ→∞ λ

nF (n)(λ) = 0 (0 ≤ n ≤ k).
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The norm in �(k)(C+) is given by ‖F‖ = ∑k
n=0 supλ∈C+ |λ|n|F (n)(λ)|, (F ∈

�(k)(C+)), and, as a straightforward calculation shows, the mapping f �→
F = f ◦ τ, �(k)(D) → �(k)(C+) is a Banach algebra isomorphism.

Recall that a holomorphic function F on C+ is called inner (resp. outer)
if F ◦ τ is inner (resp. outer) in D, see [12]. The subsets En(F ) ⊆ iR, for
F ∈ �(k)(C+), in the following statement are defined in a similar manner to
the subsets �n(g) ⊆ T, for g ∈ �(k)(D).

Corollary 3.3. For every ideal I ⊆ �(k)(C+) there exists an inner function
GI and a descending collection E0 ⊇ E1 ⊇ · · · ⊇ Ek of subsets of iR, where E0

is closed in iR and En, for 1 ≤ n ≤ k, is a relatively closed subset of iR \ {0},
such that

I = {F ∈ �(k)(C+) | GI divides the inner
factor of F, En ⊆ En(F ), 0 ≤ n ≤ k }.

From here we can give descriptions of the dense ideals in �(k)(C+).

Corollary 3.4. An ideal I ⊂ �(k)(C+) is dense if and only if the elements
of I have no common zero in C+ and the only common inner divisor of the
elements of I is the function 1. A function F ∈ �(k)(C+) generates the algebra
if and only if F is outer and never vanishes.

The preceding corollary can alternatively be derived from [7, Theorem 3.1].

Corollary 3.5. An ideal I ⊂ �(k)(C+) is dense if and only if the elements
of I have no common zero in C+ and for every a > 0 the space eazI contains
unbounded functions.

Proof. Suppose that I is a dense ideal in �(k)(C+). Obviously Z (I ) = ∅,
where Z (I ) := {λ ∈ C+ : f (λ) = 0 for all f ∈ I }. Suppose that for some
a > 0 the space eazI is formed exclusively by bounded functions. Every
element F of I is of the form F = e−azf where f is analytic and bounded in
C+.

Now, notice that, if Fn = e−azfn → G in �(k)(C+) then the sequence (Fn)
converges uniformly on C

+
in particular, so it is a Cauchy sequence uniformly

on C
+

. Thus we have

0 = lim
m,n→∞

sup
x∈R

|e−iaxfn(ix)− e−iaxfm(ix)| = lim
m,n→∞

sup
x∈R

|fn(ix)− fm(ix)|.

Since fn−fm is bounded on C
+

, a version of the maximum modulus principle
in C

+
(for instance, the Phragmen-Lindelöff theorem for sectors) applies to

obtain that (fn) is a Cauchy sequence uniformly on C
+

. Hence (fn) converges
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uniformly on C+ to a bounded and analytic function, say g. Obviously, g =
eazG(z), so that eazG(z) is bounded . Then by the density of I we obtain that
eaz�(k)(C+) is formed exclusively by bounded functions, which is clearly false
(take G(z) = (1 + z)−1).

Conversely, if for an ideal I in �(k)(C+) the set Z (I ) is empty and the ideal
is not dense then the inner parts of the elements of I have a common inner
divisorQ. The inner functionQ is nowhere vanishing, so it is of the form e−az
for some a > 0, see [12]. Every element of I is then of the form e−azQ1f ,
where Q1 is an inner function and Q1f is bounded. Hence eazI consists of
bounded functions. The proof follows.

4. Sequences of higher order bounded variation and convolution

In this section we introduce a discrete version of the algebras T n+(tn) referred
to in the Introduction. Let (a(n))∞n=0 be a complex sequence. Throughout the
section we shall consider the so-called difference operators �k defined on
(a(n))∞n=0 by

(�0 a)(n) := a(n), (� a)(n) := a(n)− a(n+ 1)

and
�1 = �, �k+1 := �1 ◦�k = �k ◦�1

for every non-negative integers n and k. As a matter of fact �k is explicitly
given by

�ka(n) =
k∑

j=0

(−1)j
(
k

j

)
a(n+ j).

The operator � is invertible on the space of sequences with finite support c00,
with inverse

�−1a(n) =
∞∑
j=n

aj , a ∈ c00.

An expression for the inverse �−k of �k will be given later.
We begin with a reproducing formula involving higher differences.

Lemma 4.1. Let a(n) be a sequence of complex numbers with limn a(n) = 0.
Then

(4)
∞∑
n=1

|�ja(n)| nj ≤
∞∑
n=1

|�j+1a(n)| nj+1, for every j ≥ 0.
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If, moreover,

∞∑
n=1

|�ka(n)|nk < ∞ for some k ≥ 1,

then

(5) a(n) =
∞∑
m=n


(m− n+ k)


(m− n+ 1)
(k)
�ka(m), for every n ≥ 0.

Proof. To show (4), notice that for every j, n ≥ 0 we have

�ja(n) =
∞∑
m=n

(�j+1a)(m)

since �j+1a(N) tends to 0 as N → ∞. Hence,

∞∑
n=1

|�ja(n)|nj ≤
∞∑
n=1

∞∑
m=n

|�j+1a(m)|nj =
∞∑
m=1

( m∑
n=1

nj
)

|�j+1a(m)|

≤
∞∑
n=1

|�j+1a(m)|mj+1

since
∑m

n=1 n
j ≤ mj

(∑m
n=1 1

) = mj+1.
Next, we prove (5). First notice that, by induction on N , it is readily seen

that

(6)
N∑
j=0


(j + k)


(j + 1)
(k)
= 
(N + k + 1)


(N + 1)
(k + 1)
(N ≥ 0; k ≥ 1).

Now we proceed by induction on k. Take n a nonnegative integer. As before
(for j = 0, 1),

a(n) =
∞∑
m=n

(�a)(m) =
∞∑
m=n

∞∑
p=m

(�2a)(p),

so

a(n) =
∞∑
p=n

( p∑
m=n

1

)
(�2a)(p) =

∞∑
p=n

(p − n+ 1)(�2a)(p).
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Let assume that (5) holds for fixed j with 0 ≤ j < k. Then

a(n) =
∞∑
m=n


(m− n+ j)


(m− n+ 1)
(j)
�ja(m)

=
∞∑
m=n


(m− n+ j)


(m− n+ 1)
(j)

∞∑
p=m

�j+1a(p)

=
∞∑
p=n

( p∑
m=n


(m− n+ j)


(m− n+ 1)
(j)

)
�j+1a(p)

=
∞∑
p=n


(p − n+ j + 1)


(p − n+ 1)
(j + 1)
,

where (6) has been used in the last equality (note that the exchange of sum-
mation order in the above calculation is justified by (4) and the finiteness
assumption of the statement). The induction process has been completed.

The above result suggests introducing an operator, say�−k , in the following
way.

For each sequence (b(n))∞n=0 such that
∑∞

n=1 |b(n)|nk < ∞, put

(�−kb)(n) :=
∞∑
m=n


(m− n+ k)


(m− n+ 1)
(k)
b(m), (m ≥ 0),

Clearly, �−k ◦ �k = Id = �k ◦ �−k (for the second equality note that
�◦� = Id), where we are assuming tacitly that both operators act on suitable
sequences and Id is the corresponding identity operator.

Definition 4.2. Let τ k(nk) denote the vector space of complex sequences
a(n) such that limn→∞ a(n) = 0 and

∑∞
n=1 |�ka(n)|nk < ∞.

Then τ k(nk) is a normed space with respect to the norm

‖a‖τ k := |a(0)| +
∞∑
n=1

|�ka(n)|nk.

Since 
(n + k + 1)
(n + 1)−1 ∼ Ckn
k , as n → ∞ (for fixed k), the norm

‖a‖τ k can be equivalently expressed by

‖a‖τ k ∼
∞∑
n=0


(n+ k + 1)


(n+ 1)
|�ka(n)|.
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We shall use this fact freely in the sequel.
By Lemma 4.1 and the remark prior to the above definition, the operators

�k: τ k(nk) → l1((1 + n)k) and �−k: l1((1 + n)k) → τ k(nk) are inverse one
of each other (continuous) mappings. In particular τ k(nk) is a Banach space.

From the estimate given in (4) one obtains the continuous inclusions

τ k+1(nk+1) ⊆ τ k(nk) ⊆ · · · ⊆ τ 1(n) ⊆ τ 0(1) = l1 for all k ≥ 1.

Also, the space c00 of sequences with finite support is dense in τ k(nk) since
�k(c00) = c00 = �−k(c00). So the sequences δn, n ∈ N0 := N ∪ {0}, defined
by δn(m) = 1, ifm = n, δn(m) = 0, ifm �= n, generate the space τ k(nk). The
norm of each δn in τ k(nk) is

‖δn‖τ k =
n∑

m=n−k

(
k

n−m

)
mk =

k∑
j=0

(
k

j

)
(n− j)k ∼ Ckn

k,

for n ≥ 1, and ‖δ0‖τ k = 1.

Remark 4.3. The following sequences are relevant in our setting. Form ≥
0, put


k−1
m :=

m∑
n=0


(m− n+ k)


(m− n+ 1)
(k)
δn ∈ τ k(nk).

The family (
k−1
m )m≥0 is to be considered in the present setting as a version,

on N0, of the Riesz means on (0,∞), see [7] for instance. Let us find the norm
of 
k−1

m for each m.
Note that, for every p ≥ 0,


k−1
m (p) = 
(m− p + k)


(m− p + 1)
(k)
if 0 ≤ p ≤ m,

whereas 
k−1
m (p) = 0, if p > m. From this,


k−1
m (p) =

∞∑
n=p


(n− p + k)


(n− p + 1)
(k)
δm(n) (p ≥ 0),

and therefore 
k−1
m = �−kδm or, equivalently, �k
k−1

m = δm, (m ≥ 0). Hence
‖
k−1

m ‖τ k = ∑∞
n=0 |δm(n)|nk ∼ Ckm

k .

The previous estimate is important because it enables us to express any
a ∈ τ k(nk), in the norm of τ k(nk), as

a =
∞∑
m=0

�ka(m)
k−1
m .
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In fact, for a given p ≥ 0, we have that 
k−1
m (p) = 0 if 0 < m ≤ p − 1, and


k−1
m (p) = [
(n− p + 1)
(k)]−1
(n− p + k) when m ≥ p. It follows that

a(p) =
∞∑
m=p


(m− p + k)


(m− p + 1)
(k)
�ka(m) =

∞∑
m=p

�ka(m)
k−1
m (p).

Finally, the last series converges in the norm of τ k(nk).
Next, in the second half of this section we prove that the Banach space τ k(nk)

is a Banach algebra for the convolution. This result relies on the following
formula.

Lemma 4.4. For every a, b ∈ τ k(nk), k ≥ 0 and n = 0, 1, . . .,


(k)�k(a ∗ b)(n) =
n∑

m=0

�kb(m)

n∑
p=n−m


(p − n+m+ k)


(p − n+m+ 1)
�ka(p)

−
∞∑

m=n+1

�kb(m)

∞∑
p=n+1


(p − n+m+ k)


(p − n+m+ 1)
�ka(p)(7)

=: h(n).

Proof. First of all note that

h(n) =
n∑

m=0

�kb(m)

∞∑
p=n−m


(p − n+m+ k)


(p − n+m+ 1)
�ka(p)

−
∞∑
m=0

�kb(m)

∞∑
p=n+1


(p − n+m+ k)


(p − n+m+ 1)
�ka(p)

=
n∑

m=0

�kb(m)
(k)a(n−m)

−
∞∑
m=0

�kb(m)

∞∑
p=n+1


(p − n+m+ k)


(p − n+m+ 1)
�ka(p),

where in the last equality we have used (5). Thus

h(n) = 
(k)(�kb ∗ a)(n)
−

∞∑
m=0

�kb(m)

∞∑
q=0


(q +m+ 1 + k)


(q +m+ 2)
�ka(q + n+ 1).
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On the other hand,

�−k(�kb ∗ a)(n)

= 1


(k)

∞∑
m=n


(m− n+ k)


(m− n+ 1)
(�kb ∗ a)(m)

= 1


(k)

∞∑
m=n


(m− n+ k)


(m− n+ 1)

m∑
p=0

�kb(m− p)a(p)

= 1


(k)

n∑
p=0

∞∑
m=n


(m− n+ k)


(m− n+ 1)
�kb(m− p)a(p)

+ 1


(k)

∞∑
p=n+1

∞∑
m=p


(m− n+ k)


(m− n+ 1)
�kb(m− p)a(p)

= (b ∗ a)(n)+ 1


(k)

∞∑
p=n+1

∞∑
m=p


(m− n+ k)


(m− n+ 1)
�kb(m− p)a(p)

Now, let pay attention to the second term of the last member in the the above
set of equalities. By expressing a(p) using (5) and then rewriting indexes, we
obtain

�−k(�kb ∗ a)(n) = (b ∗ a)(n)

+ 1


(k)2

∞∑
q,r,s=0

�kb(r)

(r + q + k + 1)


(r + q + 2)
�ka(s + q + n+ 1)


(s + k)


(s + 1)

In summary, we have

�−kh(n)

= 
(k)(b ∗ a)(n)

+ 1


(k)2

∞∑
q,r,s=0

�kb(r)

(r + q + k + 1)


(r + q + 2)
�ka(s + q + n+ 1)


(s + k)


(s + 1)

−�−k
( ∞∑
m,q=0

�kb(m)

(q +m+ 1 + k)


(q +m+ 2)
�ka(q + (·)+ 1)

)
(n)
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Moreover,

�−k
( ∞∑
m,q=0

�kb(m)

(q +m+ 1 + k)


(q +m+ 2)
�ka(q + (·)+ 1)

)
(n)

= 1


(k)

∞∑
m,q=0


(q +m+ 1 + k)


(q +m+ 2)
�kb(m)

( ∞∑
r=0


(r + k)


(r + 1)
�ka(r + q + n+ 1)

)
.

In conclusion,�−kh = 
(k)(b ∗ a); that is, 
(k)�k(b ∗ a) = h as we wanted
to show.

Note that, in the calculations of the above proof, we do not need to check
the validity of exchanging the order of sums since it can be assumed that we
work with sequences in the space c00, which is dense in τ k(nk).

Theorem 4.5. The space τ k(nk) is a Banach algebra with respect to the
convolution product of sequences.

Proof. For n ≥ 0 letm,p such that either 0 ≤ m ≤ n and n−m ≤ p ≤ n,
or m,p > n. Put γ kn,m,p := 
(p − n+m+ 1)−1
(p − n+m+ k).

From (7) we obtain


(k)

∞∑
n=0

|�k(a ∗ b)(n)|nk

≤
( ∞∑
n=0

n∑
m=0

n∑
p=n−m

+
∞∑
n=0

∞∑
m=n+1

∞∑
p=n+1

)
γ kn,m,p|�kb(m)||�ka(p)|nk

=
( ∞∑
m,p=0

m+p∑
n=max{p,m}

+
∞∑

m,p=1

min{p,m}−1∑
n=0

)
γ kn,m,p|�kb(m)||�ka(p)|nk,

where, to obtain the equality, we have applied Fubini’s rule twice.
Since, moreover,

m+p∑
n=max{p,m}

γ kn,m,pn
k ≤ (p +m)k

m+p∑
n=m

γ kn,m,p ∼ Ckm
kpk

and min{p,m}−1∑
n=0

γ kn,m,pn
k ≤ min{p,m}k

m+p∑
n=0

γ kn,m,p ∼ Ckm
kpk,
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one gets

∞∑
n=0

|�k(a ∗ b)(n)|nk ≤ C

( ∞∑
n=0

|�ka(n)|nk
)( ∞∑

n=0

|�kb(n)|nk
)

for all a, b ∈ τ k(nk), which means that τ k(nk) is a Banach algebra.

5. The image of τk(nk) in the Wiener algebra

Since τ k(nk) is densely contained in l1 and this inclusion is also continuous,
each character of l1 gives rise to a character of τ k(nk) of the form

χz: a �→ χz(a) := â(z) =
∞∑
n=0

a(n)zn, τ k(nk) → C

where |z| ≤ 1. We are going to see that every character of τ k(nk) is like the
above one. Recall that the sequence 
k−1

m in τ k(nk) is defined as


k−1
m :=

m∑
n=0


(m− n+ k)


(m− n+ 1)
(k)
δn.

where the convergence is in the norm of τ k(nk).

Proposition 5.1. The set of characters, or equivalently the spectrum of
maximal ideals, of τ k(nk) is identified with D, and its Gelfand transform G is
given by

G : a �→ G(a) := â, τ k(nk) → A+(T),

where

â(z) =
∞∑
m=0

�ka(m)
̂k−1
m (z) =

∞∑
n=0

a(n)zn, |z| ≤ 1.

Proof. We only need to show that any character is of the form χz, for some
z with |z| ≤ 1. This is standard but not obvious. So, let χ be a character of
τ k(nk) and take z := χ(δ1). From the multiplicativity property, we have that
|χ(δn)| = |χ(δ1)

n| = |z|n for every n ∈ N0. On the other hand, |χ(δn)| ≤
C‖δn‖τ k ∼ nk . It follows that |z|n ≤ Cnk for all n ≥ 1, whence |z| ≤ 1.
Hence, for all m ≥ 0,

χ(
k−1
m ) =

m∑
n=0


(m− n+ k)


(m− n+ 1)
(k)
zn.
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Recall now that a = ∑∞
m=0 �

ka(m)
k−1
m in the norm of τ k(nk). Thus

χ(a) =
∞∑
m=0

�ka(m)

m∑
n=0


(m− n+ k)


(m− n+ 1)
(k)
zn

=
∞∑
n=0

∞∑
m=n


(m− n+ k)


(m− n+ 1)
(k)
�ka(m)zn =

∞∑
n=0

a(n)zn =: χz(a),

as we wanted to show.

Now we characterize the range of the Gelfand transform G : τ k(nk) →
A+(T).

Lemma 5.2. Let x0, x1, . . . , xk, y0, y1, . . . , yk ∈ C. Then

yp =
p∑

m=0

(
p

m

)
xm (p = 0, 1, . . . , k)

if and only if

xm =
m∑
p=0

(−1)m+p
(
m

p

)
yp (m = 0, 1, . . . , k)

Proof. Let (αpq), (βpq) be the lower triangular matrices defined by

βpq = (−1)p+qαpq and αpq =
{ (

p

q

)
, if p ≥ q;

0, if p < q.

Then the product matrix (γpq) := (αpq) · (βpq) turns out to be the identity
matrix: For p < q, γpq = 0 clearly; for p ≥ q ≥ 0,

γpq =
p−q∑
j=0

(
p

q + j

)
(−1)j

(
q + j

q

)
=

p−q∑
j=0

(−1)j
p!

j ! q! (p − q − j)!

=
(
p

q

) p−q∑
j=0

(−1)j
(
p − q

j

)
=

(
p

q

)
(1 − 1)p−q

=
{

1, if p = q;

0, if p > q.

Analogously, (βpq) · (αpq) = (−1)p+q(αpq), (βpq) is also the identity matrix.
This of course implies the statement.
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For a complex sequence a and n, p ≥ 0, put

bp(n) :=
(
n+ p

n

)
�pa(n).

For a natural number k and a ∈ τ k(nk) we know that
∑∞

n=0 |bp(n)| < ∞
provided p = 0, 1, . . . , k.

Proposition 5.3. Let k, a and bp be as above. Then

(8) b̂p(z) = 1

m!

p∑
m=0

(
p

m

)
(z− 1)mâ(m)(z), if |z| ≤ 1,

(p = 0, 1, . . . , k) and

(9)
1

m!
(z− 1)mâ(m)(z) =

m∑
p=0

(−1)p+m
(
m

p

)
b̂p(z), if |z| ≤ 1,

(m = 0, 1, . . . , k).

Proof. We begin with proving (8). For a in τ k(nk), z ∈ C such that |z| ≤ 1
and 0 ≤ p ≤ k,

b̂p(z) :=
∞∑
n=0

(
n+ p

n

)
�pa(n) zn

=
p∑
j=0

(−1)j
(
p

j

) ∞∑
n=0

(
n+ p

n

)
a(n+ j) zn

= 1

p!

p∑
j=0

(−1)j
(
p

j

)( ∞∑
n=0

a(n+ j) zn+p
)(p)

= 1

p!

p∑
j=0

(−1)j
(
p

j

)[
zp−j

∞∑
n=0

a(n+ j) zn+j
](p)

= 1

p!

p∑
j=0

(−1)j
(
p

j

) p∑
m=0

(
p

m

)
(zp−j )(p−m)

( ∞∑
n=0

a(n+ j) zn+j
)(m)

= 1

p!

p∑
j=0

(−1)j
(
p

j

) p∑
m=j

(
p

m

)
(p − j)!

(m− j)!
zm−j â(m)(z)
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=
p∑

m=0

1

m!

(
p

m

) m∑
j=0

(−1)j
(
m

j

)
zm−j â(m)(z)

= 1

m!

p∑
m=0

(
p

m

)
(z− 1)mâ(m)(z).

So we have proved (8). Moreover, (8) is exactly the first equality of Lemma 5.2
for yp := b̂p(z) and xm := (1/m!)(z− 1)mâ(m)(z). Hence (9) follows now by
Lemma 5.2.

The above proposition allows us to obtain the image of the Gelfand trans-
form of τ k(nk) almost immediately. Let H

(k),+
1 (T) denote the (pointwise mul-

tiplication) subalgebra of A(D) formed by those functions f such that

(10) (1 − z)mf (m)(z) ∈ A+(T) (m = 0, 1, . . . , k),

and provided with the algebra norm

(11) ‖f ‖ :=
k∑

m=0

‖(z− 1)mf (m)‖A+(T).

Note that the above condition implies that the value of each (1− z)mf (m) at
z = 1, for m = 1, . . . , k, is indeed 0, according to Corollary 2.3. In particular
we have that H

(k),+
1 (T) is a subalgebra of the algebra H

(k)
1 (D) introduced in

Section 2.

Theorem 5.4. The Gelfand transform is a topological isomorphism betwen
the Banach algebras τ k(nk) and H

(k),+
1 (T).

Proof. If a ∈ τ k(nk) then (9) implies that â ∈ H
(k),+

1 (T) and that the norm
of â is dominated by a constant times the norm of a in τ k(nk). Conversely,
given an element f in H

(k),+
1 (T), if we take a(n) := f̂ (n) for all n ≥ 0 (where

f̂ is the n-th Fourier coefficient of f ), then (8) entails that a ∈ τ k(nk) and
that the norm of a is dominated by the norm of f . This implies the required
isomorphism (and that H

(k),+
1 (T) is complete, in particular).

Remark 5.5. The preceding results provide us with another way to show
that τ k(nk) is a convolution Banach algebra. In fact, the multiplicative struc-
tures are not needed here in order to prove the underlined (topological) linear
isomorphism given in Theorem 5.4, for we can think of G just as the Taylor
series mapping associated with the sequences of τ k(nk). Since conditions (10)
and (11) yield by themselves, and automatically, a Banach algebra (that one
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denoted here by H
(k),+

1 (T)), and pointwise multiplication in H
(k),+

1 (T) corres-
ponds to convolution in τ k(nk), the linear version of Theorem 5.4 is enough to
imply that τ k(nk) is a Banach algebra. However, formula (7) or the introduction
of elements like 
k−1

m seem to be of interest in their own.

6. Standard ideals in Wiener-like algebras

In this section we show that closed ideals in τ k(nk) with countable hull Z(I)
are standard, by following a discussion similar to that one of Sections 2 and
3. The role that the Korenblyum algebra played in Section 2 is to be played
here by the weighted Wiener algebra A+

k (T) defined in Section 1. Recall that
F ∈ A+

k (T)means that
∑∞

n=0 |F̂ (n)|(1 + nk) < ∞, and that it is equivalent to
have F (j) ∈ A+(T) for every j = 0, . . . , k.

Put I
(k−1),+
1 (T) := {F ∈ A+

k (T) : F (j)(1) = 0, 0 ≤ j ≤ k − 1}. Clearly,
I
(k−1),+
1 (T) is contained in the ideal I

(k−1)
1 (D) defined in Section 2.

Theorem 6.1. For every non negative integer k, we have

(1 − z)kH
(k),+

1 (T) = I
(k−1),+
1 (T)

Proof. The fact that (1 − z)kf ∈ I
(k−1),+
1 (T) if f ∈ H

(k),+
1 (T) is an

obvious consequence of the Leibniz’ rule for derivatives.
Conversely, let F be a function of I

(k−1),+
1 (T). Take f (z) = F(z)(1− z)−k

for |z| < 1. Then f is holomorphic in D. We are going to show that f lies in
A+(T). Fix r with 0 < r < 1. Then, for each n,

f̂ (n) = 1

2πi

∫
|z|=r

f (z)

zn+1
dz = 1

2πi

∫
|z|=r

F (z)

(1 − z)kzn+1
dz

= 1

2πi

∫
|z|=r

F (z)

∞∑
m=0


(m+ k)


(m+ 1)
zm−n−1 dz

= 1

2πi

∫
|z|=r

F (z)

n∑
m=0


(m+ k)


(m+ 1)
zm−n−1 dz

=
n∑

m=0


(m+ k)


(m+ 1)
F̂ (n−m) =

n∑
m=0


(n−m+ k)


(n−m+ 1)
F̂ (m).

On the other hand, we have

F (j)(z) =
∞∑
m=j

F̂ (m) j !

(
m

j

)
zm, |z| ≤ 1,
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for every j = 0, 1, . . . , k−1. Hence 0 = F (j)(1) = j !
∑∞

m=j F̂ (m)
(
m

j

)
. From

this we readily obtain that

∞∑
m=0

F̂ (m)P (m) = 0

for every polynomial function P of degree strictly less than k. For every n,
take the polynomial Pn(x) = (n− x + k − 1) . . . (n− x + 1). Then

∞∑
n=0

|f̂ (n)| =
∞∑
n=0

∣∣∣∣
n∑

m=0


(n−m+ k)


(n−m+ 1)
F̂ (m)

∣∣∣∣
=

∞∑
n=0

∣∣∣∣
n∑

m=0

Pn(m)F̂ (m)

∣∣∣∣ =
∞∑
n=0

∣∣∣∣−
∞∑

m=n+1

Pn(m)F̂ (m)

∣∣∣∣
=

∞∑
n=0

∣∣∣∣(−1)k−1
∞∑

m=n+1


(m− n)


(m− n− k + 1)
F̂ (m)

∣∣∣∣
≤

∞∑
m=0

(m−1∑
n=0


(m− n)


(m− n− k + 1)

)
|F̂ (m)| < ∞

since
∑m−1

n=0

(m−n)


(m−n−k+1) � Ck(m+ 1)k .
In short, we have shown, for all nonnegative integer k, that

(12) if F ∈ I
k−1,+
1 (T) and f = (1 − z)−kF then f ∈ A+(T).

To conclude, we must prove that (1 − z)mf (m) ∈ A+(T) for 1 ≤ m ≤ k. So,
fix m such that 1 ≤ m ≤ k and set fm := (1 − z)mf (m). Then, for z ∈ T \ {1},

fm(z) =
m∑
j=0

(
m

j

)
(k + j − 1)!

(k − 1)!
(1 − z)−(k−m+j)F (m−j)

where F (m−j) ∈ I
(k−m+j−1,+)
1 for j = 0, . . . , m. From (12) we have that each

(1 − z)−(k−m+j)F (m−j) in the finite sum belongs to A+(T). This means that
fm ∈ A+(T), and so the proof is over.

The theorem enables us to perform the kind of argument given in Section 2
to conclude that the closed ideals of H

(k),+
1 (T) can be described in terms of the

closed ideals ofA+
k (T). In general the closed ideals ofA+

k (T) are far from being
completely understood, but we can determine them in some cases, see [2]. In
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the following result J (Q; �0, . . . ,�k) has the same meaning as in Theorem
2.5, only that now the elements of J (Q; �0, . . . ,�k) belong to H

(k),+
1 (T).

Theorem 6.2. Every closed ideal I of H
(k),+

1 (T) has the form

I = (z− 1)−kJ

for some closed ideal of A+
k (T) contained in I

(n−1),+
1 (T). Hence, if I has (at

most) countable hull then it is standard, that is, of the form

I = J (Q; �0, . . . ,�k).

Proof. The mapping f �→ (1− z)kf, H
(k),+

1 (T) → I
(k−1),+
1 (T) is clearly

continuous and injective, and is also surjective by Theorem 6.1. Thus it is a
Banach A+

k (T)-module isomorphism, so that J := (z− 1)kI is a closed ideal
of A+

k (T) contained in I
(k−1),+
1 (T). It follows that I = (z− 1)−kJ .

Now assume that the hull Z(I) is at most countable. Then Z(J ) is at most
countable as well, and therefore it is standard in accordance with Theorem 3.1
of [2]. It follows that I is standard as in the statement.
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