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A CLASSIC MORITA EQUIVALENCE RESULT
FOR FELL BUNDLE C∗-ALGEBRAS

MARIUS IONESCU and DANA P. WILLIAMS∗

Abstract
We show how to extend a classic Morita Equivalence Result of Green’s to the C∗-algebras of
Fell bundles over transitive groupoids. Specifically, we show that if p : B → G is a saturated
Fell bundle over a transitive groupoid G with stability group H = G(u) at u ∈ G(0), then
C∗(G,B) is Morita equivalent to C∗(H,C ), where C = B|H . As an application, we show that
if p : B → G is a Fell bundle over a group G and if there is a continuous G-equivariant map
σ : PrimA → G/H , where A = B(e) is the C∗-algebra of B and H is a closed subgroup, then
C∗(G,B) is Morita equivalent to C∗(H,C I ) where C I is a Fell bundle over H whose fibres are
A/I–A/I -imprimitivity bimodules and I = ⋂{P : σ(P ) = eH }. Green’s result is a special
case of our application to bundles over groups.

Introduction

One of the many fundamental results in Green’s seminal work [3] on C∗-
dynamical systems is his theorem ([3, Theorem 17]) which says that if (A,G,α)
is a dynamical system and if σ : PrimA → G/H is a continuous G-
equivariant map, then A �α G is Morita equivalent to A/I �αI H , where
I = ⋂{P ∈ PrimA : σ(P ) = eH }. This result is of particular importance
in studying the Mackey machine for regular or smooth crossed products – see
[10, Proposition 8.7 and Theorem 8.16] – and consequently is a basic com-
ponent of the Mackey machine in general. Our first goal in this note is to show
how Green’s result can be formulated for Fell bundles where it is a straight-
forward application of the Equivalence Theorem [7, Theorem 6.4]. However,
recovering Green’s dynamical system version from the Fell bundle version
is nontrivial. Fortuitously, doing so leads to an interesting application to Fell
bundles over groups which is our second main result.

This note is a continuation of [4]. In particular, we will refer to the first sec-
tion of that paper for basic notation, conventions and some fundamental facts
about Fell bundles. In particular, in order that we can apply the Equivalence
Theorem from [7], we are going to want to assume that our Fell bundles are
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saturated and separable in the sense that the underlying groupoids are second
countable and the underlying Banach bundles are separable.

1. The Main Results

The first order of business is to formulate Green’s theorem for Fell bundles.
Then, as mentioned above, we have some work to do to extract the “group
version”.

1.1. The Fell Bundle Version

Theorem 1. Let p : B → G be a separable saturated Fell bundle over a
transitive locally compact groupoid G. If u ∈ G(0) and if H := G(u) = { x ∈
G : s(x) = u = r(x) } is the stability group at u, then C = p−1(H) is a Fell
bundle over H , and C∗(G,B) is Morita equivalent to C∗(H,C ).

Remark 2. Since we have assumed that p : B → G is separable, this
implies that G is second countable. Therefore Gu = s−1(u) is a (G,H)-
equivalence under the hypotheses of Theorem 1 (see [6, Theorem 2.2B]).1

In particular, C∗(G) and C∗(H) are Morita equivalent by the Equivalence
Theorem for groupoids ([6, Theorem 2.8]).

Proof. Let C = p−1(H) and pH = p|C . Then it is straightforward to see
that pH : C → H is a Fell bundle overH . Let E = p−1(Gu) and q = p|E . We
will show that q : E → Gu is a (B,C )-equivalence as in [7, Definition 6.1].
Then Theorem 1 will follow from the Equivalence Theorem [7, Theorem 6.4].

Since Gu is a (G,H)-equivalence (Remark 2) and q : E → Gu is clearly
an upper semicontinuous-Banach bundle, we just need to verify axioms (a), (b)
and (c) of [7, Definition 6.1]. To do this, first observe that B and C act on the
left and right, respectively, on E via restriction of the multiplication in B(2);
then the axioms (a), (b) and (c) for an action given in the second paragraph
of [7, §6] are clearly satisfied.2 Then axiom (a) of [7, Definition 6.1] follows
from the associativity of multiplication in B(2).

For axiom (b) of [7, Definition 6.1], we define B〈·,·〉 : E ∗s E → B by

B〈b,c〉 = bc∗,

1 The only issue in showing that Gu is an equivalence is to prove that rG|Gu is an open map.
(Note that this can fail if G is not second countable: consider R with the discrete topology acting
on R with the usual topology by translation.) The point of [6, Theorem 2.2B] is to see that this
map is always open if G is second countable. Nowadays, a better reference for this is Ramsay’s
[9, Theorem 2.1].

2 Notice that there is a typo in axiom (c): it should read ‖b · e‖ ≤ ‖b‖‖e‖. Of course, this
follows from [4, Lemma 1] in our case.
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and 〈b,c〉C : E ∗r E → C by

〈b,c〉C = b∗c.

Then it is not hard to check that properties (i)–(iv) hold. For example, if (b, c) ∈
E ∗s E , then [q(b), q(c)] = q(b)q(c)−1 = p(bc∗).

As for axiom (c), let A = �0(G
(0); B) the C∗-algebra of B over G(0). We

are given that E(x) = B(x) is a A(r(x))–A(u)-imprimitivity bimodule. But
A(u) is the C∗-algebra of C over H(0) = u. Thus, (c) holds and q : E → Gu

is an equivalence.3 This completes the proof.

1.2. The Group Version

It is hardly obvious that Green’s Theorem for C∗-dynamical systems is a con-
sequence of Theorem 1. In fact, showing this requires a fair bit of gymnastics.
We will obtain Green’s result as a special case of a result for Fell bundles over
groups (Theorem 3) that is of considerable interest in its own right.

Let p : B → G be a Fell bundle over a locally compact group. (Note that
this implies that the underlying Banach bundle is continuous rather than merely
upper semicontinuous – see [4, Remark 3].) Suppose that σ : PrimA → G/H

is an equivariant map, where A is the C∗-algebra A(e) of B over G(0) = {e},
and H is a closed subgroup of G. We let

(1) I :=
⋂

{P ∈ PrimA : σ(P ) = eH }.

As in Theorem 1, we let C = p−1(H). Then I is aH -invariant ideal in theC∗-
algebra A = A(e) of C . We adopt the notations and constructions of [4, §3.1]
applied to the Fell bundle p|C : C → G and the invariant ideal I . In particular,
for eachh ∈ H ,C(h) is anA–A-imprimitivity bimodule, andCI (h) := C(h)·I
is an I–I -imprimitivity bimodule by [4, Lemma 10 and Proposition 14]. Thus
by [8, Proposition 3.25], the quotient CI (h) := C(h)/CI (h) is an A/I–A/I -
imprimitivity bimodule, and by [4, Proposition 15], C I := ∐

h∈H CI (h) has
a natural topology making it into a Fell bundle over H with the operations
induced from C .

Theorem 3. Let p : B → G be a separable saturated Fell bundle over a
locally compact group G such that there is a continuous G-equivariant map
σ : PrimA → G/H , where A is the C∗-algebra of B and H is a closed
subgroup of G. If I is the ideal of A given in (1), and if C is the Fell bundle
p−1(H) as above, then C∗(G,B) is Morita equivalent to C∗(H,C I )

3 There is, sadly, also a misprint in part (c) of [7, Definition 6.1]: it should read that “each E(t)
is a B(r(t))–C(s(t))-imprimitivity bimodule”.
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Remark 4. Notice that if B = A×G is the Fell bundle associated to the
dynamical system (A,G, α), then C I is the Fell bundle A/I × H associated
to (A/I,H, αI ). Therefore Green’s Theorem is a special case of Theorem 3.

To prove Theorem 3 we want to appeal to Theorem 1. We do this by first
building a Fell bundle Q over the transitive transformation groupoidG×G/H
such that if u = (e, eH) ∈ (G × G/H)(0) and if H = { (h, eH) : h ∈
H } is the stability group at u, then Q|H , which we view as a Fell bundle
over H , is naturally identified with C I (see Proposition 13). Since Theorem 1
implies C∗(G×G/H,Q) is Morita equivalent to C I , we complete the proof
of Theorem 3 by showing that C∗(G×G/H,Q) is isomorphic to C∗(G,B).
We do this in the next section as Proposition 15.

2. The isomorphism

Suppose that we are given a Fell bundle p : B → G over a locally compact
group G. Let A = B(e) be the C∗-algebra over e. In [4, Proposition 9], we
showed that PrimA is a G-space. Suppose that there is a G-equivariant map
σ : PrimA → G/H for a closed subgroupH ofG. In this section, we want to
show that there is a naturally associated Fell bundle p̄ : Q → G×G/H over the
transformation groupoidG×G/H such thatC∗(G,B) andC∗(G×G/H,Q)

are isomorphic (Proposition 15).

Lemma 5. Let σ : PrimA → G/H be a continuous G-equivariant map
as above. Then A is a C0(G/H)-algebra (as in [10, Proposition C.5]) and
A(xH) = A/I (xH), where

I (xH) :=
⋂

{P ∈ PrimA : σ(P ) = xH }.

Proof. By [10, Proposition C.5] and preceding discussion,A is aC0(G/H)-
algebra with fibres A(xH) = A/JxH , where

JxH = span{ϕ · a : a ∈ A, ϕ ∈ C0(G/H) and ϕ(xH) = 0 }.
Thus, we just need to confirm that JxH = I (xH). However, if a(P ) denotes
the image of a ∈ A in the quotient A/P , then for all P ∈ PrimA,

(2) (ϕ · a)(P ) = ϕ
(
σ(P )

)
a(P )

(see the discussion preceding [10, Proposition C.5]). If P ⊃ JxH , then since
the left-hand side of (2) vanishes for all a ∈ A and ϕ ∈ C0(G/H) with
ϕ(xH) = 0, we see that σ(P ) = xH . On the other hand, if σ(P ) = xH , then
using (2), we see that JxH ⊂ P . Therefore JxH = I (xH) as required.
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Corollary 6. For each x ∈ G, let hx : I (A) → I (A) be the Rieffel
homeomorphism B(x)–Ind induced by the imprimitivity bimodule B(x) (see
[8, Proposition 3.24]). Then hx(I (yH)) = I (xyH).

Proof. Since σ is continuous, σ−1(yH) is closed in PrimA. In particular,
P ⊃ I (yH) if and only if σ(P ) = yH . Since hx is containment preserving
and has inverse hx−1 by [8, Theorem 3.29], P ⊃ I (yH) if and only if hx(P ) ⊃
hx

(
I (yH)

)
. But equivariance means that σ

(
hx(P )

) = x · σ(P ). Thus

hx(I (yH)) =
⋂

{hx(P ) : σ(P ) = yH }
=

⋂
{P : σ(P ) = xyH }

= I (xyH).

Remark 7. As noted in [4, Remark 5], ifX is aA–B-imprimitivity bimod-
ule and J is an ideal in A, then the Cohen Factorization Theorem implies
that

span{ a · x : a ∈ J and x ∈ X } = { a · x : a ∈ J and x ∈ X }.
Consequently, we write simply J ·X for the aboveA–B-submodule. Similarly,
we’ll write X · I for the corresponding A–B-submodule when I is an ideal in
B.

For each x ∈ G, B(x) is an A-A-imprimitivity bimodule. Since I (yH)
and I (xyH) are matched up by the Rieffel correspondence, the following is a
consequence of basic Morita theory (see [8, Propositions 3.24 and 3.25]).

Corollary 8. Let x, y ∈ G. Then

(a) B(x) · I (yH) = I (xyH) · B(x),
(b) B(x) · I (yH) is a I (xyH)–I (yH)-imprimitivity bimodule, and

(c) B(x)/B(x) · I (yH) is A(xyH)–A(yH)-imprimitivity bimodule.

It follows immediately from Corollary 8 that the Banach space

Q(x, yH) := B(x)/B(x) · I (x−1yH) = B(x)/I (yH) · B(x)
is an A(yH)–A(x−1yH)-imprimitivity bimodule. Note that the A(yH)-val-
ued inner product on Q(x, yH) is given by taking the appropriate quotient
of the left A-valued inner product on B(x) which is given by the Fell bundle
multiplication. Thus

(3) A(yH)〈[b],[c]〉 = bc∗(yH),
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where [b] denotes the image of b ∈ B(x) in Q(x, yH), and bc∗(yH) is the
image of bc∗ in A(yH).

Let
Q :=

∐
(x,yH)∈G×G/H

Q(x, yH)

and p̄ : Q → G × G/H be the associated bundle. Naturally, we want to
equip Q with a topology and operations making it into a Fell bundle over the
transformation groupoid G × G/H . This will take a bit of work and will be
accomplished in Proposition 13.

If f ∈ �c(G; B), then let �(f )(x, yH) denote the image of f (x) in
Q(x, yH).

Lemma 9. If f ∈ �c(G; B), then (x, yH) �→ ∥∥�(f )(x, yH)∥∥ is upper
semicontinuous and vanishes at infinity on G×G/H .

Proof. Since Q(x, yH) is an imprimitivity bimodule, and in view of (3),
we have

‖�(f )(x, yH)‖2 = ‖f (x)f (x)∗(yH)‖.
Therefore it suffices to show that (x, yH) �→ ‖a(x)(yH)‖ is upper semicon-
tinuous and vanishes at infinity for a ∈ Cc(G,A).

To show upper semicontinuity, it suffices to show that if (xi, yiH) →
(x, yH) and ‖a(xi)(yiH)‖ ≥ ε > 0 for all i, then we also have ‖a(x)(yH)‖ ≥
ε. If ‖a(x)(yH)‖ < ε, then we can find ϕ ∈ Cc(G/H) such that ϕ is identic-
ally one in a neighborhood of yH and such that ‖ϕ · a(x)‖ < ε. Since we can
assume that ϕ(yiH) = 1 for all i, we certainly have ‖a(xi)‖ ≥ ε. But this
contradicts the fact that x �→ ‖a(x)‖ is continuous.

To see that (x, yH) �→ ‖a(x)(yH)‖ vanishes at infinity, suppose that
‖a(xi)(yiH)‖ ≥ ε > 0 for all i. It will suffice to see that {(xi, yiH)} has
a convergent subsequence. Since a has compact support, we can pass to a
subsequence, relabel, and assume that xi → x. Then by continuity, we can
assume that ‖a(x)(yiH)‖ ≥ ε/2 for large i. Since A is a C0(G/H)-algebra,
yH �→ ‖a(x)(yH)‖ must vanish at infinity [10, Proposition C.10(a)]. There-
fore {yiH } must have a convergent subsequence. This completes the proof.

As in [5, Lemma 1.2] and [4, §3.2], there is a nondegenerate homomorphism
ι : A → M

(
C∗(G,B)

)
such that ι(a)f (x) = af (x). Then

�(ι(a)f )(x, yH) = a(yH) ·�(f )(x, yH).
Since ι is nondegenerate, it extends to M(A), and by composition with the
C0(G/H)-structure map of C0(G/H) into the center of M(A), we get a map
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ι̂ : C0(G/H) → M
(
C∗(G,B)

)
. We’ll write ψ · f in place of ι̂(ψ)f . Note

that
�(ψ · f )(x, yH) = ψ(yH)�(f )(x, yH).

Remark 10. If p : B → X is an upper semicontinuous-Banach bundle
and f is a not necessarily continuous section such that there are fi ∈ �0(X; B)

converging uniformly to f , then f ∈ �0(X; B).

Lemma 11. If f ∈ �c(G; B) and θ ∈ C0(G×G/H), then there is a section
θ · f ∈ �c(G; B) such that

�(θ · f )(x, yH) = θ(x, yH)�(f )(x, yH).

Proof. Notice that if b ∈ B(x), then

(4) ‖b‖2 = ‖bb∗‖ = sup
yH∈G/H

‖bb∗(yH)‖ = sup
yH∈G/H

‖b(yH)‖2,

where b(yH) denotes the image of b in the quotient Q(x, yH). (Note that
with this notation, �(f )(x, yH) can also be written as f (x)(yH).) Also,
if θ(x, yH) = (ω ⊗ ϕ)(x, yH) := ω(x)ϕ(yH), for ω ∈ C0(G) and ϕ ∈
C0(G/H), then we can define a continuous section θ · f by θ · f (x) :=
ω(x)(ϕ ·f )(x) (because scalar multiplication is continuous from C×B → B).
Now suppose that we have a finite sum

∑
i ωi ⊗ ϕi of such functions. Then

(5)

∥∥∥∑
i

(ωi ⊗ ϕi) · f
∥∥∥ = sup

x∈G

∥∥∥∑
i

ωi(x)ϕi · f (x)
∥∥∥

= sup
x∈G

sup
yH∈G/H

∥∥∥∑
i

ωi(x)ϕi(yH)f (x)(yH)

∥∥∥
≤

∥∥∥∑
i

ωi ⊗ ϕi

∥∥∥∞
sup
x∈G

sup
yH∈G/H

‖f (x)(yH)‖

=
∥∥∥∑

i

ωi ⊗ ϕi

∥∥∥∞
‖f ‖.

This shows that θ · f is a well defined element of �c(G; B) provided θ ∈
C0(G×G/H) is a finite sum as above.

If we let Q(x) := ∐
yH∈G/H Q(x, yH), then using [4, Theorem 2] and

(4), we get an upper semicontinuous-Banach bundle p̄x : Q(x) → G/H

such that � := { yH �→ b(yH) : b ∈ B(x) } are continuous sections in
�0(G/H ; Q(x)). Since f ∈ � implies ϕ ·f ∈ � for any ϕ ∈ C0(G/H), it fol-
lows that � is uniformly dense in �0(G/H ; Q(x)) (see [7, Lemma A.4] for ex-
ample). Therefore �x : B(x) → �0(G/H ; Q(x)), defined by �x(b)(yH) =
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b(yH), is an isometric isomorphism. In particular, if b ∈ B(x) and ϕ ∈
C0(G/H) then there is a ϕ · b ∈ B(x) such that (ϕ · b)(yH) = ϕ(yH)b(yH).

Now suppose that θ is an arbitrary element of C0(G × G/H) and f ∈
�c(G; B). In view of the above, for each x ∈ G, there is a b(x) ∈ B(x) such
that

b(x)(yH) = θ(x, yH)f (x)(yH) for all yH ∈ G/H.
So it only remains to see that x �→ b(x) is continuous.

Let {θi} be a sequence of functions, which are elementary sums as in (5),
such that θi → θ uniformly. Note that there are gi ∈ �c(G; B) such that

gi(x)(yH) = θi(x, yH)f (x)(yH) for all x ∈ G and yH ∈ G/H.
Computing just as in (5), we have

‖gi(x)− b(x)‖ ≤ ‖θi − θ‖∞‖f (x)‖.
Thus, by Remark 10, x �→ b(x) defines an element of �c(G; B) as required,
and the lemma is proved.

Now let

�cc(G; B) := { f ∈ �c(G; B) : �(f ) vanishes
off a compact set in G×G/H }.

It is a consequence of Lemmas 9 and 11 that� := {�(f ) : f ∈ �cc(G; B)}
satisfies the requirements of [4, Theorem 2]. Thus we can equip p̄ : Q →
G×G/H with the structure of an upper semicontinuous-Banach bundle over
G×G/H such that � ⊂ �c(G×G/H ; Q).

Remark 12 (Comments on Definitions). We equip G × G/H with the
usual Haar system where we identify (G × G/H)(0) with G/H and define
{λyH }yH∈G/H by

λyH (g) =
∫
G

g(x, yH) dx.

There is however a subtlety in defining C∗(G; B). Here, to make the proof of
Proposition 13 more elegant, we are going to treatG as a groupoid. The point
is that then the involution on �c(G; B) is given by f ∗(x) = f (x−1)∗. It is
often more natural when working with a Fell bundle over a group to use the
involution used by Fell & Doran in [1], [2] where f ∗(x) = (x−1)f (x−1)∗
and  is the modular function on the group G. For example, when using the
second formulation, it is much easier to see that one recovers the usual group
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C∗-algebra and crossed product constructions as special cases. Fortunately,
the isomorphism class of C∗(G,B) is unaffected by our choice – see [5,
Remark 1.5].

Proposition 13. As above, if b ∈ B, let b(yH) be the image of b in
Q(p(b), yH). Then if (m, n) ∈ Q(2) = { (m, n) ∈ Q × Q : p̄(m) = p̄(n) },
it follows that (m, n) is of the form (b(yH), b′(p(b)−1yH)) for b, b′ ∈ B.
Then we get a well-defined map from Q(2) to Q by b(yH)b′(p(b)−1yH) :=
bb′(yH). We can also get a well defined involution from Q to Q via b(yH)∗ =
b∗(p(b)−1yH). Then, with respect to these operations, p̄ : Q → G×G/H is
a Fell bundle. Furthermore, Q|H and C I are isomorphic as Fell bundles over
H .

Proof. If (m, n) ∈ Q(2), then (p̄(m), p̄(n)) ∈ (G×G/H)(2). Thus for ap-
propriatex, y, z ∈ G, we must have p̄(m) = (x, yH) and p̄(n) = (z, x−1yH).
Thus we can certainly find b ∈ B(x) and b′ ∈ B(z) such that b(yH) = m

and b(x−1yH) = n. If c ∈ B(x) and c′ ∈ B(z) also satisfy c(yH) = m and
c′(x−1yH) = n, then there are d ∈ I (y ·H) ·B(x) and d ′ ∈ I (x−1yH) ·B(z)
such that c = b + d and c′ = b′ + d ′. Then

cc′ = bb′ + db′ + bd ′ + b′d ′

∈ bb′ + I (yH)B(x)B(z)+ B(x)I (x−1yH)B(z)

+ I (yH)B(x)I (x−1yH)B(z)

which, in view of Corollary 8 as well as the observations that B(x)B(z) =
B(xz) and I (yH)2 = I (yH), is in

bb′ + I (yH) · B(xz).
Therefore cc′(yH) = bb′(yH) in B(xz)/I (yH) ·B(xz). Therefore multiplic-
ation is well-defined. A similar argument holds for the involution.

To establish continuity of multiplication, we first need to observe that if
bi → b in B and if yiH → yH , then

(6) bi(yiH) → b(yH) in Q.

To see this, let p(bi) = xi and p(b) = x, and let f ∈ �c(G; B) be such that
f (x) = b. Since f (xi)− bi → 0x , we must have

‖f (xi)− bi‖ → 0.

But then
‖�(f )(xi, yiH)− bi(yiH)‖ → 0.
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Since �(f )(xi, yiH) → �(f )(x, yH) = b(yH), it follows from [10, Pro-
position C.20] that (6) holds.

Now suppose that (ci, c′i ) → (c, c′) in Q(2) with
(
p̄(ci), p̄(c

′
i )

) = (
(xi, yiH), (zi, x

−1
i yiH)

)
→ (

p̄(c), p̄(c′)
) = (

(x, yH), (z, x−1yH)
)
.

We want to show that cic′i → cc′.
Keep in mind that if f ∈ �c(G; B), then with our conventions, f (x)(yH)

and �(f )(x, yH) both denote the image of f (x) in Q(x, yH). In particular,
if f, g ∈ �c(G; B), then (f (x)g(z))(yH) = �(f )(x, yH)�(g)(z, x−1yH).
Thus if f, g ∈ �c(G; B) are such that�(f )(x, yH) = c and�(g)(z, x−1yH)

= c′, then f (xi)g(zi) → f (x)g(z) in B. Then it follows from (6) that

�(f )(xi, yiH)�(g)(zi, x
−1
i yiH) → �(f )(x, yH)�(g)(z, x−1yH).

Since

‖�(f )(xi, yiH)− ci‖ → 0 and ‖�(g)(zi, x−1
i yiH)− c′i‖ → 0,

we can use [4, Lemma 1] to show that

‖�(f )(xi, yiH)�(g)(zi, x−1
i yiH)− cic

′
i‖ → 0.

Then [10, Proposition C.20] implies that cic′i → cc′. Therefore, multiplication
is continuous. The continuity of the involution is proved similarly.

It now follows easily that axioms (a), (b) and (c) of [7, Definition 1.1] are
satisfied. Furthermore, if (e, yH) ∈ (G×G/H)(0), thenQ(e, yH) is the C∗-
algebra A(yH). So axiom (d) is also satisfied. And we have already observed
that Q(x, yH) is a A(yH)–A(x−1yH)-imprimitivity bimodule. Thus all the
axioms of [7, Definition 1.1] are satisfied and p̄ : Q → G × G/H is a Fell
bundle as required.

To verify the last assertion, we observe that I (eH) = I and Q(h, eH) =
B(h)/B(h) · I = CI (h). Thus, both Q|H and C I are built from

∐
h∈H

CI (h).

Therefore it suffice to see that the identity map is a homeomorphism. But in
any Banach bundle p : A → X, we have ai → a in A if and only if for
some section g ∈ �c(X; A ) with g(p(a)) = a, we have ‖ai − g(p(ai))‖ →
0 (for example, see [7, Lemma A.3]). But if b ∈ CI (h0), then there is a
f ∈ �cc(G; B) such that [f (h0)] = b. But h �→ [f (h)] is a section of C I
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and h �→ �(f )(h, eH) = [f (h)] is also a section of Q|H . It now follows
easily that the identity map is bicontinuous. This completes the proof of the
proposition.

Lemma 14. We have that �cc(G; B) is dense in �c(G; B) in the inductive
limit topology.

Proof. This is a straightforward consequence of [7, Lemma A.4] and (4).

Proposition 15. The map� : �cc(G; B) → �c(G×G/H ; Q) extends to
an isomorphism of C∗(G,B) onto C∗(G×G/H,Q).

Proof. First we’ll show that � is a ∗-homomorphism. Then we’ll see that
� is a bijection of �cc(G; B) onto �c(G×G/H ; Q). We’ll finish by showing
that � and �−1 are bounded with respect to the universal norms.

Since b �→ b(yH) is a bounded linear map of B(x) onto the quotient
B(x)/I (yH) · B(x),

f ∗ g(x)(yH) =
∫
G

(f (z)g(z−1x))(yH) dz

=
∫
G

f (z)(yH)g(z−1x)(z−1yH) dz.

Therefore, ϕ(f ∗ g)(x, yH) = �(f ) ∗�(g)(x, yH), and � preserves multi-
plication. Similarly,

�(f )∗(x, yH) = �(f )(x−1, x−1yH)∗ = (
f (x−1)(x−1yH)

)∗

= f (x−1)∗(yH),

while on the other hand,

�(f ∗)(x, yH) = f ∗(x)(yH) = f (x−1)∗(yH).

Thus, � is a ∗-homomorphism. Clearly, � is injective.
Using Lemma 11, we see that �

(
�cc(G; B)

)
is a C0(G×G/H) module.

Thus [7, Lemma A.4] implies that �
(
�cc(G; B)

)
is inductive limit dense

in �c(G × G/H,Q). Thus if F ∈ �c(G × G/H ; Q), then there are fi ∈
�cc(G; B) such that �(fi) → F in the inductive limit topology. For each
x ∈ G, yH �→ F(x, yH) is (not necessarily continuous) section of p̄x : Qx →
G/H which is uniformly approximated by the continuous sections yH �→
�(fi)(x, yH) = fi(x)(yH). Therefore, by Remark 10, there is af (x) ∈ B(x)
such that f (x)(yH) = F(x, yH). But fi must converge uniformly to f , and
it follows that f ∈ �cc(G; B). But then �(f ) = F .
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Now we notice that∫
G

‖�(f )(x, yH)‖ dx ≤
∫
G

‖f (x)‖ dx.

Thus,
‖�(f )‖I ≤ ‖f ‖I ,

where the I -norms are computed in �c(G×G/H ; Q) and �c(G; B), respect-
ively. Let L be a faithful representation of C∗(G × G/H,Q). Then L ◦ � is
a I -norm decreasing ∗-homomorphism of �cc(G; B), which must extend to a
I -norm decreasing representation L′ of �c(G; B) since �cc(G; B) is I -norm
dense in �c(G; B) by Lemma 14. Therefore

‖�(f )‖ = ‖L(�(f ))‖ = ‖L′(f )‖ ≤ ‖f ‖,
and � is norm decreasing for the universal norms.

But if�(fi) → �(f ) in the inductive limit topology on �c(G×G/H ; Q),
then fi → f in the inductive limit topology on �c(G; B). Thus if R is a
faithful representation of C∗(G,B), then R ◦ �−1 is a ∗-homomorphism R′
of �c(G ×G/H ; Q) which is continuous in the inductive limit topology. By
[7, Remark 4.14], R′ is bounded and

‖f ‖ = ‖R(f )‖ = ‖R′(�(f ))‖ ≤ ‖�(f )‖.
This completes the proof.
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