EXTENSIONS OF THE CLASSICAL CESÀRO OPERATOR ON HARDY SPACES

GUILLERMO P. CURBERA and WERNER J. RICKER*

Abstract

For each $1 \le p < \infty$, the classical Cesàro operator \mathscr{C} from the Hardy space H^p to itself has the property that there exist analytic functions $f \notin H^p$ with $\mathscr{C}(f) \in H^p$. This article deals with the identification and properties of the (Banach) space $[\mathscr{C}, H^p]$ consisting of *all* analytic functions that \mathscr{C} maps into H^p . It is shown that $[\mathscr{C}, H^p]$ contains classical Banach spaces of analytic functions *X*, genuinely bigger that H^p , such that \mathscr{C} has a continuous H^p -valued extension to *X*. An important feature is that $[\mathscr{C}, H^p]$ is the *largest* amongst all such spaces *X*.

1. Introduction

The classical Cesàro operator, given by

(1)
$$\mathscr{C}(f)(z) := \sum_{n=0}^{\infty} \left(\frac{1}{n+1} \sum_{k=0}^{n} a_k \right) z^n,$$

with $f(z) = \sum_{0}^{\infty} a_k z^k$ an analytic function on the open unit disc D, is bounded on the Hardy space H^p , for every 0 . For <math>1 , this followsfrom a result of Hardy concerning trigonometric series together with M. Riesz's $theorem. The boundedness on <math>H^1$ was proved by Siskakis, who also gave an alternative proof for 1 , [7], [8].

Observe that \mathscr{C} is injective, but not surjective on H^p (as 0 belongs to the spectrum of \mathscr{C} , [7]), that is, \mathscr{C} is not an isomorphism on H^p . However, \mathscr{C} is an isomorphism on the Fréchet space H(D) of all analytic functions on D. So, there exist analytic functions $f \notin H^p$ such that $\mathscr{C}(f) \in H^p$. Accordingly, the domain of $\mathscr{C}: H^p \to H^p$ is, in a certain natural sense, lacking in size. This raises the question of whether there exist *Banach* spaces of analytic functions, always meant over D (i.e., vector subspaces of H(D) which are complete for some norm), larger than H^p and which \mathscr{C} maps continuously into H^p ? If so, does there exist a "largest" such space and what properties would it have?

^{*} The authors acknowledge the support of the Maximilian Bickhoff-Universitätsstiftung (Eichstätt, Germany), D.G.I. #MTM2009-12740-C03-02 (Spain) and FQM 262 (Junta de Andalucía).

Received 25 September 2009.

The first observation is that such a space cannot be H^q , for any $q \in [1, p)$. Indeed, Aleman and Cima have considered operators T_g determined by an analytic symbol g via $T_g f(z) := \int_0^z f(\xi)g'(\xi) d\xi$. They have shown, for $1 < q < p < \infty$, that T_g maps H^q into H^p if and only if g is in the Lipschitz class Λ_α with $\alpha := (1/q) - (1/p)$, [1, Theorem 1(iii)]. Since this is not the case for $g(z) = -\log(1 - z)$, which corresponds to the Cesàro operator, it follows that \mathscr{C} (taking values in H^p) cannot be extended to any larger H^q space as its domain.

In Section 2 we characterize precisely when \mathscr{C} is bounded from a weighted Hardy space $H^{p}(w)$ into H^{p} , which allows us to exhibit a class of weights w, with certain growth conditions, for which $H^p \subseteq H^p(\omega)$ and such that $\mathscr{C}(H^p(w)) \subset H^p$. Such weights ω_1 and ω_2 exist for which $H^p(\omega_1)$ and $H^{p}(\omega_{2})$ are not comparable. In Section 3 we show that there actually does exist a largest Banach space of analytic functions (denoted by $[\mathscr{C}, H^p]$) to which \mathscr{C} has a continuous extension and maps into H^p . In particular, for the above mentioned weights ω we have that $H^p(\omega) \subseteq [\mathscr{C}, H^p]$. This containment is actually proper (as is $H^p \subset [\mathscr{C}, H^p]$). It is precisely this feature, i.e., that $[\mathscr{C}, H^p]$ contains classical Banach spaces of analytic functions which are genuinely larger than H^p , which makes the space $[\mathscr{C}, H^p]$ interesting. Just as interesting is the *optimality* of the space $[\mathscr{C}, H^p]$ relative to \mathscr{C} , in the sense that it is also the largest Banach space of analytic functions f on D for which the formula (1) produces an element of H^p and such that the extended Cesàro operator $\mathscr{C}: [\mathscr{C}, H^p] \to H^p$ is still continuous. Section 3 is also devoted to exposing certain Banach space properties of $[\mathscr{C}, H^p]$, to studying various properties of individual functions from $[\mathscr{C}, H^p]$, which can behave quite differently to those from H^p , and to identifying the space of all multipliers for $[\mathscr{C}, H^p]$.

2. Extensions of the Cesàro operator

A weight is any function ω on the unit circle T such that $\omega > 0$ a.e. and with $\log \omega$ integrable. Let ψ be an outer function corresponding to ω , that is, ψ is analytic on D and $|\psi| = \omega$ a.e. on T, [5, §2.4]. The weighted Hardy space $H^p(\omega)$ associated to ω is then the Banach space $\psi^{-1/p} \cdot H^p = \{f \in H(D) : \psi^{1/p} f \in H^p\}$ with norm $||f||_{p,\omega} := ||\psi^{1/p} f||_p$; see, for example, [6].

We state for further reference the following facts.

PROPOSITION 2.1. Let $1 \le p < \infty$ and ω be a weight with ψ an outer function corresponding to ω .

- (i) Given $\varphi \in H(D)$ the multiplication operator $M_{\varphi}(f) := \varphi \cdot f$ is well defined (and hence, continuous) from H^p to H^p if and only if $\varphi \in H^{\infty}$.
- (ii) $H^p \subseteq H^p(\omega)$ if and only if ψ is bounded.
- (iii) $H^p(\omega) \subseteq H^p$ if and only if ψ^{-1} is bounded.

PROOF. (i) If $\varphi f \in H^p$ for all $f \in H^p$, then a closed graph argument shows that M_{φ} is continuous. We may assume that $||M_{\varphi}|| = 1$. Since $\varphi = M_{\varphi}(1) \in$ H^p , it follows by iteration that $\{\varphi^n\}$ is contained in the closed unit ball of H^p . Accordingly, $\frac{1}{2\pi} \int_0^{2\pi} |\varphi(e^{i\theta})|^{np} d\theta \leq 1$ for all $n \in \mathbb{N}$. By splitting these integrals over the sets $|\varphi|^{-1}([0, 1])$ and $|\varphi|^{-1}((1, \infty))$ it follows that $|\varphi| \leq 1$ a.e.

(ii) $H^p \subseteq H^p(\omega)$ is equivalent to $f \mapsto \psi^{1/p} f$ being bounded on H^p which, by (i), is equivalent to $\psi^{1/p}$, and hence ψ , being bounded.

(iii) $f \in H^p(\omega)$ precisely when $f = \psi^{-1/p}g$ for some $g \in H^p$. Hence, $H^p(\omega) \subseteq H^p$ is equivalent to $g \mapsto \psi^{-1/p}g$ being bounded on H^p which, by (i), is equivalent to $\psi^{-1/p}$, hence also to ψ^{-1} , being bounded.

The following result characterizes those weights ω with the property that \mathscr{C} maps $H^p(\omega)$ continuously into H^p .

THEOREM 2.2. Let $1 \le p < \infty$ and ω be a weight with ψ an outer function corresponding to w. The following conditions are equivalent.

- (i) $\mathscr{C}: H^p(\omega) \to H^p$ continuously.
- (ii) The operator which sends $g \in H(D)$ to the function

$$z \longmapsto \int_0^z g(\xi) \frac{\psi^{-1/p}(\xi)}{1-\xi} d\xi, \qquad z \in \mathsf{D},$$

maps H^p into itself continuously.

(iii) The function

(2)
$$\rho_{\psi}: z \longmapsto \int_{0}^{z} \frac{\psi^{-1/p}(\xi)}{1-\xi} d\xi, \qquad z \in \mathsf{D}$$

belongs to the space BMOA.

PROOF. Let $f \in H^p(\omega)$. Then $f = \psi^{-1/p} \cdot g$, for some unique $g \in H^p$. We require the following well known integral expression for \mathscr{C} , namely, for each $h \in H(\mathsf{D})$,

(3)
$$\mathscr{C}(h)(z) = \frac{1}{z} \int_0^z \frac{h(\xi)}{1-\xi} d\xi, \qquad z \in \mathsf{D},$$

which yields

$$\mathscr{C}(f)(z) = \frac{1}{z} \int_0^z g(\xi) \frac{\psi^{-1/p}(\xi)}{1-\xi} d\xi.$$

Following [2], for analytic functions ρ and h on D, we consider

$$T_{\rho}(h)(z) := \frac{1}{z} \int_0^z h(\xi) \rho'(\xi) \, d\xi, \qquad z \in \mathsf{D}.$$

Then $\mathscr{C}(f) = T_{\rho_{\psi}}(g)$ with ρ_{ψ} given by (2). Consequently, \mathscr{C} maps $H^{p}(\omega)$ continuously into H^{p} if and only if $T_{\rho_{\psi}}$ maps H^{p} into itself continuously. Furthermore, [1, Theorem 1(ii)] asserts that this last condition is equivalent to $\rho_{\psi} \in BMOA$.

Theorem 2.2 makes no assertion concerning any (possible) relationship between $H^p(\omega)$ and H^p . However, combining it with Proposition 2.1 we can deduce, for appropriate ω , that the Cesàro operator has a *genuine* extension to a larger space $H^p(\omega)$ with values still in H^p .

COROLLARY 2.3. Let $1 \le p < \infty$ and ω be a weight with ψ an outer function corresponding to w. Suppose that

(i) ψ is bounded and ψ^{-1} is unbounded, and

(ii) the function $z \mapsto \int_0^z \frac{\psi^{-1/p}(\xi)}{1-\xi} d\xi$ belongs to BMOA.

Then \mathscr{C} : $H^p(\omega) \to H^p$ *continuously and* $H^p \subseteq H^p(\omega)$ *.*

The following result specifies growth conditions on a weight ω which are sufficient to ensure that \mathscr{C} maps $H^p(\omega)$ continuously into H^p and $H^p \subseteq H^p(\omega)$.

COROLLARY 2.4. Let $1 \le p < \infty$ and ω be a weight with ψ an outer function corresponding to w. Suppose that

- (i) ψ is bounded and ψ^{-1} is unbounded, and
- (ii) there exist distinct points $a_1, \ldots, a_m \in T \setminus \{1\}$ such that

$$\psi^{-1}(z) = O\left(\frac{1}{\prod_{k=1}^{m} |z - a_k|^p}\right), \quad |z| \to 1^-.$$

Then \mathscr{C} : $H^p(\omega) \to H^p$ *continuously and* $H^p \subseteq H^p(\omega)$ *.*

PROOF. We could apply condition (iii) of Theorem 2.2. However, we prefer a direct argument which highlights the operator-theoretic approach.

Let $f \in H^p(\omega)$. Then $f = \psi^{-1/p} \cdot g$, for some $g \in H^p$. Using (3) and setting $h(z) := \psi^{-1/p}(z) \prod_{k=1}^m (z - a_k)$ yields

$$\mathscr{C}(f)(z) = \frac{1}{z} \int_0^z \frac{\psi^{-1/p}(\xi) g(\xi)}{1-\xi} d\xi = \frac{1}{z} \int_0^z \frac{h(\xi) g(\xi)}{(1-\xi) \prod_{k=1}^m (\xi-a_k)} d\xi.$$

So, for suitable constants $A_0, A_1, \ldots, A_m \in C$ (with $a_0 := 1$) we have

$$\mathscr{C}(f)(z) = \sum_{k=0}^{m} \frac{A_{k}}{z} \int_{0}^{z} \frac{h(\xi) g(\xi)}{a_{k} - \xi} d\xi = \sum_{k=0}^{m} A_{k} \frac{1}{z} \int_{0}^{z/a_{k}} \frac{h(a_{k}\eta) g(a_{k}\eta)}{1 - \eta} d\eta$$
$$= \sum_{k=0}^{m} \frac{A_{k}}{a_{k}} \mathscr{C}(h(a_{k} \cdot) g(a_{k} \cdot))(z/a_{k}).$$

The function *h* is, by condition (ii), bounded. Since $z \mapsto z/a_k$ and $z \mapsto a_k z$ are automorphisms of D, each function $g_k(z) := h(a_k z) g(a_k z)$ is in H^p and so, $\mathscr{C}(g_k)(\cdot/a_k) \in H^p$, for $0 \le k \le m$. Consequently, $\mathscr{C}(f) \in H^p$. Hence, $\mathscr{C}(H^p(\omega)) \subseteq H^p$. This, Lemma 2.5 below, and the fact that point evaluations are continuous linear functionals on both H^p and $H^p(\omega)$, imply that $\mathscr{C}: H^p(\omega) \to H^p$ continuously.

Condition (i) and Proposition 2.1 imply that $H^p \subseteq H^p(\omega)$.

If X and Y are Banach spaces of analytic functions, then the vector space containment $X \subseteq Y$ is equivalent to continuity of the inclusion $X \hookrightarrow Y$, provided that point evaluations are continuous on both X and Y. Moreover, since point evaluations are continuous on H(D), we always have a continuous inclusion $X \hookrightarrow H(D)$. A similar result holds for the Cesàro operator.

LEMMA 2.5. Let X, Y be Banach spaces of analytic functions such that point evaluations are continuous on both X, Y. Then $\mathscr{C}(X) \subseteq Y$ if and only if \mathscr{C} maps X into Y continuously.

PROOF. We can apply the Closed Graph Theorem. Let $f_n \to 0$ in X and $\mathscr{C}(f_n) \to g$ in Y. By the discussion prior to the lemma, $f_n \to 0$ in H(D). Fix $z \in D \setminus \{0\}$. Since $f_n(\xi)/(1-\xi)$ converges to zero uniformly on the segment [0, z], it follows that $\mathscr{C}(f_n)(z) \to 0$. But, $\mathscr{C}(f_n)(z) \to g(z)$. Consequently, g = 0.

3. Further extensions of the Cesàro operator

Can the Cesàro operator be extended beyond the already larger spaces $H^{p}(\omega)$, while still remaining H^{p} -valued? Yes, and genuinely. Let us see how to proceed.

As already noted, \mathscr{C} is a topological isomorphism from H(D) onto itself. For $1 \le p < \infty$, define the linear space

(4)
$$[\mathscr{C}, H^p] := \left\{ f \in H(\mathsf{D}) : \mathscr{C}(f) \in H^p \right\},$$

which is then complete with respect to the norm

(5)
$$||f||_{[\mathscr{C},H^p]} := ||\mathscr{C}(f)||_{H^p}.$$

Moreover, we have that

(6)
$$H^p \subseteq [\mathscr{C}, H^p] \subseteq H(\mathsf{D}).$$

The first containment follows from $\mathscr{C}(H^p) \subseteq H^p$. Moreover, both inclusions are continuous. This follows from Lemma 2.5 and the fact that point evaluations

are continuous on $[\mathscr{C}, H^p]$. To see this, fix $z_0 \in D$ and let $f \in [\mathscr{C}, H^p]$. Taking into account the identity

(7)
$$g(z) = (1-z)(z\mathscr{C}(g)(z))', \qquad g \in H(\mathsf{D}),$$

which follows from (3), we have, for $|z_0| < r < 1$, that

$$|f(z_0)| = |1 - z_0| \cdot \left| \left(z \mathscr{C}(f)(z) \right)'(z_0) \right|$$

= $|1 - z_0| \cdot \left| \frac{1}{2\pi i} \int_{|\xi| = r} \frac{\xi \mathscr{C}(f)(\xi)}{(\xi - z_0)^2} d\xi \right|$
$$\leq \frac{r^2 |1 - z_0|}{2\pi (r - |z_0|)^2} \int_0^{2\pi} |\mathscr{C}(f)(re^{i\theta})| d\theta.$$

Consequently,

(8)
$$|f(z_0)| \leq \frac{|1-z_0|}{2\pi(1-|z_0|)^2} \|\mathscr{C}(f)\|_{H^p} = \frac{|1-z_0|}{2\pi(1-|z_0|)^2} \|f\|_{[\mathscr{C},H^p]}.$$

Note that the first containment in (6), namely $H^p \subseteq [\mathscr{C}, H^p]$, is strict. Indeed, $f(z) := 1/(1+z) \notin H^1$ but, $\mathscr{C}(f)(z) = (1/2z) \log((1+z)/(1-z))$ belongs to every H^p , $1 \leq p < \infty$. Accordingly, $f \in [\mathscr{C}, H^p]$, for all $1 \leq p < \infty$. Clearly, the second containment in (6) is also strict.

REMARK 3.1. Fix $1 \leq p < \infty$. Let X be a Banach space of analytic functions. If $\mathscr{C}: X \to H^p$ is continuous, then $\mathscr{C}(X) \subseteq H^p$ and so $X \subseteq$ $[\mathscr{C}, H^p]$. On the other hand, suppose that $X \subseteq [\mathscr{C}, H^p]$. Then $\mathscr{C}(X) \subseteq H^p$ and hence, if point evaluations are continuous on X, it follows from Lemma 2.5 that $\mathscr{C}: X \to H^p$ continuously. This means that $\|\mathscr{C}(f)\|_{H^p} \leq M\|f\|_X$, $f \in X$, for some constant M > 0, that is, $\|f\|_{[\mathscr{C}, H^p]} \leq M\|f\|_X$, $f \in X$. Thus, the natural inclusion $X \subseteq [\mathscr{C}, H^p]$ is necessarily continuous. Consequently, since $\mathscr{C}: [\mathscr{C}, H^p] \to H^p$ is clearly continuous, the space $[\mathscr{C}, H^p]$ can be considered as the "optimal domain" for the operator \mathscr{C} , with \mathscr{C} still taking its values in H^p . That is, $[\mathscr{C}, H^p]$ is the *largest* of all Banach spaces of analytic functions X such that \mathscr{C} maps X continuously into H^p . Equivalently, $[\mathscr{C}, H^p]$ can be interpreted as the largest Banach space of analytic functions to which the Cesàro operator $\mathscr{C}: H^p \to H^p$ can be extended, still with all its values in H^p .

In view of the previous comments, Corollaries 2.3 and 2.4 imply that $H^{p}(\omega) \subseteq [\mathscr{C}, H^{p}]$ continuously, for all weights ω satisfying the conditions of these results.

To better understand the nature of individual functions from $[\mathscr{C}, H^p]$ we begin with the following description.

PROPOSITION 3.2. For each $1 \le p < \infty$ we have, as vector spaces, that

(9) $[\mathscr{C}, H^p] = \{ f \in H(\mathsf{D}) : f(z) = (1 - z)g'(z) \text{ for some } g \in H^p \}.$

PROOF. If $f \in [\mathscr{C}, H^p]$, then $\mathscr{C}(f)$ and hence, also $h(z) := z\mathscr{C}(f)(z)$, belongs to H^p . According to (7) we have f(z) = (1 - z)h'(z) and so f belongs to the right-hand-side of (9).

Conversely, suppose that $f \in H(D)$ has the form f(z) = (1 - z)g'(z) for some $g \in H^p$. Then

$$\mathscr{C}(f)(z) = \frac{1}{z} \int_0^z \frac{(1-\xi)g'(\xi)}{1-\xi} d\xi = \frac{g(z)-g(0)}{z}, \qquad z \neq 0,$$

with $\mathscr{C}(f)(0) = g'(0)$. Choose $0 < \varepsilon < 1$ such that $\left|\frac{g(z)-g(0)}{z} - g'(0)\right| < \varepsilon$ for $0 < |z| < \varepsilon$, in which case $\left|\frac{g(z)-g(0)}{z}\right| < \varepsilon + |g'(0)|$. Moreover, for $\varepsilon \le |z| < 1$ we have $\left|\frac{g(z)-g(0)}{z}\right| < \frac{|g(z)|+|g(0)|}{\varepsilon}$. Hence, $|\mathscr{C}(f)(z)| \le \alpha |g(z)| + \beta$ for $z \in D$ and constants $\alpha, \beta > 0$. Since $g \in H^p$, this implies that $\mathscr{C}(f) \in H^p$, that is, $f \in [\mathscr{C}, H^p]$.

Let us deduce some consequences of the previous result. We begin with an alternative function theoretic description of $[\mathscr{C}, H^p]$. By applying to the function $z \mapsto z\mathscr{C}(f)(z) = \int_0^z \frac{f(\xi)}{1-\xi} d\xi$ (which has value 0 at z = 0 and whose derivative equals $\frac{f(z)}{1-z}$) the criterion for membership of H^p based on the Littlewood-Paley g-function, [9, Ch. XIV, Theorems (3.5) and (3.19)], we obtain from Proposition 3.2 the following fact.

COROLLARY 3.3. Let $1 . Then <math>f \in [\mathscr{C}, H^p]$ if and only if

$$\int_0^{2\pi} \left(\int_0^1 \frac{|f(re^{i\theta})|^2}{|1 - re^{i\theta}|^2} (1 - r) \, dr \right)^{p/2} d\theta < \infty.$$

Note that, for p = 1, the above condition is only necessary.

Recall that every element of H^p , for $1 \le p < \infty$, has boundary values a.e. on T.

COROLLARY 3.4. Let $1 \le p < \infty$. Then there exists a function in $[\mathscr{C}, H^p]$ which fails to have a.e. boundary values. In particular, $H^p \subsetneq [\mathscr{C}, H^p]$.

PROOF. According to [5, p.92] there exists $g \in H^{\infty} \subseteq H^{p}$ such that g' fails to have a.e. boundary values. Then f(z) := (1 - z)g'(z) belongs to $[\mathscr{C}, H^{p}]$ (c.f. Proposition 3.2) and f fails to have a.e. boundary values.

REMARK 3.5. (i) The proof of Corollary 3.4 shows there actually exists a function in $\bigcap_{1 \le p \le \infty} [\mathscr{C}, H^p]$ which fails to have a.e. boundary values.

(ii) Let ω be a weight as in Section 2 with ψ a corresponding outer function. It is clear from $H^p(\omega) = \{\psi^{-1/p} f : f \in H^p\}$ that every function in $H^p(\omega)$ has a.e. boundary values. So, whenever $H^p(\omega) \subseteq [\mathscr{C}, H^p]$, Corollary 3.4 implies that the inclusion is proper.

Let Aut(D) denote the group of all automorphisms on D, in which case each space H^p , for $1 \le p < \infty$, is invariant under composition with Aut(D). That is, $\{f \circ \rho : f \in H^p\} \subseteq H^p$ for all $\rho \in Aut(D)$.

PROPOSITION 3.6. There exists $\rho \in \operatorname{Aut}(\mathsf{D})$ and $f \in \bigcap_{1 \le p < \infty} [\mathscr{C}, H^p]$ such that $f \circ \rho \notin [\mathscr{C}, H^1]$. In particular, $f \circ \rho \notin [\mathscr{C}, H^p]$ for $1 \le p < \infty$.

PROOF. The function f(z) := 1/(1 + z) satisfies $\mathscr{C}(f)(z) = (2z)^{-1}\log(\frac{1+z}{1-z})$ and so $f \in [\mathscr{C}, H^p]$ for all $1 \leq p < \infty$, that is, $f \in \bigcap_{1 \leq p < \infty} [\mathscr{C}, H^p]$. Of course, $f \notin H^1$. Let $\rho(z) := -z$, for $z \in D$. Then $(f \circ \rho)(z) = 1/(1 - z)$ and $\mathscr{C}(f \circ \rho)(z) = 1/(z - 1) \notin H^1$, that is $f \circ \rho \notin [\mathscr{C}, H^1]$. According to Proposition 3.8(v) below, also $f \circ \rho \notin [\mathscr{C}, H^p]$ for all $1 \leq p < \infty$.

Corollary 3.4 and Proposition 3.6 show that certain "nice" properties of functions from H^p fail to be inherited by functions in the larger space $[\mathscr{C}, H^p]$. This is not always the case. Proposition 2.1(i) asserts, for $\varphi \in H(D)$, that the operator M_{φ} of multiplication by φ is defined and continuous from H^p into itself precisely when $\varphi \in H^{\infty}$. The same conclusion holds for the spaces $[\mathscr{C}, H^p]$ in place of H^p .

THEOREM 3.7. Let $1 \leq p < \infty$. Given $\varphi \in H(D)$ the multiplication operator $M_{\varphi}(f) := \varphi \cdot f$ is well defined (and hence, continuous) from $[\mathscr{C}, H^p]$ to $[\mathscr{C}, H^p]$ if and only if $\varphi \in H^{\infty}$.

PROOF. Suppose first that $\varphi \in H^{\infty}$. Fix $f \in [\mathscr{C}, H^p]$. By Proposition 3.2 there exists $g \in H^p$ such that f(z) = (1 - z)g'(z). Observe that $G \in H(D)$ defined by

$$G(z) := \varphi(z)g(z) - \int_0^z \varphi'(\xi)g(\xi) \, d\xi, \qquad z \in \mathsf{D},$$

satisfies

$$\varphi(z)f(z) = (1-z)\varphi(z)g'(z) = (1-z)G'(z), \qquad z \in \mathsf{D},$$

and so, again by Proposition 3.2, we see that $\varphi f \in [\mathscr{C}, H^p]$ provided that $G \in H^p$. Since $\varphi g \in H^p$, to verify that $G \in H^p$ it suffices to verify that $T_{\varphi}(g): z \mapsto \int_0^z \varphi'(\xi)g(\xi) d\xi \in H^p$. But, $\varphi \in H^\infty \subseteq$ BMOA and so indeed $T_{\varphi}(g) \in H^p$ for every $g \in H^p$, [2, Theorem 1], [1, Theorem 1(ii)]. Accordingly, φ has the

property that $M_{\varphi}(f) := \varphi \cdot f$ belongs to $[\mathscr{C}, H^p]$ whenever $f \in [\mathscr{C}, H^p]$. Using continuity of the point evaluations on $[\mathscr{C}, H^p]$, a closed graph argument shows that $M_{\varphi}: [\mathscr{C}, H^p] \to [\mathscr{C}, H^p]$ is actually continuous.

Of course, for $p \neq 1$, the above proof can be replaced by a direct appeal to Corollary 3.3.

Conversely, let $\varphi \in H(D)$ be such that $M_{\varphi}: [\mathscr{C}, H^p] \to [\mathscr{C}, H^p]$ is well defined (and hence, continuous). We may assume that the operator norm of M_{φ} satisfies $||M_{\varphi}|| = 1$. Note, for every $n \ge 1$, that the operator $M_{\varphi^n} = (M_{\varphi})^n$ maps $[\mathscr{C}, H^p]$ into $[\mathscr{C}, H^p]$ and moreover, that $||M_{\varphi^n}|| \le 1$. Accordingly, $\varphi^n \in [\mathscr{C}, H^p]$ and hence, also $(1-z)\varphi^n(z) \in [\mathscr{C}, H^p]$ (because $(1-z) \in H^{\infty}$). Then

$$\begin{aligned} \left\| z \mapsto \int_0^z \varphi^n \right\|_{H^p} &= \| z \mathscr{C}((1-z)\varphi^n(z)) \|_{H^p} = \| \mathscr{C}((1-z)\varphi^n(z)) \|_{H^p} \\ &= \| (1-z)\varphi^n(z) \|_{[\mathscr{C},H^p]} = \| M_{\varphi^n}(1-z) \|_{[\mathscr{C},H^p]} \\ &\leq \| M_{\varphi^n} \| \cdot \| 1-z \|_{[\mathscr{C},H^p]} \leq 1. \end{aligned}$$

From [9, Ch. XIV, Theorem (3.5)] it follows, for some constant $A_p > 0$ and all $n \ge 1$, that

(10)

$$\int_0^{2\pi} \left(\int_0^1 |\varphi^n(re^{i\theta})|^2 (1-r) \, dr \right)^{p/2} d\theta \le A_p \left\| z \mapsto \int_0^z \varphi^n \right\|_{H^p} \le A_p.$$

Suppose there exists $z \in D$ such that $|\varphi(z)| > 1$. Then there exists $0 \le r_0 < r_1 < 1$ and $0 \le \theta_0 < \theta_1 < 2\pi$ such that $|\varphi(re^{i\theta})| \ge a$ for some a > 1 and all $r_0 \le r \le r_1$ and $\theta_0 \le \theta \le \theta_1$. From (10) we conclude, for all $n \ge 1$, that

$$\begin{split} A_p &\geq \int_0^{2\pi} \left(\int_0^1 |\varphi(re^{i\theta})|^{2n} (1-r) \, dr \right)^{p/2} d\theta \\ &\geq \int_{\theta_0}^{\theta_1} \left(\int_{r_0}^{r_1} |\varphi(re^{i\theta})|^{2n} (1-r) \, dr \right)^{p/2} d\theta \\ &\geq (\theta_1 - \theta_0) \left((r_1 - r_0) a^{2n} (1-r_1) \right)^{p/2}. \end{split}$$

Since a > 1, this is impossible. Hence, $|\varphi(z)| \le 1$ for all $z \in D$ and so $\varphi \in H^{\infty}$.

Despite the general lack of regularity concerning individual functions from $[\mathscr{C}, H^p]$, the *spaces* $[\mathscr{C}, H^p]$ exhibit rather good structural properties. Indeed, various Banach space properties of $[\mathscr{C}, H^p]$ follow directly from the fact that \mathscr{C} maps $[\mathscr{C}, H^p]$ linearly and isometrically onto H^p , for $1 \le p < \infty$; see (5). Some immediate consequences are as follows.

PROPOSITION 3.8. Let $1 \le p < \infty$ and $[\mathscr{C}, H^p]$ be the optimal domain for the Cesàro operator \mathscr{C} on H^p .

- (i) $[\mathscr{C}, H^p]$ is separable.
- (ii) $[\mathscr{C}, H^p]$ is uniformly convex (in particular, reflexive) for $p \neq 1$.
- (iii) For p = 2, $[\mathscr{C}, H^2]$ is a Hilbert space. In particular,

$$f(z) = \sum_{0}^{\infty} a_n z^n \in [\mathscr{C}, H^2] \iff \left(\frac{1}{n+1} \sum_{0}^n a_k\right) \in \ell^2.$$

- (iv) Polynomials are dense in $[\mathscr{C}, H^p]$.
- (v) $[\mathscr{C}, H^{p_2}] \stackrel{\frown}{\neq} [\mathscr{C}, H^{p_1}]$ whenever $1 \le p_1 < p_2 < \infty$.

PROOF. The isometry between $[\mathscr{C}, H^p]$ and H^p immediately yields (i), (ii) and (v). For (iii), observe that $f \in [\mathscr{C}, H^2]$ if and only if $\mathscr{C}(f) \in H^2$ if and only if $\left(\frac{1}{n+1}\sum_{0}^{n}a_k\right) \in \ell^2$; see (1). Finally, for (iv), let $f \in [\mathscr{C}, H^p]$ and $\varepsilon > 0$. Since $\mathscr{C}(f) \in H^p$, choose *N* and $(b_k)_0^N \subseteq C$ so that $\left\|\mathscr{C}(f) - \sum_{0}^{N}b_k z^k\right\|_{H^p} < \varepsilon$. Taking into account that $\mathscr{C}(z^k - z^{k+1}) = z^k/(k+1)$ for $k \ge 0$, we can write

$$\begin{split} \left\| \mathscr{C}(f) - \sum_{0}^{N} b_{k} z^{k} \right\|_{H^{p}} &= \left\| \mathscr{C}(f) - \sum_{0}^{N} b_{k} (k+1) \mathscr{C}(z^{k} - z^{k+1}) \right\|_{H^{p}} \\ &= \left\| \mathscr{C} \left(f - \sum_{0}^{N} b_{k} (k+1) (z^{k} - z^{k+1}) \right) \right\|_{H^{p}} \\ &= \left\| f - \sum_{0}^{N} b_{k} (k+1) (z^{k} - z^{k+1}) \right\|_{[\mathscr{C}, H^{p}]}. \end{split}$$

REMARK 3.9. Concerning $p = \infty$, the definition given in (4) still makes sense and generates the space $[\mathscr{C}, H^{\infty}]$ for which (5) is again a complete norm. Since $[\mathscr{C}, H^{\infty}] \subsetneq [\mathscr{C}, H^p]$ continuously, for all $1 \le p < \infty$ (see (5)), it follows from (8) that point evaluations are continuous on $[\mathscr{C}, H^{\infty}]$ and

$$|f(z_0)| \le \frac{|1-z_0|}{2\pi(1-|z_0|)^2} \, \|f\|_{[\mathscr{C},H^\infty]}.$$

However, since \mathscr{C} is not continuous on H^{∞} , we do *not* have the inclusion $H^{\infty} \subseteq [\mathscr{C}, H^{\infty}]$ corresponding to (6) for $p = \infty$.

Optimal domains exhibit good behaviour with respect to interpolation via the Petree K-method; see [3, Ch.5.§1].

PROPOSITION 3.10. Let $1 and <math>[\mathcal{C}, H^p]$ be the optimal domain for the Cesàro operator \mathcal{C} on H^p . Then

$$\left([\mathscr{C}, H^1], [\mathscr{C}, H^\infty] \right)_{1 - \frac{1}{p}, p} = [\mathscr{C}, H^p].$$

PROOF. Note that $[\mathscr{C}, H^{\infty}] \subseteq [\mathscr{C}, H^1]$ since $H^{\infty} \subseteq H^1$. Fix $f \in [\mathscr{C}, H^1]$. Let $f = g_1 + g_2$ with $g_1 \in [\mathscr{C}, H^1]$ and $g_2 \in [\mathscr{C}, H^{\infty}]$. This is equivalent to $\mathscr{C}(f) = \mathscr{C}(g_1) + \mathscr{C}(g_2)$ with $\mathscr{C}(g_1) \in H^1$ and $\mathscr{C}(g_2) \in H^{\infty}$ which, in turn, is equivalent to $\mathscr{C}(f) = h_1 + h_2$ with $h_1 \in H^1$ and $h_2 \in H^{\infty}$ (since \mathscr{C} is an isomorphism between $[\mathscr{C}, H^p]$ and H^p , $1 \le p \le \infty$). The isometry between $[\mathscr{C}, H^p]$ and H^p then gives

$$K(f,t; [\mathscr{C}, H^1], [\mathscr{C}, H^\infty]) = K(\mathscr{C}(f), t; H^1, H^\infty), \qquad t > 0.$$

REMARK 3.11. Following the procedure given in Remark 3.9 for defining the space $[\mathscr{C}, H^{\infty}]$, we can also consider the Banach space $[\mathscr{C}, BMOA]$ consisting of those functions $h \in H(D)$ such that $\mathscr{C}(h) \in BMOA$. We have $H^{\infty} \subseteq [\mathscr{C}, BMOA]$ and $BMOA \subsetneq [\mathscr{C}, BMOA]$; see [4, Section 3].

The space $[\mathscr{C}, BMOA]$ arises naturally as the space $M(H^p, [\mathscr{C}, H^p])$ of functions generating continuous multiplication operators from H^p into $[\mathscr{C}, H^p]$. Indeed, $\varphi \in M(H^p, [\mathscr{C}, H^p])$ means precisely that $\varphi f \in [\mathscr{C}, H^p]$ for every $f \in H^p$, that is, $\mathscr{C}(\varphi f) \in H^p$ for every $f \in H^p$. Hence, we have the bounded operator (mapping into H^p) given by

$$f \mapsto \mathscr{C}(\varphi f) : z \mapsto \frac{1}{z} \int_0^z f(\xi) \frac{\varphi(\xi)}{1-\xi} \, d\xi, \qquad f \in H^p.$$

It follows from [2, Theorem 1] that the function $z \mapsto \int_0^z \frac{\varphi(\xi)}{1-\xi} d\xi$ belongs to BMOA. Consequently, $\mathscr{C}(\varphi) \in BMOA$, showing that

$$M(H^p, [\mathscr{C}, H^p]) = [\mathscr{C}, BMOA].$$

The optimal domain space $[\mathscr{C}, H^p]$ of the Cesàro operator (for $1 \le p < \infty$) has been identified not just as a linear space properly containing H^p , but also as a Banach space of analytic functions in its own right possessing various properties. Moreover, for certain weights ω , the weighted Hardy space $H^p(\omega)$ is properly and continuously included in $[\mathscr{C}, H^p]$. It would be interesting to find further examples of classical Banach spaces of analytic functions X such that $H^p \subsetneq X \subsetneqq [\mathscr{C}, H^p]$ continuously.

ACKNOWLEDGEMENT. We thank the referee for some valuable suggestions.

REFERENCES

- Aleman, A., and Cima, J. A., An integral operator on H^p and Hardy's inequality, J. Anal. Math. 85 (2001), 157–176.
- Aleman, A., and Siskakis, A. G., An integral operator on H^p, Complex Variables Theory Appl. 28 (1995), 149–158.
- Bennett, C., and Sharpley, R., *Interpolation of Operators*, Pure Appl. Math. 129, Academic Press, Boston 1988.
- 4. Danikas, N., and Siskakis, A. G., *The Cesàro operator on bounded analytic functions*, Analysis 13 (1993), 295–299.
- Duren, P. L., *Theory of H^p Spaces*, Pure Appl. Math. 38, Academic Press, New York-London 1970.
- Kisliakov, S., and Xu, Q., Partial retractions for weighted Hardy spaces, Studia Math. 138 (2000), 251–264.
- Siskakis, A. G., Composition semigroups and the Cesàro operator on H^p, J. London Math. Soc. (2) 36 (1987), 153–164.
- Siskakis, A. G., *The Cesàro operator is bounded on H¹*, Proc. Amer. Math. Soc. 110 (1990), 461–462.
- 9. Zygmund, A., Trigomometric Series, Cambridge Univ. Press, Cambridge 1977.

FACULTAD DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA APTDO. 1160 SEVILLA 41080 SPAIN *E-mail:* curbera@us.es MATH.-GEOGR. FAKULTÄT KATHOLISCHE UNIVERSITÄT EICHSTÄTT-INGOLSTADT D-85072 EICHSTÄTT GERMANY *E-mail:* werner.ricker@ku-eichstaett.de