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MAPPING CONES OF POSITIVE MAPS

ERLING STØRMER

Abstract
We study mapping cones of positive maps of B(H) into itself, i.e., cones which are closed under
composition with completely positive maps. As applications we obtain characterizations of linear
functionals with strong positivity properties with respect to so-called symmetric mapping cones,
with special emphasis on separable and PPT states.

Introduction

A substantial part of the theory of positive maps of operator algebras is best
understood by considering cones of maps, especially the so-called mapping
cones of positive maps of B(H) into itself. Given a mapping cone K , maps
with strong positivity properties with respect to K , called K -positive maps,
are important and have been studied in [5], [6], [7], [8], [9]. In general it
is not clear which maps are K -positive, but in [6], Thm. 3.6, we showed a
general result which implies that for a large class of mapping cones, called
symmetric in the sequel, a map of B(H) into itself is K -positive if and only
if it belongs to K . In the present paper we shall give a more accessible proof
of this latter result via a proof which gives more insight into the theory of
mapping cones than the previous proof. Furthermore we shall show that the
dual cone of a symmetric mapping cone is itself a symmetric mapping cone. As
applications of our results we get conditions for linear functionals to be positive
on certain cones of operators defined by mapping cones. We then comment on
the connection with separable states and obtain two new equivalent conditions
for a state on B(H)⊗ B(H)(= B(H ⊗H)) to be a PPT-state.

To be more specific letH be a Hilbert space, which we for simplicity assume
is finite dimensional. For the general case see [6]. Let P(H) denote the set
of positive linear maps of B(H) into itself. By a mapping cone K we mean
a closed, norm closed when H is finite dimensional, subcone of P(H) such
that if φ ∈ K , and α and β ∈ CP(H), the completely positive maps of B(H)
into itself, then α ◦ φ ∈ K and φ ◦ β ∈ K . We say K is symmetric if φ∗ ∈ K

and φt = t ◦ φ ◦ t ∈ K whenever φ ∈ K , where φ∗ is the adjoint map of
φ in the Hilbert-Schmidt structure on B(H), i.e., Tr(φ(a)b) = Tr(aφ∗(b))
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for a, b ∈ B(H), and t is the transpose map on B(H) with respect to an
orthonormal base, and Tr is the usual trace on B(H). For a mapping cone K

we shall use the notation K ∗ (resp. K t ) for the cones consisting of φ∗ (resp.
φt ) with φ ∈ K , and we define the dual cone K ◦ of K to be the cone

K ◦ = {φ ∈ P(H) : Tr(CφCα) ≥ 0 ∀ α ∈ K },
where Cφ and Cα are the Choi matrices of φ and α respectively, see below.

IfA is an operator system, i.e., a closed self-adjoint linear subspace ofB(L)
for a Hilbert space L, we denote by

P(A,K ) = {x ∈ A⊗ B(H) : ι⊗ α(x) ≥ 0 ∀ α ∈ K }.
Here ι denotes the identity map on A. We say a map φ:A → B(H) is K -
positive if the linear functional φ̃ on A⊗ B(H) defined by

φ̃(a ⊗ b) = Tr(φ(a)bt )

is positive onP(A,K ). By [6], Lemma 2.1, φ is positive iff φ̃ is positive on the
cone A+ ⊗B(H)+ generated by tensors a⊗ b with a ∈ A+, b ∈ B(H)+, and
by [6], Thm. 3.2, φ is completely positive iff φ̃ is a positive linear functional
on A⊗ B(H).

If the Hilbert space L satisfies dimL ≤ dimH , then we can consider B(L)
as imbedded in B(H) and thus, in order to study positive linear maps ofA into
B(H), we can, and do, consider A as a subset of B(H). We can now state our
main results.

Theorem 1. LetH be a finite dimensional Hilbert space and K a symmetric
mapping cone on B(H). Then its dual cone K ◦ is also a symmetric mapping
cone.

Theorem 2. Let H be a finite dimensional Hilbert space and A ⊂ B(H)

an operator system. Let K be a symmetric mapping cone on B(H), and let
φ:A → B(H) be a positive map. Then φ is K -positive if and only if φ is the
restriction to A of a map in K .

Note that by [6], Thm. 3.1, if φ is K -positive then φ has a K -positive
extension ψ :B(H) → B(H). Since the restriction to A of a K -positive map
ψ :B(H) → B(H) is K -positive, it suffices to prove Theorem 2 for A =
B(H). We shall therefore for the rest of the paper assume A = B(H) with H
finite dimensional.



mapping cones of positive maps 225

1. Proof of the theorems

If (eij ) is a complete set of matrix units in B(H) then the Choi matrix for a
map φ is the operator

Cφ =
∑
ij

eij ⊗ φ(eij ) ∈ B(H ⊗H).

By [7], Lemma 5, Cφt is the density operator for φ̃, and by [9], Lemma 4,
Cφt = Ctφ . Furthermore, by [1] φ is completely positive iff Cφ ≥ 0, which

holds iff Ctφ ≥ 0. Thus φ̃ ≥ 0 iff φ is completely positive, a result stated under
more general situations in the introduction.

Lemma 3. Let dimH = n and e1, . . . , en be an orthonormal basis for H .
Let J be the conjugation on H ⊗H defined by

Jzei ⊗ ej = z̄ej ⊗ ei

with z ∈ C. Let φ ∈ P(H). Then Cφ∗ = JCφJ .

Proof. Let V = (vij )ij≤n ∈ B(H), and let eij denote the matrix units
corresponding to e1, . . . , en. Then a straightforward computation yields

Ad V (ekl) = V ∗eklV = (v̄kivlj )ij .

Since V ∗ = (v̄ji) it follows that

Ad V ∗(ekl) = V eklV
∗ = (vikv̄j l)ij .

From the definition of J it thus follows that

JCAd V J (zep ⊗ eq)

= J

(∑
ijkl

ekl ⊗ v̄kivlj eij

)
(z̄eq ⊗ ep) =

∑
ijkl

vki v̄lj eij ep ⊗ zekleq

=
(∑
ijkl

vikv̄j lekl ⊗ eij

)
(zep ⊗ eq) = CAd V ∗(zep ⊗ eq),

where we at the third equality sign exchanged (i, j) with (k, l). Since the vec-
tors ep⊗eq form a basis forH⊗H , JCAd V J = CAd V ∗ . Now, if φ is a positive
map, then Cφ is a self-adjoint operator, hence the difference between two pos-
itive operators, which both are the Choi matrices for completely positive maps.
Using the Kraus decompositions for these completely positive maps, we see
that φ is a real linear sum of maps Ad V . Now the adjoint map of Ad V is
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Ad V ∗, as is easiy verified. Applying this to each summand Ad V , we thus get
JCφJ = Cφ∗ , completing the proof of the lemma.

Proof of Theorem 1. We first show K ◦ = (K ◦)t . As remarked in the
introduction Cφt = Ctφ . Thus if φ ∈ K ◦, α ∈ K , then

0 ≤ Tr(CφCα) = Tr(Cφtt Cα) = Tr(Ctφt Cα) = Tr(CφtC
t
α) = Tr(CφtCαt ).

Since K is symmetric, K = K t . Thus Tr(CφtCα) ≥ 0 for all α ∈ K , hence
φt ∈ K ◦. The converse follows by symmetry of the argument.

In order to show K ◦ = (K ◦)∗ note that the map γ (x) = Jx∗J is an
antiautomorphism of B(H ⊗ H), hence is trace invariant. In particular, if
x ∈ B(H ⊗H), then

Tr(JxJ ) = Tr(γ (x∗)) = Tr(x∗).

Thus by Lemma 3 if φ ∈ K ◦, α ∈ K , then

Tr(Cφ∗Cα) = Tr(JCφJCα) = Tr(JCφJCαJJ ) = Tr((CφCα∗)∗),

which is the complex conjugate of the positive number Tr(CφCα∗), as α∗ ∈ K ,
so is itself positive. Thus φ∗ ∈ K ◦, completing the proof.

We now embark on the proof of Theorem 2. For this we need to consider
the cone K � for K a mapping cone on B(H). Following [9] we denote by CK

the closed cone generated by all cones

ι⊗ α∗(B(H ⊗H)+), α ∈ K .

We denote by K � the closed cone

K � = {β ∈ P(H) : ι⊗ β(x) ≥ 0 ∀ x ∈ CK }.
Then K � is a mapping cone characterized by the property that a map φ belongs
to K � iff φ ◦ α∗ ∈ CP(H) for all α ∈ K , see [9], Lem. 7. Furthermore, if
K is symmetric then CK = P(B(H ; K �). We denote by PK the cone of
K -positive maps in P(H). We are now ready to prove Theorem 2. We divide
the proof into some lemmas.

Lemma 4. Let K be a symmetric mapping cone on B(H). Then we have

(i) K ⊂ PK .

(ii) K � = (K �)t .

(iii) If K � = (K �)∗ then K � = PK � .
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Proof. Let π :B(H)⊗ B(H) → B(H) by π(a ⊗ b) = bta. Then by [9],
Lemma 10, Tr ◦ π is positive, and

φ̃ = Tr ◦ π ◦ (ι⊗ φ∗t ).

Since K is symmetric, if φ ∈ K , then φ∗t ∈ K , so that φ̃ is positive on
P(B(H),K ), i.e., φ is K -positive, proving (i).

Ad (ii). We first note that if α, β ∈ B(B(H), B(H)) then

(α ◦ β)t = αt ◦ βt .
Indeed, if x ∈ B(H), then

(α ◦ β)t (x) = ((α ◦ β)(xt ))t = α(β(xt ))t = αt(β(xt )t ) = αt(βt (x)),

proving the assertion.
To show (ii) let φ ∈ P(H). By the characterization of K � mentioned before

the statement of the lemma, φ ∈ K � iff φ ◦ α∗ ∈ CP(H) for all α ∈ K iff
φ ◦ α ∈ CP(H) for all α ∈ K , since K = K ∗. Since a map β ∈ P(H)

belongs to CP(H) iff βt ∈ CP(H), it follows from the above assertion that
φ ∈ K � iff φt ◦ αt = (φ ◦ α)t ∈ CP(H) for all α ∈ K , and since K = K t ,
iff φt ◦ β ∈ CP(H) for all β ∈ K , i.e., iff φt ∈ K �, completing the proof of
(ii).

Ad (iii). Assume further that K � = (K �)∗. By (ii) K � = (K �)t , so K � is
a symmetric mapping cone. Therefore by (i) applied to K �, K � ⊂ PK � . By
[9], Thm. 12, PK � = P◦

K . Let φ ∈ P◦
K . By [9],Thm. 1, α ◦ φ ∈ CP(H) for

all α ∈ K t = K . Hence φ∗ ◦ α∗ = (α ◦ φ)∗ ∈ CP(H) for all α ∈ K . Thus
φ∗ ∈ K � = (K �)∗, so that φ ∈ K �. Thus PK � = P◦

K ⊂ K �, completing the
proof of the lemma.

It should be remarked that the proof of [9], Thm. 1, (i) ⇔ (ii) makes use of
[6], Thm. 3.6. But that is unnecessary in our setting as seen from the proof of
Lemma 7 below.

The proof of the next lemma does not use finite dimensionality of the domain
algebra, so we state it for general C∗-algebras. We denote by PK (M) the set
of K -positive maps of a C∗-algebra M into B(H).

Lemma 5. LetM be aC∗-algebra and K ⊂ L be mapping cones onB(H)
with H finite dimensional, such that PK (M) = PL (M). Then P(M,K ) =
P(M,L ).

Proof. From the definition of P(M,K ) it is clear that K ⊂ L implies
P(M,K ) ⊃ P(M,L ). If φ:B(H) → B(H), and φ̃ is positive on P(M,L ),
then φ ∈ PL (M) = PK (M), so φ̃ is positive on P(M,K ). Since the identity
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operator 1 is an interior point of P(M,L ), see [6], Lemma 2.9, the Hahn-
Banach Theorem for cones implies that P(M,K ) = P(M,L ), proving the
lemma.

Lemma 6. Let K be a symmetric mapping cone. Then

(i) K ⊂ (K �)�.

(ii) P(B(H),K ) = P(B(H), (K �)�).

Proof. We have

K � = {β ∈ P(H) : β ◦ α∗ ∈ CP(H) ∀α ∈ K }.
Let φ ∈ K . Then β ◦ φ∗ ∈ CP(H) for all β ∈ K �, hence φ ◦ β∗ = (β ◦
φ∗)∗ ∈ CP(H) for all β ∈ K �. Thus by the above formula for K � applied to
(K �)�, φ ∈ (K �)�, proving (i).

(ii) follows from from Lemma 5, since by [9], Thm. 12 PK = (PK � )◦ =
P(K �)� , using that by Lemma 4 K � = (K �)t . The proof is complete.

Lemma 7. Let K and L be mapping cones on B(H) such that K ⊂ L

and PK = PL . Then K = L .

Proof. By Lemma 5 P(B(H),K ) = P(B(H),L ). Each operator in
P(B(H),K ) is of the form Cφ with φ:B(H) → B(H). By definition of
P(B(H),K ) we then have, since K ∗ is a mapping cone,

Cφ ∈ P(B(H),K )

⇔ ι⊗ α(Cφ) ≥ 0 ∀ α ∈ K

⇔ Tr((ι⊗ α)(Cφ)Cψ) ≥ 0 ∀ α ∈ K , ψ ∈ CP(H)
⇔ Tr(CφCα∗◦ψ) = Tr(Cφ(ι⊗ α∗)(Cψ)) ≥ 0 ∀ α ∈ K , ψ ∈ CP(H)
⇔ Tr(CφCβ) ≥ 0 ∀ β ∈ K ∗

⇔ φ ∈ (K ∗)◦.

Since P(B(H),K ) = P(B(H),L ), and the same equivalence as the one
above holds for L , we have (K ∗)◦ = (L ∗)◦. Thus K ∗ = (K ∗)◦◦ = (L ∗)◦◦ =
L ∗. But the map φ → φ∗ is a bijection of K onto K ∗, so K = L , completing
the proof.

Lemma 8. Let K be a symmetric mapping cone onB(H). Then K = (K �)�.

Proof. This is immediate from Lemmas 6 and 7

Completion of the proof of Theorem 2. As remarked after the state-
ment of Theorem 2 it suffices to prove it for A = B(H). By Lemma 8, since
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K is symmetric, so that (K �)� is symmetric, by using Lemma 4, [9], Thm. 1,
and Thm. 12 in that order, we have

K = (K �)�

= {β ∈ P(H) : β∗ ◦ α∗ ∈ CP(H) ∀ α ∈ K �}
= {β ∈ P(H) : α ◦ β ∈ CP(H) ∀ α ∈ K � = (K �)t }
= (PK � )◦

= PK .

The proof is complete.

It thus follows from Theorem 1 that PK and P◦
K are symmetric mapping

cones when K is. The next corollary shows the same for K �.

Corollary 9. Let K be a symmetric mapping cone on B(H). Then K � =
K ◦.

Proof. By [9], Lemma 7 and Thm. 1, and then Theorem 1 we get

K � = {β ∈ P(H) : β ◦ α∗ ∈ CP(H) ∀ α ∈ K }
= {β ∈ P(H) : α ◦ β∗ ∈ CP(H) ∀ α ∈ K }
= {β∗ ∈ P(H) : α ◦ β ∈ CP(H) ∀ α ∈ K }
= {β∗ ∈ P(H) : β ∈ (PK )

◦}
= {β∗ ∈ P(H) : β ∈ K ◦}
= (K ◦)∗

= K ◦.

The proof is complete.

2. Linear functionals

In this section we apply the theorems to linear functionals. The first result is
closely related to [9], Theorem 1, applied to the dual cone K ◦ of K . Then
we consider applications to separable and PPT-states on B(H) ⊗ B(H)(=
B(H ⊗H)).

Theorem 10. Let K be a symmetric mapping cone on B(H), and let ρ be
a linear functional on B(H ⊗H) with density operator h. Then the following
conditions are equivalent.

(i) ρ = φ̃ with φ ∈ K ◦.

(ii) ρ(Cα) ≥ 0 for all α ∈ K .
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(iii) ι⊗ α(h) ≥ 0 for all α ∈ K .

(iv) ρ ◦ (ι⊗ α) ≥ 0 for all α ∈ K .

(v) ρ is positive on the cone {x ∈ B(H ⊗H) : ι⊗ α(x) ≥ 0 ∀ α ∈ K ◦}.
Proof. By [6], Lemma 2.1 ρ = φ̃ with φ:B(H) → B(H). By [7],

Lemma 5, and [9], Lemma 4, we have h = Cφt = Ctφ . Let α ∈ K , then
we have

ρ(Cα) = Tr(hCα) = Tr(CtφCα).

Since K = K t it follows that (ii) holds iff φ ∈ K ◦, and by Theorem 2 iff
φ ∈ P◦

K . An application of [9], Thm. 1, now shows the equivalence of (i) with
(iii) and (iv). To show the equivalence of (iv) and (v) note that (iv) holds iff ρ
is positive on the cone generated by ι⊗ α(B(H ⊗H)+) for all α ∈ K , i.e., ρ
is positive on CK . But by [9], Lemma 11,

CK = P(B(H),K �) = {x ∈ B(H ⊗H) : ι⊗ α(x) ≥ 0 ∀ α ∈ K �}.
Thus an application of Corollary 9 completes the proof.

Remark 11. By [9], Thm. 1(iv), it follows that the dual cone of a mapping
cone is itself a mapping cone. In particular this holds for P(H) and the cone
S(H) of superpositive, also called entanglement breaking maps, generated by
maps φ(x) = ω(x)a, where ω is a state on B(H) and a ∈ B(H)+. By [6],
Lemma 2.4, S(H) is the minmal and P(H) the maximal mapping cones on
B(H), hence S(H) = P(H)◦. We have by [3], or by [7], Thm. 2, that a state
ρ = φ̃ is separable iff φ ∈ S(H) = P(H)◦. Thus by Theorem 10 applied to
K = P(H)we see that a state ρ on B(H ⊗H) is separable iff it is positive on
the coneC consisting of x ∈ B(H ⊗H) such that ι⊗ω(x) ≥ 0 for all states ω
onB(H). This result is true for states onA⊗B(H)withA an operator system,
see [8], Prop. 1, and has recently been extended to operator spaces in [4]. Note
that x = ∑

ai ⊗ bi ∈ B(H ⊗ H) belongs to the cone C above iff η(x) ≥ 0
for all separable states η of B(H ⊗H). Indeed, letting ω and η denote states
on B(H) we have

x ∈ C ⇔ 0 ≤ ι⊗ ω
(∑

ai ⊗ bi

)
=

∑
aiω(bi)⊗ 1 ∀ ω

⇔
∑

aiω(bi) ≥ 0 ∀ ω
⇔

∑
η(ai)ω(bi) = η

(∑
aiω(bi)

)
≥ 0 ∀ η, ω

⇔ η ⊗ ω(x) ≥ 0 ∀η, ω
⇔ τ(x) ≥ 0

for all separable states τ on B(H ⊗H).
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The reader should also notice that condition (iii) in Theorem 10 corresponds
to the Horodecki Theorem [2] for separable states.

If A is an operator system a state ρ on A ⊗ B(H) is called a PPT-state
if ρ ◦ (ι ⊗ t) is also a state. Here PPT is an abreviation for “positive partial
transpose”. Let P denote the symmetric mapping cone consisting of maps φ
in P(H) which are both completely positive and copositive, where the latter
means that t ◦φ is completely positive. It is known [7], Prop. 4, that ρ is PPT iff
ρ = φ̃ with φ ∈ P , and ifA = B(L) for some Hilbert spaceL, by [7], Thm. 8,
iff ι ⊗ t (h) ≥ 0, where h is the density operator for ρ. Using Theorem 2 we
can add two more equivalent conditions for a state on B(H) ⊗ B(H) to be
PPT.

Theorem 12. Let H be a finite dimensional Hilbert space and ρ a linear
functional on B(H)⊗ B(H). Then the following conditions are equivalent.

(i) ρ is a PPT-state.

(ii) ρ is positive on the set E = {x ∈ B(H ⊗H) : x ≥ 0 or ι⊗ t (x) ≥ 0}.
(iii) ρ is positive on the cone {x ∈ B(H ⊗H) : ι⊗ α(x) ≥ 0 ∀ α ∈ P}.

Proof. As mentioned before ρ = φ̃ with φ:B(H) → B(H), and ρ is a
PPT-state iff φ ∈ P , which by [9], Lemma 14, holds iff ρ ≥ 0 on E. Thus
(i) ⇔ (ii). Condition (iii) means that φ is P -positive, which by Theorem 2
means that φ ∈ P , which again is equivalent to ρ being a PPT-state. This
proves (i) ⇔ (iii). The proof is complete.

A variation of condition (ii) in Theorem 12 is [8], Cor. 19, where it is shown
that φ is decomposable, or equivalently ρ = φ̃ is PPT, iff ρ is positive on the
cone {x ∈ B(H ⊗H)+ : ι⊗ t (x) ≥ 0}.
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