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EXTENSIONS OF THE CLASSICAL CESÀRO
OPERATOR ON HARDY SPACES

GUILLERMO P. CURBERA and WERNER J. RICKER∗

Abstract
For each 1 ≤ p < ∞, the classical Cesàro operator C from the Hardy space Hp to itself has the
property that there exist analytic functions f �∈ Hp with C (f ) ∈ Hp . This article deals with the
identification and properties of the (Banach) space [C , Hp] consisting of all analytic functions
that C maps into Hp . It is shown that [C , Hp] contains classical Banach spaces of analytic
functions X, genuinely bigger that Hp , such that C has a continuous Hp-valued extension to X.
An important feature is that [C , Hp] is the largest amongst all such spaces X.

1. Introduction

The classical Cesàro operator, given by

(1) C (f )(z) :=
∞∑
n=0

(
1

n+ 1

n∑
k=0

ak

)
zn,

with f (z) = ∑∞
0 akz

k an analytic function on the open unit disc D, is bounded
on the Hardy space Hp, for every 0 < p < ∞. For 1 < p < ∞, this follows
from a result of Hardy concerning trigonometric series together with M. Riesz’s
theorem. The boundedness on H 1 was proved by Siskakis, who also gave an
alternative proof for 1 < p < ∞, [7], [8].

Observe that C is injective, but not surjective on Hp (as 0 belongs to the
spectrum of C , [7]), that is, C is not an isomorphism on Hp. However, C is
an isomorphism on the Fréchet spaceH(D) of all analytic functions on D. So,
there exist analytic functions f /∈ Hp such that C (f ) ∈ Hp. Accordingly, the
domain of C :Hp → Hp is, in a certain natural sense, lacking in size. This
raises the question of whether there exist Banach spaces of analytic functions,
always meant over D (i.e., vector subspaces of H(D) which are complete for
some norm), larger than Hp and which C maps continuously into Hp? If so,
does there exist a “largest” such space and what properties would it have?
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The first observation is that such a space cannot be Hq , for any q ∈ [1, p).
Indeed, Aleman and Cima have considered operators Tg determined by an
analytic symbol g via Tgf (z) := ∫ z

0 f (ξ)g
′(ξ) dξ . They have shown, for

1 < q < p < ∞, that Tg maps Hq into Hp if and only if g is in the Lipschitz
class �α with α := (1/q) − (1/p), [1, Theorem 1(iii)]. Since this is not the
case for g(z) = − log(1 − z), which corresponds to the Cesàro operator, it
follows that C (taking values in Hp) cannot be extended to any larger Hq

space as its domain.
In Section 2 we characterize precisely when C is bounded from a weighted

Hardy space Hp(w) into Hp, which allows us to exhibit a class of weights
w, with certain growth conditions, for which Hp � Hp(ω) and such that
C (Hp(w)) ⊆ Hp. Such weights ω1 and ω2 exist for which Hp(ω1) and
Hp(ω2) are not comparable. In Section 3 we show that there actually does
exist a largest Banach space of analytic functions (denoted by [C , Hp]) to
which C has a continuous extension and maps into Hp. In particular, for the
above mentioned weights ω we have that Hp(ω) ⊆ [C , Hp]. This contain-
ment is actually proper (as is Hp ⊆ [C , Hp]). It is precisely this feature, i.e.,
that [C , Hp] contains classical Banach spaces of analytic functions which are
genuinely larger than Hp, which makes the space [C , Hp] interesting. Just as
interesting is the optimality of the space [C , Hp] relative to C , in the sense
that it is also the largest Banach space of analytic functions f on D for which
the formula (1) produces an element ofHp and such that the extended Cesàro
operator C : [C , Hp] → Hp is still continuous. Section 3 is also devoted to
exposing certain Banach space properties of [C , Hp], to studying various prop-
erties of individual functions from [C , Hp], which can behave quite differently
to those from Hp, and to identifying the space of all multipliers for [C , Hp].

2. Extensions of the Cesàro operator

A weight is any function ω on the unit circle T such that ω > 0 a.e. and with
logω integrable. Let ψ be an outer function corresponding to ω, that is, ψ is
analytic on D and |ψ | = ω a.e. on T, [5, §2.4]. The weighted Hardy space
Hp(ω) associated to ω is then the Banach space ψ−1/p·Hp = {f ∈ H(D) :
ψ1/pf ∈ Hp} with norm ‖f ‖p,ω := ‖ψ1/pf ‖p; see, for example, [6].

We state for further reference the following facts.

Proposition 2.1. Let 1 ≤ p < ∞ and ω be a weight with ψ an outer
function corresponding to ω.

(i) Given ϕ ∈ H(D) the multiplication operator Mϕ(f ) := ϕ·f is well
defined (and hence, continuous) from Hp to Hp if and only if ϕ ∈ H∞.

(ii) Hp ⊆ Hp(ω) if and only if ψ is bounded.
(iii) Hp(ω) ⊆ Hp if and only if ψ−1 is bounded.
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Proof. (i) If ϕf ∈ Hp for all f ∈ Hp, then a closed graph argument shows
that Mϕ is continuous. We may assume that ‖Mϕ‖ = 1. Since ϕ = Mϕ(1) ∈
Hp, it follows by iteration that {ϕn} is contained in the closed unit ball of
Hp. Accordingly, 1

2π

∫ 2π
0 |ϕ(eiθ )|np dθ ≤ 1 for all n ∈ N. By splitting these

integrals over the sets |ϕ|−1([0, 1]) and |ϕ|−1((1,∞)) it follows that |ϕ| ≤ 1
a.e.

(ii) Hp ⊆ Hp(ω) is equivalent to f �→ ψ1/pf being bounded on Hp

which, by (i), is equivalent to ψ1/p, and hence ψ , being bounded.
(iii) f ∈ Hp(ω) precisely when f = ψ−1/pg for some g ∈ Hp. Hence,

Hp(ω) ⊆ Hp is equivalent to g �→ ψ−1/pg being bounded on Hp which, by
(i), is equivalent to ψ−1/p, hence also to ψ−1, being bounded.

The following result characterizes those weights ω with the property that
C maps Hp(ω) continuously into Hp.

Theorem 2.2. Let 1 ≤ p < ∞ and ω be a weight withψ an outer function
corresponding to w. The following conditions are equivalent.

(i) C :Hp(ω) → Hp continuously.

(ii) The operator which sends g ∈ H(D) to the function

z �−→
∫ z

0
g(ξ)

ψ−1/p(ξ)

1 − ξ
dξ, z ∈ D,

maps Hp into itself continuously.

(iii) The function

(2) ρψ : z �−→
∫ z

0

ψ−1/p(ξ)

1 − ξ
dξ, z ∈ D,

belongs to the space BMOA.

Proof. Let f ∈ Hp(ω). Then f = ψ−1/p·g, for some unique g ∈ Hp. We
require the following well known integral expression for C , namely, for each
h ∈ H(D),

(3) C (h)(z) = 1

z

∫ z

0

h(ξ)

1 − ξ
dξ, z ∈ D,

which yields

C (f )(z) = 1

z

∫ z

0
g(ξ)

ψ−1/p(ξ)

1 − ξ
dξ.

Following [2], for analytic functions ρ and h on D, we consider

Tρ(h)(z) := 1

z

∫ z

0
h(ξ)ρ ′(ξ) dξ, z ∈ D.
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Then C (f ) = Tρψ (g) with ρψ given by (2). Consequently, C maps Hp(ω)

continuously into Hp if and only if Tρψ maps Hp into itself continuously.
Furthermore, [1, Theorem 1(ii)] asserts that this last condition is equivalent to
ρψ ∈ BMOA.

Theorem 2.2 makes no assertion concerning any (possible) relationship
between Hp(ω) and Hp. However, combining it with Proposition 2.1 we can
deduce, for appropriate ω, that the Cesàro operator has a genuine extension to
a larger space Hp(ω) with values still in Hp.

Corollary 2.3. Let 1 ≤ p < ∞ and ω be a weight with ψ an outer
function corresponding to w. Suppose that

(i) ψ is bounded and ψ−1 is unbounded, and

(ii) the function z �→ ∫ z
0
ψ−1/p(ξ)

1−ξ dξ belongs to BMOA.

Then C :Hp(ω) → Hp continuously and Hp �Hp(ω).

The following result specifies growth conditions on a weight ω which are
sufficient to ensure that C mapsHp(ω) continuously intoHp andHp�Hp(ω).

Corollary 2.4. Let 1 ≤ p < ∞ and ω be a weight with ψ an outer
function corresponding to w. Suppose that

(i) ψ is bounded and ψ−1 is unbounded, and

(ii) there exist distinct points a1, . . . , am ∈ T \ {1} such that

ψ−1(z) = O

(
1∏m

k=1 |z− ak|p
)
, |z| → 1−.

Then C :Hp(ω) → Hp continuously and Hp �Hp(ω).

Proof. We could apply condition (iii) of Theorem 2.2. However, we prefer
a direct argument which highlights the operator-theoretic approach.

Let f ∈ Hp(ω). Then f = ψ−1/p·g, for some g ∈ Hp. Using (3) and
setting h(z) := ψ−1/p(z)

∏m
k=1(z− ak) yields

C (f )(z) = 1

z

∫ z

0

ψ−1/p(ξ) g(ξ)

1 − ξ
dξ = 1

z

∫ z

0

h(ξ) g(ξ)

(1 − ξ)
∏m
k=1(ξ − ak)

dξ.

So, for suitable constants A0, A1, . . . , Am ∈ C (with a0 := 1) we have

C (f )(z) =
m∑
k=0

Ak

z

∫ z

0

h(ξ) g(ξ)

ak − ξ
dξ =

m∑
k=0

Ak
1

z

∫ z/ak

0

h(akη) g(akη)

1 − η
dη

=
m∑
k=0

Ak

ak
C

(
h(ak ·) g(ak ·))(z/ak).
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The function h is, by condition (ii), bounded. Since z �→ z/ak and z �→
akz are automorphisms of D, each function gk(z) := h(akz) g(akz) is in Hp

and so, C (gk)(·/ak) ∈ Hp, for 0 ≤ k ≤ m. Consequently, C (f ) ∈ Hp.
Hence, C (Hp(ω)) ⊆ Hp. This, Lemma 2.5 below, and the fact that point
evaluations are continuous linear functionals on both Hp and Hp(ω), imply
that C :Hp(ω) → Hp continuously.

Condition (i) and Proposition 2.1 imply that Hp �Hp(ω).

If X and Y are Banach spaces of analytic functions, then the vector space
containment X ⊆ Y is equivalent to continuity of the inclusion X ↪→ Y ,
provided that point evaluations are continuous on both X and Y . Moreover,
since point evaluations are continuous onH(D), we always have a continuous
inclusion X ↪→ H(D). A similar result holds for the Cesàro operator.

Lemma 2.5. Let X, Y be Banach spaces of analytic functions such that
point evaluations are continuous on both X, Y . Then C (X) ⊆ Y if and only if
C maps X into Y continuously.

Proof. We can apply the Closed Graph Theorem. Let fn → 0 in X and
C (fn) → g in Y . By the discussion prior to the lemma, fn → 0 in H(D). Fix
z ∈ D \ {0}. Since fn(ξ)/(1 − ξ) converges to zero uniformly on the segment
[0, z], it follows that C (fn)(z) → 0. But, C (fn)(z) → g(z). Consequently,
g = 0.

3. Further extensions of the Cesàro operator

Can the Cesàro operator be extended beyond the already larger spacesHp(ω),
while still remaining Hp-valued? Yes, and genuinely. Let us see how to pro-
ceed.

As already noted, C is a topological isomorphism from H(D) onto itself.
For 1 ≤ p < ∞, define the linear space

(4) [C , Hp] := {
f ∈ H(D) : C (f ) ∈ Hp

}
,

which is then complete with respect to the norm

(5) ‖f ‖[C ,Hp] := ‖C (f )‖Hp .

Moreover, we have that

(6) Hp ⊆ [C , Hp] ⊆ H(D).

The first containment follows from C (Hp) ⊆ Hp. Moreover, both inclusions
are continuous. This follows from Lemma 2.5 and the fact that point evaluations
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are continuous on [C , Hp]. To see this, fix z0 ∈ D and let f ∈ [C , Hp]. Taking
into account the identity

(7) g(z) = (1 − z)
(
zC (g)(z)

)′
, g ∈ H(D),

which follows from (3), we have, for |z0| < r < 1, that

|f (z0)| = |1 − z0|·
∣∣(zC (f )(z))′

(z0)
∣∣

= |1 − z0|·
∣∣∣∣ 1

2πi

∫
|ξ |=r

ξC (f )(ξ)

(ξ − z0)2
dξ

∣∣∣∣

≤ r2|1 − z0|
2π(r − |z0|)2

∫ 2π

0
|C (f )(reiθ )| dθ.

Consequently,

(8) |f (z0)| ≤ |1 − z0|
2π(1 − |z0|)2 ‖C (f )‖Hp = |1 − z0|

2π(1 − |z0|)2 ‖f ‖[C ,Hp].

Note that the first containment in (6), namely Hp ⊆ [C , Hp], is strict.
Indeed, f (z) := 1/(1 + z) /∈ H 1 but, C (f )(z) = (1/2z) log

(
(1 + z)/(1 − z))

belongs to every Hp, 1 ≤ p < ∞. Accordingly, f ∈ [C , Hp], for all 1 ≤
p < ∞. Clearly, the second containment in (6) is also strict.

Remark 3.1. Fix 1 ≤ p < ∞. Let X be a Banach space of analytic
functions. If C :X → Hp is continuous, then C (X) ⊆ Hp and so X ⊆
[C , Hp]. On the other hand, suppose that X ⊆ [C , Hp]. Then C (X) ⊆ Hp

and hence, if point evaluations are continuous onX, it follows from Lemma 2.5
that C :X → Hp continuously. This means that‖C (f )‖Hp ≤ M‖f ‖X, f ∈ X,
for some constant M > 0, that is, ‖f ‖[C ,Hp] ≤ M‖f ‖X, f ∈ X. Thus, the
natural inclusionX ⊆ [C , Hp] is necessarily continuous. Consequently, since
C : [C , Hp] → Hp is clearly continuous, the space [C , Hp] can be considered
as the “optimal domain” for the operator C , with C still taking its values inHp.
That is, [C , Hp] is the largest of all Banach spaces of analytic functionsX such
that C mapsX continuously intoHp. Equivalently, [C , Hp] can be interpreted
as the largest Banach space of analytic functions to which the Cesàro operator
C :Hp → Hp can be extended, still with all its values in Hp.

In view of the previous comments, Corollaries 2.3 and 2.4 imply that
Hp(ω) ⊆ [C , Hp] continuously, for all weights ω satisfying the conditions of
these results.

To better understand the nature of individual functions from [C , Hp] we
begin with the following description.
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Proposition 3.2. For each 1 ≤ p < ∞ we have, as vector spaces, that

(9) [C , Hp] = {f ∈ H(D) : f (z) = (1 − z)g′(z) for some g ∈ Hp}.

Proof. If f ∈ [C , Hp], then C (f ) and hence, also h(z) := zC (f )(z),
belongs to Hp. According to (7) we have f (z) = (1 − z)h′(z) and so f
belongs to the right-hand-side of (9).

Conversely, suppose that f ∈ H(D) has the form f (z) = (1 − z)g′(z) for
some g ∈ Hp. Then

C (f )(z) = 1

z

∫ z

0

(1 − ξ)g′(ξ)
1 − ξ

dξ = g(z)− g(0)

z
, z �= 0,

with C (f )(0) = g′(0). Choose 0 < ε < 1 such that
∣∣ g(z)−g(0)

z
−g′(0)

∣∣ < ε for

0 < |z| < ε, in which case
∣∣ g(z)−g(0)

z

∣∣ < ε+|g′(0)|. Moreover, for ε ≤ |z| < 1

we have
∣∣ g(z)−g(0)

z

∣∣ < |g(z)|+|g(0)|
ε

. Hence, |C (f )(z)| ≤ α|g(z)| + β for z ∈ D
and constants α, β > 0. Since g ∈ Hp, this implies that C (f ) ∈ Hp, that is,
f ∈ [C , Hp].

Let us deduce some consequences of the previous result. We begin with
an alternative function theoretic description of [C , Hp]. By applying to the
function z �→ zC (f )(z) = ∫ z

0
f (ξ)

1−ξ dξ (which has value 0 at z = 0 and

whose derivative equals f (z)

1−z ) the criterion for membership of Hp based on
the Littlewood-Paley g-function, [9, Ch. XIV, Theorems (3.5) and (3.19)], we
obtain from Proposition 3.2 the following fact.

Corollary 3.3. Let 1 < p < ∞. Then f ∈ [C , Hp] if and only if

∫ 2π

0

(∫ 1

0

|f (reiθ )|2
|1 − reiθ |2 (1 − r) dr

)p/2
dθ < ∞.

Note that, for p = 1, the above condition is only necessary.
Recall that every element ofHp, for 1 ≤ p < ∞, has boundary values a.e.

on T.

Corollary 3.4. Let 1 ≤ p < ∞. Then there exists a function in [C , Hp]
which fails to have a.e. boundary values. In particular, Hp � [C , Hp].

Proof. According to [5, p.92] there exists g ∈ H∞ ⊆ Hp such that g′ fails
to have a.e. boundary values. Then f (z) := (1 − z)g′(z) belongs to [C , Hp]
(c.f. Proposition 3.2) and f fails to have a.e. boundary values.

Remark 3.5. (i) The proof of Corollary 3.4 shows there actually exists a
function in

⋂
1≤p<∞[C , Hp] which fails to have a.e. boundary values.
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(ii) Letω be a weight as in Section 2 withψ a corresponding outer function.
It is clear from Hp(ω) = {ψ−1/pf : f ∈ Hp} that every function in Hp(ω)

has a.e. boundary values. So, whenever Hp(ω) ⊆ [C , Hp], Corollary 3.4
implies that the inclusion is proper.

Let Aut(D) denote the group of all automorphisms on D, in which case each
space Hp, for 1 ≤ p < ∞, is invariant under composition with Aut(D). That
is, {f ◦ ρ : f ∈ Hp} ⊆ Hp for all ρ ∈ Aut(D).

Proposition 3.6. There exists ρ ∈ Aut(D) and f ∈ ⋂
1≤p<∞[C , Hp] such

that f ◦ ρ �∈ [C , H 1]. In particular, f ◦ ρ �∈ [C , Hp] for 1 ≤ p < ∞.

Proof. The function f (z) := 1/(1 + z) satisfies C (f )(z) =
(2z)−1 log

(
1+z
1−z

)
and so f ∈ [C , Hp] for all 1 ≤ p < ∞, that is, f ∈⋂

1≤p<∞[C , Hp]. Of course, f �∈ H 1. Let ρ(z) := −z, for z ∈ D. Then
(f ◦ ρ)(z) = 1/(1 − z) and C (f ◦ ρ)(z) = 1/(z − 1) �∈ H 1, that is
f ◦ρ �∈ [C , H 1]. According to Proposition 3.8(v) below, also f ◦ρ �∈ [C , Hp]
for all 1 ≤ p < ∞.

Corollary 3.4 and Proposition 3.6 show that certain “nice” properties of
functions fromHp fail to be inherited by functions in the larger space [C , Hp].
This is not always the case. Proposition 2.1(i) asserts, for ϕ ∈ H(D), that the
operator Mϕ of multiplication by ϕ is defined and continuous from Hp into
itself precisely when ϕ ∈ H∞. The same conclusion holds for the spaces
[C , Hp] in place of Hp.

Theorem 3.7. Let 1 ≤ p < ∞. Given ϕ ∈ H(D) the multiplication
operatorMϕ(f ) := ϕ·f is well defined (and hence, continuous) from [C , Hp]
to [C , Hp] if and only if ϕ ∈ H∞.

Proof. Suppose first that ϕ ∈ H∞. Fix f ∈ [C , Hp]. By Proposition 3.2
there exists g ∈ Hp such that f (z) = (1 − z)g′(z). Observe that G ∈ H(D)
defined by

G(z) := ϕ(z)g(z)−
∫ z

0
ϕ′(ξ)g(ξ) dξ, z ∈ D,

satisfies

ϕ(z)f (z) = (1 − z)ϕ(z)g′(z) = (1 − z)G′(z), z ∈ D,

and so, again by Proposition 3.2, we see that ϕf ∈ [C , Hp] provided thatG ∈
Hp. Sinceϕg ∈ Hp, to verify thatG ∈ Hp it suffices to verify that Tϕ(g): z �→∫ z

0 ϕ
′(ξ)g(ξ) dξ ∈ Hp. But, ϕ ∈ H∞ ⊆ BMOA and so indeed Tϕ(g) ∈ Hp

for every g ∈ Hp, [2, Theorem 1], [1, Theorem 1(ii)]. Accordingly, ϕ has the



extensions of the classical cesàro operator 287

property that Mϕ(f ) := ϕ · f belongs to [C , Hp] whenever f ∈ [C , Hp].
Using continuity of the point evaluations on [C , Hp], a closed graph argument
shows that Mϕ : [C , Hp] → [C , Hp] is actually continuous.

Of course, for p �= 1, the above proof can be replaced by a direct appeal to
Corollary 3.3.

Conversely, let ϕ ∈ H(D) be such that Mϕ : [C , Hp] → [C , Hp] is well
defined (and hence, continuous). We may assume that the operator norm of
Mϕ satisfies ‖Mϕ‖ = 1. Note, for every n ≥ 1, that the operatorMϕn = (Mϕ)

n

maps [C , Hp] into [C , Hp] and moreover, that ‖Mϕn‖ ≤ 1. Accordingly,
ϕn ∈ [C , Hp] and hence, also (1−z)ϕn(z) ∈ [C , Hp] (because (1−z) ∈ H∞).
Then∥∥∥∥z �→

∫ z

0
ϕn

∥∥∥∥
Hp

= ‖zC ((1 − z)ϕn(z))‖Hp = ‖C ((1 − z)ϕn(z))‖Hp

= ‖(1 − z)ϕn(z)‖[C ,Hp] = ‖Mϕn(1 − z)‖[C ,Hp]

≤ ‖Mϕn‖·‖1 − z‖[C ,Hp] ≤ 1.

From [9, Ch. XIV, Theorem (3.5)] it follows, for some constant Ap > 0 and
all n ≥ 1, that
(10)∫ 2π

0

(∫ 1

0
|ϕn(reiθ )|2(1 − r) dr

)p/2
dθ ≤ Ap

∥∥∥∥z �→
∫ z

0
ϕn

∥∥∥∥
Hp

≤ Ap.

Suppose there exists z ∈ D such that |ϕ(z)| > 1. Then there exists 0 ≤ r0 <

r1 < 1 and 0 ≤ θ0 < θ1 < 2π such that |ϕ(reiθ )| ≥ a for some a > 1 and all
r0 ≤ r ≤ r1 and θ0 ≤ θ ≤ θ1. From (10) we conclude, for all n ≥ 1, that

Ap ≥
∫ 2π

0

(∫ 1

0
|ϕ(reiθ )|2n(1 − r) dr

)p/2
dθ

≥
∫ θ1

θ0

(∫ r1

r0

|ϕ(reiθ )|2n(1 − r) dr

)p/2
dθ

≥ (θ1 − θ0)
(
(r1 − r0)a

2n(1 − r1)
)p/2

.

Since a > 1, this is impossible. Hence, |ϕ(z)| ≤ 1 for all z ∈ D and so
ϕ ∈ H∞.

Despite the general lack of regularity concerning individual functions from
[C , Hp], the spaces [C , Hp] exhibit rather good structural properties. Indeed,
various Banach space properties of [C , Hp] follow directly from the fact that
C maps [C , Hp] linearly and isometrically ontoHp, for 1 ≤ p < ∞; see (5).
Some immediate consequences are as follows.



288 guillermo p. curbera and werner j. ricker

Proposition 3.8. Let 1 ≤ p < ∞ and [C , Hp] be the optimal domain for
the Cesàro operator C on Hp.

(i) [C , Hp] is separable.

(ii) [C , Hp] is uniformly convex (in particular, reflexive) for p �= 1.

(iii) For p = 2, [ C , H 2] is a Hilbert space. In particular,

f (z) =
∞∑
0

anz
n ∈ [C , H 2] ⇐⇒

(
1

n+ 1

n∑
0

ak

)
∈ �2.

(iv) Polynomials are dense in [C , Hp].

(v) [C , Hp2 ] � [C , Hp1 ] whenever 1 ≤ p1 < p2 < ∞.

Proof. The isometry between [C , Hp] andHp immediately yields (i), (ii)
and (v). For (iii), observe thatf ∈ [C , H 2] if and only if C (f ) ∈ H 2 if and only
if

(
1
n+1

∑n
0 ak

) ∈ �2; see (1). Finally, for (iv), letf ∈ [C , Hp] and ε > 0. Since

C (f ) ∈ Hp, choose N and (bk)N0 ⊆ C so that
∥∥C (f ) − ∑N

0 bkz
k
∥∥
Hp < ε.

Taking into account that C (zk − zk+1) = zk/(k + 1) for k ≥ 0, we can write

∥∥∥∥C (f )−
N∑
0

bkz
k

∥∥∥∥
Hp

=
∥∥∥∥C (f )−

N∑
0

bk(k + 1)C (zk − zk+1)

∥∥∥∥
Hp

=
∥∥∥∥C

(
f −

N∑
0

bk(k + 1)(zk − zk+1)

)∥∥∥∥
Hp

=
∥∥∥∥f −

N∑
0

bk(k + 1)(zk − zk+1)

∥∥∥∥
[C ,Hp]

.

Remark 3.9. Concerning p = ∞, the definition given in (4) still makes
sense and generates the space [C , H∞] for which (5) is again a complete norm.
Since [C , H∞]�[C , Hp] continuously, for all 1 ≤ p < ∞ (see (5)), it follows
from (8) that point evaluations are continuous on [C , H∞] and

|f (z0)| ≤ |1 − z0|
2π(1 − |z0|)2 ‖f ‖[C ,H∞].

However, since C is not continuous on H∞, we do not have the inclusion
H∞ ⊆ [C , H∞] corresponding to (6) for p = ∞.

Optimal domains exhibit good behaviour with respect to interpolation via
the Petree K-method; see [3, Ch.5.§1].
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Proposition 3.10. Let 1 < p < ∞ and [C , Hp] be the optimal domain for
the Cesàro operator C on Hp. Then

(
[C , H 1], [C , H∞]

)
1− 1

p
,p

= [C , Hp].

Proof. Note that [C , H∞] ⊆ [C , H 1] sinceH∞ ⊆ H 1. Fix f ∈ [C , H 1].
Let f = g1 + g2 with g1 ∈ [C , H 1] and g2 ∈ [C , H∞]. This is equivalent to
C (f ) = C (g1) + C (g2) with C (g1) ∈ H 1 and C (g2) ∈ H∞ which, in turn,
is equivalent to C (f ) = h1 + h2 with h1 ∈ H 1 and h2 ∈ H∞ (since C is an
isomorphism between [C , Hp] and Hp, 1 ≤ p ≤ ∞). The isometry between
[C , Hp] and Hp then gives

K(f, t; [C , H 1], [C , H∞]) = K(C (f ), t;H 1, H∞), t > 0.

Remark 3.11. Following the procedure given in Remark 3.9 for defin-
ing the space [C , H∞], we can also consider the Banach space [C ,BMOA]
consisting of those functions h ∈ H(D) such that C (h) ∈ BMOA. We have
H∞ ⊆ [C ,BMOA] and BMOA � [C ,BMOA]; see [4, Section 3].

The space [C ,BMOA] arises naturally as the space M(Hp, [C , Hp]) of
functions generating continuous multiplication operators from Hp into
[C , Hp]. Indeed, ϕ ∈ M(Hp, [C , Hp]) means precisely that ϕf ∈ [C , Hp]
for every f ∈ Hp, that is, C (ϕf ) ∈ Hp for every f ∈ Hp. Hence, we have
the bounded operator (mapping into Hp) given by

f �→ C (ϕf ): z �→ 1

z

∫ z

0
f (ξ)

ϕ(ξ)

1 − ξ
dξ, f ∈ Hp.

It follows from [2, Theorem 1] that the function z �→ ∫ z
0
ϕ(ξ)

1−ξ dξ belongs to
BMOA. Consequently, C (ϕ) ∈ BMOA, showing that

M(Hp, [C , Hp]) = [C ,BMOA].

The optimal domain space [C , Hp] of the Cesàro operator (for 1 ≤ p < ∞)
has been identified not just as a linear space properly containing Hp, but also
as a Banach space of analytic functions in its own right possessing various
properties. Moreover, for certain weights ω, the weighted Hardy spaceHp(ω)

is properly and continuously included in [C , Hp]. It would be interesting to
find further examples of classical Banach spaces of analytic functions X such
that Hp �X � [C , Hp] continuously.
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