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A NONCOMMUTATIVE GAUSS MAP

CALEB ECKHARDT

Abstract
The aim of this paper is to transfer the Gauss map, which is a Bernoulli shift for continued fractions,
to the noncommutative setting. We feel that a natural place for such a map to act is on the AF
algebra � considered separately by F. Boca and D. Mundici. The center of � is isomorphic to
C[0, 1], so we first consider the action of the Gauss map on C[0, 1] and then extend the map to �
and show that the extension inherits many desirable properties.

1. Introduction and Notation

Florin Boca in [1] and Daniele Mundici in [6] separately considered an AF
algebra � that is associated with the Farey tessellation. The algebra � exhibits
many interesting properties, not the least of which is the connection between
� and the unit interval [0, 1]. This connection is not merely topological, but
also number theoretic. We briefly explain this connection.

LetZ(�) denote the center of �. As noted in [1], a general result of Bratteli
[2] shows that C[0, 1] ∼= Z(�). Moreover, the maximal ideal space of � is
homeomorphic (when equipped with the topology induced by Prim(�)) to
[0, 1] in a natural way [1, Corollary 12]. For each irrational 0 < θ < 1, let
Iθ denote the maximal ideal of � associated to θ . It was shown in [1], [6]
that �/Iθ ∼= �θ , the Effros-Shen algebra, defined in [4], associated with the
continued fraction expansion of θ .

In other words, if we employ the topological decomposition theory of C∗-
algebras and visualize � as continuous, operator-valued functions on its max-
imal ideal space (a visualization which is usually “incorrect, but fruitful” [8,
pg. 91]), then each function evaluated at θ takes values in the Effros-Shen
algebra �θ . So it is not simply the topology around θ that determines this
visualization, but also the continued fraction expansion of θ .

Given the close connection between � and the continued fraction expan-
sions of numbers in [0, 1], it is natural to try and extend important functions
from number theory (especially those related to continued fractions) to the
C∗-algebra �. The Gauss map might be the most fundamental such function,
hence we take it as our starting point
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Recall the Gauss map G : [0, 1] → [0, 1] defined by G(0) = 0 and
G(x) = 1/x−�1/x� if x �= 0, where �·� denotes the greatest integer function.
One can think of G as the Bernoulli shift for continued fractions. Indeed,
given θ ∈ [0, 1] with continued fraction expansion θ = [a1, a2, . . .] then
G([a1, a2, . . .]) = [a2, a3, . . .]. One can also recover the continued fraction
expansion of θ by implementations of G and �·�.

We first consider the induced action of G on Z(�) = C[0, 1]. First note
that f ◦ G ∈ C[0, 1] if and only if f is a constant function. Therefore we
will consider the “adjoint” action of the Gauss map on C[0, 1]. Let μ denote
Gauss measure on [0, 1] defined by dμ = dθ

ln 2(θ+1) , where dθ denotes Lebesgue

measure. Then G is μ-invariant, i.e., μ(G−1(E)) = μ(E) for every Borel set
E ⊆ [0, 1] (see [5] for details). From this it follows that the map

VG(f )(θ) = f (G(θ)) for f ∈ L2(μ), θ ∈ [0, 1]

is an isometry. A standard calculation reveals that

(1.1) V ∗
G(f )(θ) =

∞∑
s=1

f

(
1

θ + s

)
1 + θ

(θ + s)(θ + s + 1)

and it is routine to verify that V ∗
G(f ) ∈ C[0, 1] when f ∈ C[0, 1]. We mention

that, symbolically, V ∗
G is the Perron-Frobenius operator ofG underμ and refer

the reader to [5, Chapter 2] for details about Perron-Frobenius operators and
their connections to continued fractions.

Furthermore, if we embed C[0, 1] into B(L2(μ)) as f �→ Mf where
Mf (g) = fg, then

(1.2) V ∗
GMf VG = MV ∗

G(f )
.

This defines a unital completely positive map, which we will henceforth denote
by G, on C[0, 1]. Then G is μ-invariant, i.e.,

(1.3)
∫
f dμ =

∫
G(f ) dμ for all f ∈ C[0, 1].

Furthermore G acts on the maximal ideals of C[0, 1] in the same way that
G acts on [0, 1]. Specifically, for each θ ∈ [0, 1] define the maximal ideal
Jθ = {f ∈ C[0, 1] : f (θ) = 0} and for s ∈ N let θs = G−1(θ) ∩ [ 1

s+1 ,
1
s

)
.

Then

(1.4) G(Jθs ) = Jθ .

Hence we are looking for an extension of G to � that satisfies the natural
analogs of (1.2)–(1.4). Therefore, we must first consider what Gauss measure
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should mean on �. Our first step is proving that every state on C[0, 1] has
a unique extension to a trace on � (Theorem 2.6). D. Mundici showed [7,
Theorem 4.5] that the state space of C[0, 1] and the space of tracial states on
� are affinely, weak* homeomorphic. But for our purposes, we will need the
extension property from Theorem 2.6.

For reasons that will become clear, we have to slightly modify the nat-
ural analogs of (1.2) and (1.3). In particular, we use Theorem 2.6 to define
two state extensions, φ and τ , of μ and intertwine between these two GNS
representations to obtain analogs of (1.2) and (1.3). Let (πφ, L2(�, φ)) and
(πτ , L

2(�, τ )) be the GNS representations of � associated with φ and τ . Since
φ and τ are extensions of μ, it follows that L2(μ) ⊆ L2(�, φ), L2(�, τ ) and

πφ(f )|L2(μ) = Mf for every f ∈ Z(�) ∼= C[0, 1].

This allows us to prove the main theorem:

Theorem 1.1. There is a unital completely positive map G̃ : � → � and
an isometry ṼG : L2(�, τ ) → L2(�, φ) such that

(1) G̃|C[0,1] = G.

(2) G̃(Iθs ) = Iθ , for each s ∈ N and θ ∈ [0, 1] (Iθ ∈ Max(�) defined in
[1]).

(3) ṼG|L2(μ) = VG and Ṽ ∗
G|L2(μ) = V ∗

G.

(4) Ṽ ∗
Gπφ(x)ṼG = πτ (G̃(x)) for x ∈ �. Hence Ṽ ∗

Gπφ(f )ṼG|L2(μ) = MG(f )

for f ∈ C[0, 1].

(5) φ(x) = τ(G̃(x)) for x ∈ �.

For the convenience of the reader, we briefly recall the construction of �
from [1]. For n ≥ 0 and 0 ≤ k ≤ 2n we recursively define positive integers
p(n, k) and q(n, k) as follows:

(1.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q(n, 0) = q(n, 2n), p(n, 0) = p(n, 2n);
q(n+ 1, 2k) = q(n, k), p(n+ 1, 2k) = p(n, k) 0 ≤ k ≤ 2n.

q(n+ 1, 2k + 1) = q(n, k)+ q(n, k + 1),

p(n+ 1, 2k + 1) = p(n, k)+ p(n, k + 1), 0 ≤ k ≤ 2n.

Then set r(n, k) = p(n,k)

q(n,k)
. Then � is the inductive limit of the finite dimensional

C∗-algebras
�n =

⊕
0≤k≤2n

Mq(n,k).

with Bratteli diagram as in Figure 1 where the nodes of the nth row is labelled
with the numbers r(n, 0), r(n, 1), . . . , r(n, 2n).
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Figure 1. Bratteli diagram of �

For each n ≥ 0 let En : � → �n be conditional expectations such that

(1.6) EnEm = EmEn for all n,m ≥ 0.

The existence of such conditional expectations is guaranteed by Arveson’s
extension theorem, or since � is AF, one can construct such maps explicitly.
Furthermore for 0 ≤ k ≤ 2n let E(n,k) : � → Mq(n,k) ⊆ �n be conditional
expectations, such that

(1.7) E(n,k)En = EnE(n,k) for n ≥ 0 and 0 ≤ k ≤ 2n.

Note that for each x ∈ � we have

(1.8) lim
n→∞ En(x) = x.

We will use the following notation throughout: For a unital C∗-algebra A, we
let

– Z(A) denote the center of A,

– S (A) denote the state space of A,

– T (A) denote the set of all unital traces of A.

– Mn denote n× n matrices over C,

– τn the unital trace on Mn and 1n ∈ Mn the identity.

– For p

q
∈ Q ∩ [0, 1] in reduced form we define

Mp

q
:= Mq τp

q
:= τq ∈ T (Mq).
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2. State Extensions and Conditional Expectation onto Z(�)

In this section we will construct a conditional expectation from � onto Z(�)
that preserves every τ ∈ T (�). This will provide the key step in the proof of
Theorem 2.6.

Definition 2.1. Let n ≥ 0 and 0 ≤ k ≤ 2n. Define τ(n,k) ∈ T (�) as

τ(n,k)(x) = τq(n,k) ◦ E(n,k)(x).

The following lemma is immediate from (1.6) and (1.7):

Lemma 2.2. For n ≥ 0, 0 ≤ k ≤ 2n and � ≥ 0, we have

τ(n,k) = τ(n+�,2�k).

Proposition 2.3. Let x ∈ �. Define the function fx : Q ∩ [0, 1] → C as

(2.1) fx(r(n, k)) = τ(n,k)(x) for n ≥ 0 and 0 ≤ k ≤ 2n.

Then fx is well-defined and extends to a continuous function on [0, 1].

Proof. If r(n, k) = r(n′, k′) with n′ ≥ n then there is an � ≥ 0 such that
n′ = n+ � and k′ = 2�k. Hence fx is well-defined by Lemma 2.2.

Let n ≥ 0 and 0 < k < 2n. By the relationships defined in (1.5), the
following function is continuous and piecewise affine on [0, 1]:

B(n,k)(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ θ ≤ r(n, k − 1)

q(n, k)(q(n, k − 1)θ
if r(n, k − 1) ≤ θ ≤ r(n, k)− p(n, k − 1))

q(n, k)(p(n, k + 1)
if r(n, k) ≤ θ ≤ r(n, k + 1)− q(n, k + 1)θ)

0 if r(n, k + 1) ≤ θ ≤ 1

We first let x ∈ �n ⊂ � and prove that fx extends to a continuous function
on [0, 1]. Suppose first that 0 < 2k + 1 < 2n and E(n,2k+1)(x) = x. Without
loss of generality suppose that τ(n,2k+1)(x) = 1. We show that fx = B(n,2k+1).

It is clear that fx |[0,r(n,2k)]∪[r(n,2k+2),1] ≡ 0. We now show by induction on
� ≥ 0 that

(2.2) (∀� ≥ 0)(∀ 2�2k < j < 2�(2k + 2))(fx(r(n+ �, j))

= B(n,2k+1)(r(n+ �, j))).
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For � = 0, we have fx(r(n, 2k+1)) = τ(n,2k+1)(x) = 1 = B(n,2k+1)(r(n, 2k+
1)). Suppose now that (2.2) holds for � ≥ 0 and prove (2.2) for �+ 1.

If j = 2i is even, then

fx(r(n+ �+ 1, 2i)) = τ(n+�+1,2i)(x) = τ(n+�,i)(x) = fx(r(n+ �, i))

= B(n,2k+1)(r(n+ �, i)) = B(n,2k+1)(r(n+ �+ 1, 2i)).

Now suppose j = 2i+ 1 is odd. Since B(n,2k+1) is piecewise affine and due to
the relationships in (1.5) we obtain,

B(n,2k+1)(r(n+ �+ 1, 2i + 1))

= q(n+ �, i)

q(n+ �+ 1, 2i + 1)
B(n,2k+1)(r(n+ �, i))

+ q(n+ �, i + 1)

q(n+ �+ 1, 2i + 1)
B(n,2k+1)(r(n+ �, i + 1))

= q(n+ �, i)

q(n+ �+ 1, 2i + 1)
τ(n+�,i)(x)+ q(n+ �, i + 1)

q(n+ �+ 1, 2i + 1)
τ(n+�,i+1)(x)

= τ(n+�+1,2i+1)(x) = fx(r(n+ �+ 1, 2i + 1)).

This shows that (2.2) holds, hence fx extends to a continuous function on
[0, 1].

Now suppose that 0 < 2mk < 2n with k odd and E(n,2mk)(x) = x. Then,

x = E(n−m,k)(x)− E(n−m+1,2k−1)(x)− E(n−m+1,2k+1)(x).

So, by the first part of the proof it follows that fx is continuous.
When x is equal to 1 ⊕ 0 ⊕ · · · ⊕ 0 or 0 ⊕ · · · ⊕ 0 ⊕ 1 ∈ �n, the proof

that fx is continuous is exactly the same as above, so we omit the proof. This
shows that for every n ≥ 0 and each x ∈ �n that fx is continuous. Moreover
note that the linear map x �→ fx defined on

⋃∞
n=1 �n is contractive, hence fx

is continuous for every x ∈ �.

Remark 2.4. We note that the piecewise affine functions B(n,k) appearing
in the proof of Proposition 2.3 are precisely those that appear in the proof of
[6, Theorem 3.3] computing K0(�).

As mentioned in the introduction, we have Z(�) ∼= C[0, 1]. We now con-
struct an explicit isomorphism. For each n ≥ 0, define Zn : C[0, 1] →
Z(�n) ⊂ � by

(2.3) Zn(f ) =
⊕

0≤k≤2n

f (r(n, k))1q(n,k)
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By [1, pg. 977], for each n ≥ 0 we have max{|r(n, k) − r(n, k + 1)| : 0 ≤
k < 2n} = 1/(n+ 1). Hence for m ≥ n we have

‖Zn(f )− Zm(f )‖ ≤ sup{|f (θ)− f (θ ′)| : |θ − θ ′| ≤ 1/(n+ 1)}.
Therefore Zn(f ) is a Cauchy sequence in � because f is uniformly continuous
on [0, 1].

Define Z : C[0, 1] → � by

(2.4) Z (f ) = lim
n→∞ Zn(f ).

Theorem 2.5. The map Z : C[0, 1] → Z(�) is a *-isomorphism. More-
over the map EZ : � → Z(�) defined by

EZ(x) = Z (fx)

is a conditional expectation such that

(2.5) τ (EZ(x)) = τ(x) for every τ ∈ T (�).

Proof. By (2.4) it is clear that Z is a *-monomorphism, and since Zn(f ) ∈
Z(�n) for each n ≥ 0, it follows that Z (f ) ∈ Z(�). We now show that Z is
surjective. Let n ≥ 0 and y ∈ �n. Then

(2.6) y ∈ Z(�n) if and only if y =
⊕

0≤k≤2n

τ(n,k)(y)1q(n,k).

Let x ∈ Z(�). By (2.1) and (2.3) it follows that

Zn(fx) =
⊕

0≤k≤2n

τ(n,k)(x)1q(n,k) ∈ Z(�n).

Since x ∈ Z(�), it follows from (1.8) that

lim
n→∞ dist(En(x), Z(�n)) = 0,

from which we deduce by (2.6) that Zn(fx) → x. Therefore

(2.7) EZ(x) = Z (fx) = lim
n→∞ Zn(fx) = x.

This shows that Z is surjective and also that EZ is a conditional expectation.
We now show that EZ preserves every trace of �. Let τ ∈ T (�). By (1.8) it
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follows that τ is the weak*-limit of τ ◦ En. Since τ ◦ En|�n
∈ T (�n), there is

a convex combination of scalars (λ(n,k))0≤k≤2n such that

τ ◦ En =
∑

0≤k≤2n

λ(n,k)τ(n,k).

It follows that T (�) equals the weak* closure of the convex hull of the set
{τ(n,k) : n ≥ 0, 0 ≤ k ≤ 2n}. Therefore, we only need to check (2.5) for the
traces τ(n,k). To this end, let x ∈ � then

(2.8)
τ(n,k)(x) = fx(r(n, k)) = τ(n,k)(Zn(fx))

= τ(n,k)(Z (fx)) = τ(n,k)(EZ(x)).

Theorem 2.6. The restriction map τ �→ τ |Z(�) defines a weak* homeo-
morphism from T (�) onto S (C[0, 1]). In particular, every state onZ(�) has
a unique tracial extension to �.

Proof. Injectivity and weak*-continuity of the inverse both follow from
(2.5). By (2.8) it follows that the restriction of τ(n,k) to Z(�) ∼= C[0, 1] is the
Dirac measure δ{r(n,k)}, which shows surjectivity.

3. Ideals of � and traces of �

Definition 3.1. Fix θ ∈ [0, 1]. Define τ�
θ ∈ T (�) as the unique tracial

extension of the Dirac measure δ{θ} ∈ S (C[0, 1]) given by Theorem 2.6.

For each θ ∈ [0, 1], we recall the maximal ideals Iθ ⊂ � defined in [1,
Proposition 4]. The following is a consequence of the proof of [1, Proposition 4]
and the correspondence made in Theorem 2.6.

Corollary 3.2. Fix θ ∈ [0, 1]. Then

(3.1) Iθ = {x ∈ � : τ�
θ (x

∗x) = 0}.

Fix p(n,k)

q(n,k)
= p

q
∈ Q ∩ (0, 1) in reduced form. We define the *-homomor-

phism

(3.2) π p

q
: � → Mp

q

as “evaluation along the path r(n, k), r(n + 1, 2k), . . . , r(n + �, 2�k), . . . in
the Bratteli diagram.” Specifically, we have

πp

q
(x) = lim

�→∞ E(n+�,2�k)(x) for x ∈ �.
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It then follows from [1, Proposition 4.(ii)] that, ker(π p

q
) = I p

q
. We note that

(3.3) τ�
p

q

(x) = τ p
q
(π p

q
(x)) for every x ∈ �.

4. Construction of ˜G

In this section we construct our noncommutative Gauss map G̃ : � → �. Let
s ≥ 1. As in [1, (3.1)] we define

Js := J

([
1

s + 1
,

1

s

])
=

⋂
θ∈[ 1

s+1 ,
1
s

] Iθ .

By Theorem 2.6 and Section 3 we have

(4.1) Js = ker
( ⊕

1
s+1<

p

q
∈Q< 1

s

π p

q

)
.

For each s ≥ 1 the Bratteli diagram of �/Js is the subdiagram of the Bratteli
diagram of � obtained by deleting all of the nodes

{r(n, k) : r(n, k) �∈ [1/(s + 1), 1/s]} ∪ {r(n, k) : n < s},
and deleting all edges connected to any of these nodes. See Figure 2 for the
Bratteli diagram of �/J2.

4
11

1
3

5
13

3
8

5
12

2
5

3
7

4
9

1
2

1
3

1
2

1
3

1
2

1
3

1
2

2
5

3
8

3
7

2
5

M3 M2

Figure 2. Bratteli diagram of �/J2

For each s ≥ 1, define the homeomorphism gs : [0, 1] → [1/(s + 1), 1/s] as

gs(θ) = 1

θ + s
,

and recall that these maps are the building blocks for the commutative Gauss
map G : C[0, 1] → C[0, 1] defined in (1.1). Then consider the induced iso-
morphism

(gs)∗ : C[1/(s + 1), 1/s] → C[0, 1] defined by (gs)∗(f ) = f ◦ gs.
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Since our goal is to extend G to a map on �, we first consider extensions of
the maps (gs)∗ as maps from �/Js into �. Unfortunately, there is no hope for
these extensions to also be isomorphisms. Indeed, by considering the Bratteli
diagrams of � and �/Js it is clear that K0(�) ∼= K0(�/Js), but there is no
unit-preserving, positive homomorphism that implements this isomorphism.
Hence � �∼= �/Js .

We do the next best thing by defining a (non-unital) *-monomorphism
Hs : � → �/Js and a unital completely positive (UCP for short) map
Gs : �/Js → � such that GsHs = id�, and such that Gs is an extension
of (gs)∗. More importantly, the maps Gs and Hs will provide a nice relation-
ship (see (4.9)) between T (�) and T (�/Js).

Before constructing our maps, we pause to outline our strategy for extending
the maps (gs)∗.

We consider the case s = 1. The map g1 shrinks [0, 1] in half and then
flips it. We want to mimic this action on the Bratteli diagrams of � and �/J1

(see Figure 3). For example, g1
(

1
2

) = 2
3 , so we would like to construct a

unital, completely positive map T : M2 → M3 such that induced map T̃ :
L2(M2, τ2) → L2(M3, τ3) is an isometry. But any map T that satisfies these
conditions is necessarily a unital *-homomorphism; an impossibility.

This is essentially the reason why we must consider another non-tracial state
extension φ of μ in Theorem 1.1(5). Consider the state ω ∈ S (M3) defined
by

ω(x) = τ3

⎛⎝⎡⎣ 3
2 0 0
0 3

2 0
0 0 0

⎤⎦ x
⎞⎠

and the *-homomorphism T : M2 → M3 defined by

T (x) =
[
x

0

]
Let S : M3 → M2 be the cutdown map such that ST = idM2 .

Let T̃ denote the induced map from L2(M2, τ2) into L2(M3, ω). Then T̃ is
an isometry and

T̃ ∗πω(x)T̃ = πτ2(Sx) for x ∈ M3.

So, our plan is to construct maps on � and �/Js built up from maps similar
to the maps T and S, that are as close to trace preserving as possible, and then
to take an inductive limit.

We now turn to the construction. For n ≥ 0, let An ∈ M2n+1+1,2n+1(Z+) be
the transition matrices for the connecting homomorphisms from �n into �n+1
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such that

(4.2) � = lim−→(�n, An).

For example we have,

A0 =
[ 1 0

1 1
0 1

]
∈ M3,2, A1 =

⎡⎢⎢⎢⎣
1 0 0
1 1 0
0 1 0
0 1 1
0 0 1

⎤⎥⎥⎥⎦ ∈ M5,3, · · ·

In an effort to keep notation to a minimum the matrices An will stand for
both the transition matrices for the connecting homomorphisms and for the
homomorphisms themselves. For n ≥ 0, we define

(�/Js)n :=
⊕

0≤k≤2n

M q(n,k)

p(n,k)+sq(n,k)
=

⊕
0≤k≤2n

Mgs(r(n,k)).

By the description of the Bratteli diagram of �/Js (see also Figure 2) given
above it follows that

(4.3) �/Js = lim−→((�/Js)n, An)

Let �∞(s) denote the s dimensional, commutativeC∗-algebra. Consider the
C∗-algebra,

�∞(s)⊗ � = lim−→(�∞(s)⊗ �n, id�∞(s) ⊗An)
Define S = [ 1 1 . . . 1 ] ∈ M1,s . It is easy to see (using only the fact that
An ∈ M2n+1+1,2n+1(Z+)) that

An(S ⊗ 12n+1) = (S ⊗ 12n+1+1)1s ⊗ An for every n ≥ 0.

Hence, for each n ≥ 0 we are able to define a *-homomorphism

σn : �∞(s)⊗ �n =
⊕

0≤k≤2n

�∞(s)⊗Mp(n,k)

q(n,k)
→

⊕
0≤k≤2n

M q(n,k)

p(n,k)+sq(n,k)
= (�/Js)n

given by the transition matrix S⊗12n+1 ∈ M2n+1,s(2n+1) such that the following
diagram commutes for every n ≥ 0:

(4.4)

(�/Js)n
An−−−−−−−→ (�/Js)n+1

↑
σn

↑
σn+1

�∞(s)⊗ �n
1s⊗An−−−−−−−→ �∞(s)⊗ �n+1
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Let e1, . . . , es ∈ �∞(s) denote the standard basis. For each n ≥ 0 define the
UCP map Vn : (�/J )n → �∞(s)⊗ �n by

Vn(x) = σ−1
n

( s∑
i=1

σn(ei ⊗ 1�n
)xσn(ei ⊗ 1�n

)

)
Define ψs ∈ S (�∞(s)) by

ψs

( s∑
i=1

αiei

)
= 1

s

s∑
i=1

αi.

It now follows from (4.4) that the following diagram commutes for all n ≥ 0:

(4.5)

(�/Js)n
An (�/Js)n+1

σn Vn σn+1 Vn+1

�∞(s)⊗ �n
1s⊗An �∞(s)⊗ �n+1

1s⊗id�n ψs⊗id�n
1s⊗id�n+1 ψs⊗id�n+1

�n
An �n+1

Furthermore,

(4.6) (ψs ⊗ id�n
) ◦ Vn ◦ σn ◦ (1s ⊗ id�n

) = id�n
for all n ≥ 0.

Now, let x ∈ Mp(n,k)

q(n,k)
⊂ �n and y ∈ M q(n,k)

p(n,k)+sq(n,k)
⊂ (�/Js)n. Set p = p(n, k)

and q = q(n, k). Then, by basic properties of the trace it follows that
(4.7)
τ q

p+sq

(
σn(1s ⊗ x)y

)
= τ q

p+sq

(
σn(1s ⊗ x)

s∑
i=1

σn(ei ⊗ 1�n
)yσn(ei ⊗ 1�n

)

)

= sq

p + sq
ψs ⊗ τ p

q

(
σ−1
n

(
σn(1s ⊗ x)

s∑
i=1

σn(ei ⊗ 1�n
)yσn(ei ⊗ 1�n

)

))
= sq

p + sq
ψs ⊗ τ p

q

(
(1s ⊗ x)Vn(y)

)
= sq

p + sq
τ p
q

(
x(ψs ⊗ id�n

(Vn(y)))
)
.
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We now let Ṽs : �/Js → � be the inductive limit of the maps (ψs⊗ id�n
)◦Vn,

which is well-defined by (4.5). We also let σ̃s : � → �/Js be the inductive
limit of the maps σn ◦ (1s ⊗ id�n

), which again are well-defined by (4.5).
Figure 3 displays the mapping σ̃1 in terms of the Bratteli diagrams of � and

�/J1.

σ̃1 : � → �/J1

0
1

0
1

0
1

0
1

1
1

1
1

1
1

1
1

1
3

1
3

2
3

1
2

2
3

1
2

Figure 3. The map σ̃1

Set π = ⊕
1
s+1<

p

q
< 1
s
π p

q
and identify �/Js with π(�) by (4.1). By the Choi-

Effros lifting theorem in [3], there is a UCP lifting
 : �/Js → � of π . Then
let

Gs := Ṽs ◦ π : � → � and Hs := 
 ◦ σ̃s : � → �.

By (4.6), it follows that
GsHs = id� .

It is also routine to verify, using the definitions of σn and Vn, that

(4.8) Gs(xHs(y)) = Gs(x)y for every x, y ∈ �.

By (4.7), we have the following relationship for every x, y ∈ �, and p

q
∈

Q ∩ [0, 1]:

τ�
gs(p/q)

(Hs(x)y) = τ�
q

p+sq
(Hs(x)y) = τ q

p+sq

(
π q

p+sq (Hs(x)y)
)

= sq

p + sq
τ p
q

(
πp

q
(xGs(y))

) = sq

p + sq
τ�
p

q

(xGs(y))

= sgs(p/q)τ
�
p

q

(xGs(y)).

Therefore, by Theorem 2.6, for any θ ∈ [0, 1] we have

(4.9) τ�
gs(θ)

(Hs(x)y) = sgs(θ)τ
�
θ (xGs(y)).

Therefore, by Corollary 3.2, it follows that for any θ ∈ [0, 1], we have

(4.10) Gs(Igs(θ)) = Iθ .
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Moreover, by the description of Z(�) given in Theorem 2.5 and (4.9) it is
clear that

(4.11) Gs(f ) = f ◦ gs for every f ∈ C[0, 1].

For each s ≥ 1, define fs ∈ Z(�) ∼= C[0, 1] as

(4.12) fs(θ) = θ + 1

(θ + s)(θ + s + 1)

Let us now define G̃ : � → � as

(4.13) G̃(x) =
∞∑
s=1

Gs(x)fs.

5. Proof of Theorem 1.1

In this section we will prove the five assertions from Theorem 1.1. First note
that Theorem 1.1(1) follows from (1.1) and (4.11), and (2) follows from (4.10).

First define φ0 := τ�
0 . Then, let θ ∈ [0, 1] with 1

s+1 < θ ≤ 1
s

for some
s ≥ 1. Then define

φθ(x) = τ�
θ (Hs(1))

−1τ�
θ (Hs(1)x) = 1

sθ
τ�
θ (Hs(1)x) for every x ∈ �.

Recall that Gauss measure μ on [0, 1] is defined as the probability measure
dμ = dθ

ln 2(θ+1) , where dθ is Lebesgue measure. Let φ ∈ S (�) be the direct
integral of the states φθ over μ, i.e.,

φ(x) =
∫ 1

0
φθ(x)dμ(θ).

Let τ ∈ T (�) be the unique tracial extension of μ provided by Theorem 2.6.
By uniqueness we have

τ =
∫ 1

0
τ�
θ dμ(θ).

Notice that for every f ∈ C[0, 1] and x ∈ �, we have

(5.1) φθ (f x) = f (θ)φθ (x) and τ�
θ (f x) = f (θ)τ�

θ (x)

It also follows from (5.1) that φ restricted to C[0, 1] is Gauss measure μ.
For any stateψ ∈ S (�), let (L2(�, ψ), πψ) denote the GNS representation

of ψ and 〈·, ·〉ψ the inner product on L2(�, ψ). For x ∈ �, we will denote
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by xψ the image of x in L2(�, ψ) and denote by �ψ the dense subspace of
L2(�, ψ) consisting of the xψ .

By the definitions of φ and τ , we can decompose

L2(�, φ) =
∫ 1

0
L2(�, φθ )dμ(θ) and L2(�, τ ) =

∫ 1

0
L2(�, τ�

θ )dμ(θ).

Furthermore, by (5.1) we have

L2([0, 1], μ) ⊂ L2(�, φ) and L2([0, 1], μ) ⊂ L2(�, τ )

via the identifications

(5.2) f =
∫ 1

0
f (θ)1φθ dμ(θ) and f =

∫ 1

0
f (θ)1τ�

θ
dμ(θ)

for f ∈ L2(μ).
We now define an isometry ṼG : L2(�, τ ) → L2(�, φ) that satisfies (3)–

(5) in Theorem 1.1. As short hand notation, for each vector η ∈ L2(�, φ) and
Borel set E ⊂ [0, 1] we will write

η1E :=
∫
E

η(θ)dμ(θ) ∈
∫ 1

0
L2(�, φθ )dμ(θ)

For each s ≥ 1, define operators on �φ and �τ respectively as

(5.3) H̃s(xτ ) = Hs(x)φ1[ 1
s
, 1
s+1

] and G̃s(xφ) = (Gs(x)fs)τ .

Clearly these maps are contractive, so they extend to operators on L2(�, φ)
and L2(�, τ ) respectively. Now define

ṼG = WOT −
∞∑
s=1

H̃s .

We now show that ṼG is an isometry. Let us first recall fs from (4.12) and note
that ∞∑

s=1

fs(θ) = 1 for every θ ∈ [0, 1].

We will implicitly use this fact throughout the rest of the proof of Theorem 1.1.
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Let du denote Lebesgue measure. Then

〈ṼG(xτ ), ṼG(xτ )〉φ
=

∞∑
s=1

∫ 1
s

1
s+1

φθ(Hs(x)
∗Hs(x)) dμ(θ)

=
∞∑
s=1

∫ 1
s

1
s+1

1

sθ
τ�
θ (Hs(x

∗x)) dμ(θ)

=
∞∑
s=1

∫ 1
s

1
s+1

τ�
1
θ
−s(x

∗x) dμ(θ) (by (4.9))

= 1

ln 2

∞∑
s=1

∫ 1

0
τ�
u (x

∗x)
u+ 1

(u+ s)(u+ s + 1)

du

u+ 1

(
with u = 1

θ
− s
)

(5.4)

=
∫ 1

0
τ�
u (x

∗x)
( ∞∑
s=1

fs(u)

)
dμ(u)

= 〈xτ , xτ 〉τ .
We now calculate Ṽ ∗

G. Let x, y ∈ �, then

〈ṼG(xτ ), yφ〉φ =
∞∑
s=1

∫ 1
s

1
s+1

φθ(y
∗Hs(x)) dμ(θ)

=
∞∑
s=1

∫ 1
s

1
s+1

1

sθ
τ�
θ (y

∗Hs(x)) dμ(θ)

=
∞∑
s=1

∫ 1
s

1
s+1

τ�
1
θ
−s(Gs(y)

∗x) dμ(θ) (by (4.9))

=
∞∑
s=1

∫ 1

0
τ�
θ (Gs(y)

∗x)fs(θ) dμ(θ) (Reasoning as in (5.4))

=
∞∑
s=1

∫ 1

0
τ�
θ (Gs(y)

∗fsx) dμ(θ) (By (5.1))

= 〈xτ ,
∞∑
s=1

G̃s(yφ)〉τ .

= 〈xτ , G̃(y)τ 〉τ .

We now show (3). By (5.2) let f = ∫ 1
0 f (θ)1τθ dμ(θ) ∈ L2(μ) ⊂ L2(�, τ ).
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Then

ṼG(f ) =
∞∑
s=1

∫ 1
s

1
s+1

f

(
1

θ
− s

)
(Hs(1))φθ dμ(θ)

=
∞∑
s=1

∫ 1
s

1
s+1

f

(
1

θ
− s

)
1φθ dμ(θ)

= f ◦G ∈ L2(�, φ).(5.5)

Similarly, one shows that Ṽ ∗
G|L2(μ) = V ∗

G. This proves (3).
We now show (4). It follows from the definition of Gs that for every s ≥ 1

we have ∫
[

1
s+1 ,

1
s

]c L2(�, φθ ) dμ(θ) ⊂ ker(G̃s)

From this and (4.8) it follows that for every x, y ∈ � we have

Ṽ ∗
Gπφ(x)ṼG(yτ ) = Ṽ ∗

G

( ∞∑
s=1

(xHs(y))φ1[ 1
s+1 ,

1
s

])

=
∞∑
s=1

(Gs(xHs(y))fs)τ

=
∞∑
s=1

(Gs(x)yfs)τ (By (4.8))

= πτ (G(x))yτ .

By (5.5) we have ṼG(1τ ) = 1φ , from which it follows that

φ(x) = 〈xφ, 1φ〉 = 〈xφ, ṼG(1τ )〉 = 〈G(x)τ , 1τ 〉 = τ(G(x)).

This proves (5) and finishes the proof of Theorem 1.1.
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