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ALGEBRAIC QUANTUM HYPERGROUPS
OF DISCRETE TYPE
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Abstract
In this paper we will study some structures of algebraic quantum hypergroups. First, we construct
more examples of algebraic quantum hypergroups of discrete type. Next, we introduce the notion
of a generalized quasi-Frobenius multiplier Hopf algebra and then show that generalized quasi-
Frobenius multiplier Hopf algebras are a class of algebraic quantum hypergroups of discrete type.
We also give some equivalent conditions for an algebraic quantum group to be of discrete type.
Finally, we study sub-algebraic quantum hypergroups of discrete type and quotients of algebraic
quantum hypergroups of discrete type.

Introduction

The concept of a multiplier Hopf algebra introduced by Van Daele in [4]
extends the notion of a Hopf algebra to the setting of nonunital algebras. An
important difference with the situation for ordinary Hopf algebras is that the
comultiplication of a multiplier Hopf algebra A takes values in the multiplier
algebra M(A ⊗ A) and not in A ⊗ A itself. Because of the occurrence of
multipliers, certain constructions for Hopf algebras need to be carried out
more carefully in this context.

Algebraic quantum groups are regular multiplier Hopf algebras with in-
tegrals. They have nice properties like admitting a dual quantum group and
satisfying the analogue of the Pontryagin duality [6]. We notice that the study
of regular multiplier Hopf algebras of discrete type was given in 1999 by
Van Daele and Zhang [7].

Recently, motivated by hypergroups, algebraic quantum hypergroups were
introduced by Delvaux and Van Daele in [2]. They generalize algebraic quan-
tum groups in the following sense. An algebraic quantum hypergroup is an
associative algebra with a non-degenerate product, with a regular coproduct
� : A → M(A⊗ A) which is not necessarily a homomorphism of algebras,
with counit ε, with a faithful integral ψ and with an antipode S : A → A that
is a bijective antimorphism of algebras satisfying: S((ψ ⊗ ι)(b ⊗ 1)�(a)) =
(ψ ⊗ ι)(�(b)(a⊗ 1)) for all a, b ∈ A. A basic example of algebraic quantum
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hypergroup is the algebraCc(G)of compactly supported functions on a discrete
group G with a finite subgroup H of order n. The coproduct � : Cc(G) →
M(Cc(G)⊗Cc(G)) is given by�(f )(p, q) = 1

n

∑
h∈H f (phq) for all p, q ∈

G. These algebraic quantum hypergroups were recently generalized to the
setting of bornological quantum hypergroups in [6].

In this paper we will provide new examples of algebraic quantum hyper-
groups that are not algebraic quantum groups and study some structures of
algebraic quantum hypergroups.

An outline of the paper is as follows. In Section 1, we construct more
examples of algebraic quantum hypergroups of discrete type (see Example 1.5
and Example 1.8). These examples can be regarded as generalizations of a well-
known example of algebraic quantum groups given in [3, p. 496], see also [1,
2.2.1]. In Section 2, we introduce the notion of a generalized quasi-Frobenius
multiplier Hopf algebra (see Definition 2.1) and then show that generalized
quasi-Frobenius multiplier Hopf algebras are a class of algebraic quantum
hypergroups of discrete type (see Theorem 2.9). We also give a characterization
of generalized quasi-Frobenius multiplier Hopf algebras (see Theorem 2.13),
generalizing the results in [7]. In Section 3, we give some equivalent conditions
for an algebraic quantum group to be of discrete type (see Theorem 3.7). In
Section 4, we study sub-algebraic quantum hypergroups of discrete type (see
Theorem 4.1) and quotients of algebraic quantum hypergroups of dicrete type
(see Theorem 4.5).

1. More Examples of Algebraic Quantum Hypergroups

The following definition can be found in [2] or [6].

Definition 1.1. The data (A,m,�, ε, S, ψ) is said to be an algebraic
quantum hypergroup if the following conditions hold:

• (A,m) is an associative algebra with a non-degenerate product m.
• � is a regular coproduct on A, i.e., � : A → M(A⊗ A) is a linear map

such that�(a)(1 ⊗ b),�(a)(b⊗ 1), (a⊗ 1)�(b) and (1 ⊗ a)�(b) belong to
A⊗ A for all a, b ∈ A and such that

(a ⊗ 1 ⊗ 1)(�⊗ ι)(�(b)(1 ⊗ c)) = (ι⊗�)((a ⊗ 1)�(b))(1 ⊗ 1 ⊗ c)

for all a, b, c ∈ A.
• ε is a counit on A, i.e., ε : A → k is a homomorphism of algebras such

that (ε ⊗ ι)�(a) = a and (ι⊗ ε)�(a) = a for all a ∈ A.
• ψ is a faithful right integral on A, i.e., a non-zero linear functional on A

satisfying
(ψ ⊗ ι)�(a) = ψ(a)1

for all a ∈ A.
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• There is a bijective antimorphism of algebras S : A → A satisfying:

(1.1) S((ψ ⊗ ι)(b ⊗ 1)�(a)) = (ψ ⊗ ι)(�(b)(a ⊗ 1))

for all a, b ∈ A.

Let A be an algebraic quantum hypergroup. An element h ∈ A is called a
right cointegral if ha = ε(a)h for all a ∈ A. A similar definition for a left
cointegral.

An algebraic quantum hypergroup (A,�) is called of discrete type if there
exists a right cointegral in A. An algebraic quantum hypergroup (A,�) is
called of compact type if the algebra A has an identity (and hence that�(1) =
1 ⊗ 1).

Remark. (1) Observe that it is not assumed that� is an algebra morphism
in an algebraic quantum hypergroup.

(2) ([2, Proposition 2.1]) Let A be an algebraic quantum hypergroup. Then
S is necessarily an antimorphism of coalgebras and ε(S(a)) = ε(a) for all
a ∈ A.

Proposition 1.2. Let A be an algebraic quantum group of discrete type
with a cointegral h ∈ H . Then

�(h)(a ⊗ 1) = �(h)(1 ⊗ S(a))

for all a ∈ A.

Proof. We choose a right integralψ onA such thatψ(h) = 1. By Eq. (1.1),
we have

S(a) = (ψ ⊗ ι)(�(h)(a ⊗ 1)) for all a ∈ A.
Hence

(ψ ⊗ ι)(�(h)(ab ⊗ 1)) = (ψ ⊗ ι)(�(h)(b ⊗ S(a))) for all a, b ∈ A.
For all ω ∈ A′, by applying ω to both sides of the above equation, we get

ψ(((ι⊗ ω)�(h))(a ⊗ 1) · b) = ψ(((ι⊗ ω)�(h))(1 ⊗ S(a)) · b)
for all a, b ∈ A. Since ψ is faithful, we have

((ι⊗ ω)�(h))(a ⊗ 1) = ((ι⊗ ω)�(h))(1 ⊗ S(a)) for all a ∈ A.
Thus, we obtain

�(h)(a ⊗ 1) = �(h)(1 ⊗ S(a))

for all a ∈ A. This completes the proof of the proposition.
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Example 1.3. Any regular multiplier Hopf algebra of discrete type is an
algebraic quantum group and so it is an algebraic quantum hypergroup of
discrete type (see [7], [2]).

Example 1.4 (Motivating example, see [2]). Given a groupGwith identity
e and a finite subgroupH ofG. LetA be the algebra of complex functions with
finite support on G and constant on double H -cosets with pointwise product.
The coproduct � is defined by

�(f )(p, q) = 1

n

∑
h∈H

f (phq)

where n is order of H and p, q ∈ G and f ∈ A. The counit ε is given by
ε(f ) = f (e). The right integralψ is given byψ(f ) = ∑

p∈G f (p) and the left
integral ϕ is equal toψ . The right cointegral t inA is the function that is 1 onH
and 0 everywhere else. In this case, a right cointegral is also a left cointegral.
By [2, Example 3.16], we know that A is an algebraic quantum hypergroup of
discrete type. The map S : A → A defined by S(f )(p) = f (p−1) satisfies
the following property:

S(f )(p) = ((ψ ⊗ ι)(�(t)(f ⊗ 1)))(p) =
∑
q∈G

(�(t)(f ⊗ 1))(q, p)

=
∑
q∈G

f (q)�(t)(q, p) =
∑
q∈G

f (q)
1

n

∑
h∈H

t (qhp)

=
∑
h,l∈H

1

n
f (lp−1h) = f (p−1)

for all f ∈ A and p ∈ G. It is straightforward to check that the following
identities in general do not hold for A:

m((S ⊗ 1)(�(f )(1 ⊗ g))) = ε(f )g,

m((1 ⊗ S)((f ⊗ 1)�(g))) = ε(g)f

for all f, g ∈ A.

We now recall that the well-known multiplier Hopf algebra B in [3, p. 496]
(see also [1, 2.2.1]) is a vector space with the linear basis given by {ωp,i | p ∈
Z and i = 0, 1}. The product in B is given by the formulas

ωp,iωq,j = δp−q,j ωq,i+j

for all p, q ∈ Z and i, j ∈ {0, 1}.
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The coalgebra structure onB is given by the following formula. Take p ∈ Z
and i ∈ {0, 1}

�(ωp,i) =
∑

r∈Z, i≥s∈{0,1}
(−1)(p−r)sωr,s ⊗ ωp−r,i−s .

Observe that the unit in M(B) is given as 1 = ∑
j∈Z ωj,0.

The following example is a generalization of the above example in order to
get an infinite-dimensional algebraic quantum hypergroup.

Example 1.5. Fix a natural number n ∈ N and set N≤n = {0, 1, 2, . . . , n}.
We define A≤n as the complex infinite-dimensional algebra generated by a set
{Xi,p, Yj,q | p, q ∈ Z, i, j ∈ N≤n} with the following relations:

Xi,pXj,q =
{
δp,qXi+j,p, i + j ≤ n,

0, i + j > n,

Xi,pYj,q =
{
δp,q+1Yi+j,q , i + j ≤ n,

0, i + j > n,

Yj,qXi,p =
{
δp,qYi+j,q , i + j ≤ n,

0, i + j > n,

Yi,pYj,q = 0

for all p, q ∈ Z and i, j ∈ N≤n.
• The coproduct on A≤n is given by:

�(X0,p) =
∑
r∈Z

X0,r ⊗X0,p−r , �(Xn,p) =
∑
r∈Z

n∑
i=0

Xi,r ⊗Xn−i,p−r ,

�(Xi,p) =
∑
r∈Z

X0,r ⊗Xi,p−r +
∑
r∈Z

Xi,r ⊗X0,p−r for all 1 ≤ i < n,

�(Y0,p) =
∑
r∈Z

(−1)rX0,r ⊗ Y0,p−r +
∑
r∈Z

Y0,r ⊗X0,p−r ,

�(Yn,p) =
∑
r∈Z

n∑
i=0

(−1)rXi,r ⊗ Yn−i,p−r +
∑
r∈Z

n∑
i=0

Yi,r ⊗Xn−i,p−r ,

�(Yi,p) =
∑
r∈Z

(−1)rX0,r ⊗ Yi,p−r +
∑
r∈Z

Y0,r ⊗Xi,p−r

+
∑
r∈Z

(−1)rXi,r ⊗ Y0,p−r +
∑
r∈Z

Yi,r ⊗X0,p−r for all 1 ≤ i < n

for all p ∈ Z.
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It is straightforward to check that � as above is coassociative.
• The counit on A≤n is given by:

ε(Xi,p) = δi,0δp,0 and ε(Yi,p) = 0

for all p ∈ Z and i ∈ N≤n.
If n ≥ 2, it is straightforward to check that � is not an algebra map. For

example, take n = 5. We have X5,p = X4,pX1,p and

�(X4,p)�(X1,p) =
(∑
r∈Z

X0,r ⊗X4,p−r +
∑
r∈Z

X4,r ⊗X0,p−r
)

×
(∑
t∈Z

X0,t ⊗X1,p−t +
∑
t∈Z

X1,r ⊗X0,p−t
)

=
∑
r∈Z

X0,r ⊗X5,p−r +
∑
r∈Z

X1,r ⊗X4,p−r

+
∑
t∈Z

X4,t ⊗X1,p−t +
∑
t∈Z

X5,r ⊗X0,p−t

and this is not equal to �(X5,p) for all p ∈ Z.
The right cointegral in A≤n is given by Yn,0 and the left cointegral in A≤n

is given by Yn,−1. The right integral ψ is given by:

ψ(Xi,p) = 0, ψ(Yi,p) = δi,n

for all p ∈ Z and i ∈ N≤n. The left integral ϕ is given by:

ϕ(Xi,p) = 0, ϕ(Yi,p) = δi,n(−1)p

for all p ∈ Z and i ∈ N≤n.
• Define a linear map S on A≤n by:

S(Xi,p) = Xi,−p, S(Yi,p) = (−1)p+1Yi,−p−1

for all p ∈ Z and i ∈ N≤n. Then S is bijective.
It is straightforward to verify that S is both an anti-algebra map and an anti-

coalgebra map. It is also straightforward to check that the following identities
in general do not hold for A:

m((S ⊗ 1)(�(a)(1 ⊗ b))) = ε(a)b,

m((1 ⊗ S)((a ⊗ 1)�(b))) = ε(b)a

for all a, b ∈ A≤n.
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Remark 1.6. In Example 1.5, we consider A≤0, which has the linear basis
given by {X0,p, Y0,p | p ∈ Z}. Then there is the following isomorphism as
multiplier Hopf algebras:

	 : A≤0 → Bcop, X0,p �→ ωp,0, Y0,p �→ ωp,1

for all p ∈ Z.

In particular, we have

Proposition 1.7. With the above notations as in Example 1.5. Then

(1) A≤0 is an algebraic quantum group of discrete type.
(2) A≤1 is an algebraic quantum group of discrete type.
(3) If n ≥ 2, then A≤n is an algebraic quantum hypergroup of discrete type.

Example 1.8. Fix an odd natural numbern ∈ N. Let N≤n = {0,1,2, . . . , n}.
Denote the set of even numbers in N≤n by N≤n(ev) and denote the set of odd
numbers in N≤n−1 by N≤n(od). Let A≤n(od) be the algebra as in Example 1.5
with the same counit as in Example 1.5, with the same coproduct � on the
elements X0,p, Xn,p, Y0,p and Yn,p as in Example 1.5, for all p ∈ Z, but with
a different coproduct on the elements Xi,p and Yi,p, given by:

�(Xi,p) =
∑
r∈Z

X0,r ⊗Xi,p−r +
∑
r∈Z

Xi,r ⊗X0,p−r for all i ∈ N≤n(od),

�(Xi,p) =
∑
r∈Z

X0,r ⊗Xi,p−r +
∑
r∈Z

X1,r ⊗Xi−1,p−r

+
∑
r∈Z

Xi−1,r ⊗X1,p−r +
∑
r∈Z

Xi,r ⊗X0,p−r for all i ∈ N≤n(ev),

�(Yi,p) =
∑
r∈Z

(−1)rX0,r ⊗ Yi,p−r +
∑
r∈Z

Y0,r ⊗Xi,p−r

+
∑
r∈Z

(−1)rXi,r ⊗ Y0,p−r +
∑
r∈Z

Yi,r ⊗X0,p−r for all i ∈ N≤n(od),

�(Yi,p) =
∑
r∈Z

(−1)rX0,r ⊗ Yi,p−r +
∑
r∈Z

Y0,r ⊗Xi,p−r

+
∑
r∈Z

(−1)rX1,r ⊗ Yi−1,p−r +
∑
r∈Z

Y1,r ⊗Xi−1,p−r

+
∑
r∈Z

(−1)rXi−1,r ⊗ Y1,p−r +
∑
r∈Z

Yi−1,r ⊗X1,p−r

+
∑
r∈Z

(−1)rXi,r ⊗ Y0,p−r +
∑
r∈Z

Yi,r ⊗X0,p−r for all i ∈ N≤n(ev)

for all p ∈ Z.
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It is straightforward to check that A≤n(od) have the same cointegrals, integ-
rals and antipode as in Example 1.5.

Similarly, we have

Proposition 1.9. Take the notations as in Example 1.8. Then

(1) A≤1(od) is an algebraic quantum group of discrete type.

(2) If n ≥ 3 then A≤n(od) is an algebraic quantum hypergroup of discrete
type.

2. Generalized Quasi-Frobenius Multiplier Hopf Algebras

Let A be an algebra with a non-degenerate product. We now consider the dual
space A′ of A as a right A-module for the natural action of A defined by
ωa = ω(a·) for all a ∈ A and ω ∈ A′. We denote A′A by Ã.

Definition 2.1. The data (A,m,�, ε, S, h) is said to be a generalized
quasi-Frobenius multiplier Hopf algebra if the following conditions hold:

(a) (A,m) is an associative algebra with a non-degenerate product m.

(b) � is a regular coproduct on A in the sense of Definition 1.1.

(c) ε is a counit on A in the sense of Definition 1.1.

(d) h ∈ A such that if (ω ⊗ ι)�(h) = 0, then ω = 0 for all ω ∈ A′ and if
(ι⊗ ω)�(h) = 0, then ω = 0 for all ω ∈ A′.

(e) S : A → A is an anti-automorphism of coalgebras satisfying

(2.1) �(h)(a ⊗ 1) = �(h)(1 ⊗ S(a))

for all a ∈ A.

If moreoverA is a ∗-algebra and� is a ∗-map, then we call the data (A,m,�,
ε, S) a ∗-generalized quasi-Frobenius multiplier Hopf algebra.

Remark here that for a regular multiplier Hopf algebra of discrete type,
the concept of quasi-Frobenius multiplier Hopf algebra (with different notion
there they call it Frobenius algebra) was first appeared in [7, Theorem 3.3].

Example 2.2. Let (A,�) be an algebraic quantum hypergroup with the
right integral ψ on A. Then by [2], we have the dual Â = {ψ(·a) | a ∈ A} =
{ψ(a·) | a ∈ A} to A with the following properties:

• Â is an associative algebra with a non-degenerate product given by
(ω1ω2)(x) = (ω1 ⊗ ω2)�(x) for all ω1, ω2 ∈ Â and x ∈ A (see [2, 3.2]).

• There exists a regular coproduct �̂ on Â given by 〈�̂(ω), x⊗y〉 = ω(xy)

for all ω ∈ Â and x, y ∈ A (see [2, 3.2]).
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• There is a counit ε̂ on Â given by ε̂(ω) = ψ(a) for all ω = ψ(·a) with
a ∈ A (see [2, 3.2]).

• If A has an identity, then by [2, 3.3] ψ is a right cointegral in Â. Fur-
thermore, if (z ⊗ ι)�̂(ψ) = 0 for all z = ̂̂ω ∈ A′, then we compute, for all
a ∈ A 〈�̂(ψ), z⊗ a〉 = 0.

Hence
ψ(za) = 0.

Since ψ is faithful, we have ̂̂ω = z = 0.
Similarly, we have that if (ι⊗ z)�̂(ψ) = 0, then z = 0 for all z = ̂̂ω ∈ A′.
• There exists a map Ŝ : Â → Â defined by Ŝ(ω) = ω ◦ S for all ω ∈ Â.

Then by [2, Theorem 3.11], Ŝ is an anti-automorphism of coalgebras. If A has
an identity, then we have, for all a, b ∈ A and ω ∈ Â,

(�̂(ψ)(ι⊗ Ŝ(ω)))(b ⊗ a) = (ψ ⊗ Ŝ(ω))((b ⊗ 1)�(a))

= ω(S((ψ ⊗ ι)((b ⊗ 1)�(a))))

= ω((ψ ⊗ ι)(�(b)(a ⊗ 1)))

= (�̂(ψ)(ω ⊗ 1))(b ⊗ a)

and so �̂(ψ)(ω ⊗ 1) = �̂(ψ)(ι ⊗ Ŝ(ω)). Therefore, if A is an algebraic
quantum hypergroup of compact type, then Â is a generalized quasi-Frobenius
multiplier Hopf algebra (see [2, 1.13]).

Proposition 2.3. Let (A,m,�, ε, S, h) be a generalized quasi-Frobenius
multiplier Hopf algebra. Then

(1) The map 
 : Ã → A defined by 
(ω) = (ω ⊗ ι)�(h), is bijective.

(2) The map 
′ : Ã → A defined by 
′(ω) = (ι⊗ ω)�(h), is bijective.

(3) The map L : A′ → M(A) defined by L(ω) = (ω ⊗ ι)�(h), is bijective.

(4) The mapL′ : A′ → M(A) defined byL′(ω) = (ι⊗ω)�(h), is bijective.

(5) The space of M(A) coincides with the dual space Ã′of Ã.

(6) For all a ∈ A, if �(h)(1 ⊗ a) = 0, then a = 0.

Proof. (1)–(4). By Definition 2.1(d), we know that these maps 
,
′, L
and L′ are injective. We have to prove that they are also surjective. Suppose,
e.g., that 
 is not surjective. Then it follows the proof of [7, Proposition 2.6]
that we deduce a contradiction.

(5). Follows from the proof of [7, Proposition 2.9].
(6). For all a ∈ A, if�(h)(1 ⊗ a) = 0, then we have (1 ⊗ω(·a))�(h) = 0

for all ω ∈ A′. By Definition 2.1(d) we have that ω(·a) = 0. Thus we have
a = 0.
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Theorem 2.4. If (A,m,�, ε, S, h) is a generalized quasi-Frobenius mul-
tiplier Hopf algebra, then there exists an integral on A.

Proof. By Proposition 2.3(3), we can chooseψ ∈ A′ so that (ψ⊗ι)�(h) =
1 ∈ M(A). By Proposition 2.3(2), we may take a ∈ A and we may write
a = 
′(ω) with ω ∈ Ã. Now write ω = f (b·) such that ψ(a) = f (b). For
any x ∈ A we have

(ψ ⊗ ι)(�(a)(1 ⊗ c)) = (ψ ⊗ ι)(�((1 ⊗ ω)�(h))(1 ⊗ c ⊗ 1))

= (ι⊗ ι⊗ ω)((ι⊗�)((ψ ⊗ ι)�(h)))(1 ⊗ c ⊗ 1)

= f (b)c = ψ(a)c.

As the product in A is non-degenerate, we get (ψ ⊗ ι)�(a) = ψ(a). Thus, ψ
is a right integral on A.

The proof of the following Proposition is essentially found in [2, 1.16].

Proposition 2.5. Let (A,m,�, ε, S, h) be a generalized quasi-Frobenius
multiplier Hopf algebra. Given elements a1, a2, . . . , an ∈ A, there exist ele-
ments e, f ∈ A such that eai = ai and aif = ai for all i.

Proof. Similar to [2, Proposition 1.6]. It goes as follows: We consider a
set

V = {(aa1, aa2, . . . , aan, a1a, a2a, . . . , ana) | a ∈ A}
and consider a linear functional on A2n that is zero on V . Then we have
functionals ωi and ρi on A for i = 1, 2, . . . , n such that

n∑
i=1

ωi(aai)+
n∑
i=1

ρi(aia) = 0

for all a ∈ A. Hence, for all x, a ∈ A one has

x

( n∑
i=1

(ωi ⊗ ι)(�(a)(ai ⊗ 1))+
n∑
i=1

(ρi ⊗ ι)((ai ⊗ 1)�(a))

)

=
n∑
i=1

(ωi ⊗ ι)((1 ⊗ x)�(a)(ai ⊗ 1))+
n∑
i=1

(ρi ⊗ ι)((ai ⊗ x)�(a))) = 0.

Since the product in A is non-degenerate, we get for all a ∈ A that

( n∑
i=1

(ωi ⊗ ι)(�(a)(ai ⊗ 1))+
n∑
i=1

(ρi ⊗ ι)((ai ⊗ 1)�(a))

)
= 0.
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Letting a = h in the above equation, we obtain

( n∑
i=1

(ωi(·ai)⊗ ι)

)
�(h)+

( n∑
i=1

(ρi(ai ·)⊗ ι)�(h)

)
= 0.

That means: (( n∑
i=1

ωi(·ai)+
n∑
i=1

ρi(ai ·)
)

⊗ ι

)
�(h) = 0.

By assumption, we have

n∑
i=1

ωi(·ai)+
n∑
i=1

ρi(ai ·) = 0.

The remaining statement is the same as one of [2, Proposition 1.6].

Proposition 2.6. Let A be a generalized quasi-Frobenius multiplier Hopf
algebra. Then we have

(1) S is an antimorphism of algebras.

(2) εS(a) = ε(a) for all a ∈ A and h is a right cointegral in A.

(3) For an integral ψ such that ψ(h) = 1, we have that S(a) = (ψ ⊗
ι)(�(h)(a ⊗ 1)).

(4) If h and h′ are two right cointegrals, there is a scalar λ ∈ C so that
h′ = λh.

(5) Ã = A′A = {ω(a·) | a ∈ A,ω ∈ A′}.
Proof. (1) For all a, b ∈ A, we compute

�(h)(1 ⊗ S(ab)) = �(h)(ab ⊗ 1) = (�(t)(a ⊗ 1))(b ⊗ 1)

= �(h)(b ⊗ S(a)) = �(h)(1 ⊗ S(a)S(b)).

By Proposition 2.3(6), we have that S(ab) = S(b)S(a).
(2). Applying (ι⊗ ε) to both sides of Eq. (2.1), we have hε(a) = hε(S(a))

for all a ∈ A. Hence ε(S(a)) = ε(a) for all a ∈ A. Then by applying (ι⊗ ε)

to the both sides of Eq. (2.1), we get ha = hε(a) for all a ∈ A. As required.
(3). Obvious.
(4). Let h and h′ be two right cointegrals. By Eq. (2.1), we have

�(h)(h′ ⊗ 1) = �(h)(1 ⊗ S(h′)) = (1 ⊗ ε)�(h)⊗ S(h′) = h⊗ S(h′)
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By Proposition 2.5, these is e ∈ A so that h′e = h′. Take ω ∈ A′ so that
(1 ⊗ ω)�(h) = e. Hence h′ = ω(S(h′))h. We take λ = ω(S(h′)) and finish
the proof of Part (4).

(5). Straightforward.

Lemma 2.7. Let (A,m,�, ε, S, h) be a generalized quasi-Frobenius mul-
tiplier Hopf algebra. Let ψ be a right integral on A and t a right cointegral
such that ψ(S−1(h)) = 1. Then we have the following formula:

(2.2) b = (1 ⊗ ψ)((1 ⊗ b)((1 ⊗ S−1)�(h)))

for all b ∈ A.

Proof. For all b ∈ A. By Eq. (2.1), we have that

(1 ⊗ S−1)(�(h)(b ⊗ 1)) = (1 ⊗ S−1)(�(h)(1 ⊗ S(b))).

By applying (1⊗ψ) to both sides of the above equation and Proposition 2.6(1),
we have that

(1 ⊗ ψS−1)(�(h)(b ⊗ 1)) = (1 ⊗ ψ)((1 ⊗ b)(1 ⊗ S−1)(�(h))).

Since ψ ◦ S−1 is a left integral on A, we have

ψ(S−1(h))b = (1 ⊗ ψ)((1 ⊗ b)((1 ⊗ S−1)�(h)))

and so Eq. (2.2) is proven.

Proposition 2.8. Let (A,m,�, ε, S, h) be a generalized quasi-Frobenius
multiplier Hopf algebra with an integral ψ . Then the following identities are
equivalent:

S((ψ ⊗ ι)((b ⊗ 1)�(a))) = (ψ ⊗ ι)(�(b)(a ⊗ 1))(2.3)

S(a) = (ψ ⊗ ι)(�(h)(a ⊗ 1))(2.4)

for all a, b ∈ A.

Proof. Eq. (2.3) ⇒ Eq. (2.4): We can choose a right cointegral h such that
ψ(h) = 1. Then by taking b = h in Eq. (2.3) and by the properties of the
counit ε, we get Eq. (2.4).

Eq. (2.4) ⇒ Eq. (2.3): It follows from Lemma 2.7 that:

(2.5) �(b)(a⊗1) = (�⊗ι⊗ι)((ι⊗ψ)((1⊗b)((1⊗S−1)�(h))))(a⊗1⊗1)
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for all b ∈ A. Since S is an antimorphism of coalgebras, it follows from
Eq. (2.4) that

((S ⊗ S)�cop(a))(1 ⊗ b) = (ψ ⊗ ι⊗ ι)(((�⊗ ι)�(h))(a ⊗ 1 ⊗ b))

for all a, b ∈ A. Applying (ι ⊗ S−1) to both sides of the above equation, we
get

(2.6) (S ⊗ ι)((1 ⊗ S−1(b))�cop(a))

= (ψ ⊗ ι⊗ ι)((1 ⊗ 1 ⊗ S−1(b))((ι⊗ ι⊗ S−1)(((�⊗ ι)�(h)))(a⊗ 1 ⊗ 1)))

for all a, b ∈ A. Let S−1(b) = x with x ∈ A.
Since S is bijective and by applying (ψ ⊗ ι) to both sides of Eq. (2.5) and

Eq. (2.6), respectively, we obtain Eq. (2.3).

We now prove the main result in this section.

Theorem 2.9. If (A,m,�, ε, S, h) is a generalized quasi-Frobenius mul-
tiplier Hopf algebra, then (A,m,�, ε, S, h) is an algebraic quantum hyper-
group of discrete type.

Proof. By Theorem 2.4, there is the right integral on A. Now we choose
one integral ψ so that ψ(h) = 1. Applying (ψ ⊗ ι) to both sides of Eq. (2.1),
we get

(ψ ⊗ ι)(�(h)(a ⊗ 1)) = ((ψ ⊗ ι)�(h))S(a) = ψ(h)S(a) = S(a)

for all a ∈ A. By Proposition 2.8, we have that (A,m,�, ε, S, h) is an algeb-
raic quantum hypergroup of discrete type.

As an immediate result of Theorem 2.9 and Example 2.2, we have

Corollary 2.10. Let (A,�) be an algebraic quantum hypergroup of com-
pact type. Then (Â, �̂) is an algebraic quantum hypergroup of discrete type.

Remark 2.11. In a generalized quasi-Frobenius multiplier Hopf algebra
(A,m,�, ε, ψ, h), because of Proposition 2.8, we are allowed to replace
Eq. (2.3) by Eq. (2.4).

We now combine Proposition 2.6(5) and [2, Theorem 3.11] to arrive at;

Proposition 2.12. If (A,m,�, ε, S, t) is a generalized quasi-Frobenius
multiplier Hopf algebra with right integral ψ , then Ã = Â where Â is defined
by

{ψ(a·) | a ∈ A}.
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Therefore Ã (with product and coproduct �̂ dual to the coproduct, and product
in A) have the following properties:

(1) {ψ(a·) | a ∈ A} = {ψ(·a) | a ∈ A} = {φ(a·) | a ∈ A} = {φ(·a) | a ∈
A} where φ is a left integral on A.

(2) There exists a right integral ̂̂ψ on Â such that the map 
̂ : Â → ̂̂
A

defined by â �→ (̂a ⊗ ι)̂̂�(̂̂ψ) is bijective.

(3) There exists a right cointegral t̂ on Â such that the map 
 : ̂̂
A → Â

defined by ̂̂a �→ (̂̂a ⊗ ι)�̂(̂t) is bijective.

(4) There exists a counit ε̂ defined by ε̂(ω) = ψ(a) for all ω = ψ(a·).
(5) ε is a group-like element.

(6) The map Ŝ : Â → Â defined by Ŝ(ω) = (̂̂ψ ⊗ ι)(�̂(̂t)(ω ⊗ 1)) is an
antimorphism of algebras and coalgebras.

Let A be an algebra and I be a left ideal, and J be a right ideal. The right
annihilator of I is the set r(I ) = {x ∈ A | ax = 0 for all a ∈ I }. Similarly,
the left annihilator of J is the set l(J ) = {x ∈ A | xa = 0 for all a ∈ J }. We
say that A is quasi-Frobenius if for any left ideal I and any right ideal J we
have lr(I ) = I and rl(J ) = J .

The following theorem is a generalization of [7, Theorem 3.6, Theorem 3.8]
to a generalized quasi-Frobenius multiplier Hopf algebra.

Theorem 2.13. The following statements are equivalent:

(1) (A,m,�, ε, S, t) is a generalized quasi-Frobenius multiplier Hopf al-
gebra.

(2) Any proper ideal of A has a non-zero left annihilator.

(3) Any proper right ideal of A has a non-zero left annihilator.

(4) A is quasi-Frobenius.

3. Algebraic Quantum Hypergroups of Discrete Type

Let (A,m,�, ε, ψ) be an associative algebra with or without unit, but with
non-degenerate product m and with a coproduct � : A → M(A ⊗ A), here
� is not necessarily an algebra morphism, and a counit ε : A → k, and
with a right integral ψ . By [2, Proposition 1.6], any finite elements of A have
common two-sided local units. Let A′ denote the dual space of A. Then we
have AA′ = {ω(·a) | a ∈ A,ω ∈ A′} and A′A = {ω(a·) | a ∈ A,ω ∈ A′}.
We will denote these two submodules AA′ and A′A of A′ by Hl and Hr ,
respectively. Remark here that Hl and Hr are also algebras for the product
dual to the coproduct (see, e.g., [5]).
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We consider �: A⊗Hl → Hl and �: Hr ⊗ A → Hr defined as a � f =
f (·a) and ω � a = ω(a·) for all a ∈ A, f ∈ Hl and ω ∈ Hr . Then for every
f ∈ A′, the induced maps � f : A → Hl and f �: A → Hr are morphism
of left A-modules and of right A-modules, respectively.

Dually, one can take �: A′ ⊗A → M(A) and �: A⊗A′ → M(A) defined
as f � a = (ι ⊗ f )�(a) and a � f = (ω ⊗ ι)�(a) for all a ∈ A and
f ∈ A′. Then for every a ∈ A, the induced maps � a : A′ → M(A) and
a �: A′ → M(A) are linear maps, respectively.

Lemma 3.1. Let (A,m,�, ε) be an associative algebra with a non-degene-
rate product m, and with a regular coproduct � on A, and with a counit ε on
A. Assume that there exist an integral ψ on A and a cointegral h ∈ A such
that the map S : A → A defined by S(a) = (ψ ⊗ ι)(�(h)(a ⊗ 1)) is an
anti-automorphism of algebras and coalgebras. Then

(1) The maps

(3.1) a �→ ψ � a and a �→ a � ψ

are bijective from A to Hr and from A to Hl , respectively.

(2) The maps

(3.2) f �→ h � f and f �→ f � h

are bijective from Hr to A and from Hl to A, respectively.

(3) The maps

(3.3) f �→ h � f and f �→ f � h

are bijective from A′ to M(A).

(4) (A,m,�, ε, S, ψ, h) is an algebraic quantum hypergroup of discrete
type.

Proof. (1) We notice first that the map ψ � is injective since ψ is faithful.
To proveψ � is surjective, let x = (ι⊗ωS−1)�(h), for allω ∈ Hr and a ∈ A.
We have

(ψ � x)(a) = (ψ � ((ι⊗ ωS−1)�(h)))(a)

= ψ(((ι⊗ ωS−1)�(h))a)

= (ψ ⊗ ωS−1)(�(h)(a ⊗ 1))

= ωS−1((ψ ⊗ ι)(�(h)(a ⊗ 1)))

= ω(S−1(S(a))) = ω(a)

and soψ � is bijective. Similarly we have that the second map is also bijective.
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(2) By Part (1), since � ψ is bijective, i.e.,A � ψ = Hr . By assumption we
have S(a) = h � (a � ψ). It follows that h � Hr = S(A) = A, which means
that h � is bijective. Similarly we get that the second map is also bijective.

(3) These maps are injective. To show that, e.g., the first map is surjective,
for x ∈ M(A) we define a linear map ω ∈ A′ by ω((ι ⊗ f )�(h)) = f (x)

for f ∈ Hl . By the part (2), ω is well-defined and also linear. Then we have
f (x) = f ((ω ⊗ ι)�(t)). Since Hl separates points in A, we get x = (ω ⊗
ι)�(h) = h � ω. Similarly we get that the second map is also bijective.

(4) By the part (3), we have that Definition 2.1(d) holds. By the assumption
and the proof of Proposition 1.2, Definition 2.1(e) is true. Then A is a gener-
alized quasi-Frobenius multiplier Hopf algebra. It follows from Theorem 2.9
that A is an algebraic quantum hypergroup of discrete type.

Example 3.2. Let A be a regular multiplier Hopf algebra of discrete type
with antipode S. Assume that ψ and h are integral on A and cointegral in A
such that ψ(h) = 1, respectively. Then, for all a, b, c ∈ A
(ψ ⊗ ι)((1 ⊗ b)(�(h)(a ⊗ c)))

= (ψ ⊗ ι)
(
(1 ⊗ b)

(∑
�(ha(1))(1 ⊗ ε(a(2))c)

))
= (ψ ⊗ ι)

(
(1 ⊗ b)

(∑
�(h)(a(1) ⊗ 1)

)
(1 ⊗m((ι⊗ S)(�(a(2)(1 ⊗ c)))))

)
= (ψ ⊗ ι)((1 ⊗ b ⊗ 1)(�⊗ 1 ⊗ 1)((1 ⊗ S)((h⊗ 1)�(a))(1 ⊗ c)))

= (ψ ⊗ ι)(((h⊗ b)((ι⊗ S)�(a)))(1 ⊗ c))

= ψ(h)bS(a)c = bS(a)c,

since the product on A is degenerate we have (ψ ⊗ ι)(�(h)(a ⊗ 1)) = S(a).
By Lemma 3.1, we have three bijections: ψ �: A → Hr , h �: Hr → A and
h �: A′ → M(A).

Corollary 3.3. By [2, Proposition 2.1], Proposition 2.7 and Lemma 3.1,
we have that every algebraic quantum hypergroup of discrete type satisfies
Eq. (3.1), Eq. (3.2) and Eq. (3.3).

Remark 3.4. Algebraic quantum groups of discrete type are not necessarily
finite dimensional (see Example 1.4).

Proposition 3.5. Let A be an associative algebra with a non-degenerate
product. Then

(1) If (A,ψ, ε) is an associative algebra with an algebra morphism counit
ε, and h ∈ A is (the unique element) such that ψ � h = ε and Eq. (3.1)
holds, then h is a right cointegral in A.
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(2) If (A,�, h) admits a coproduct andψ ∈ A′ is (the unique element) such
that h � ψ = 1 ∈ M(A) and Eq. (3.3) holds, then ψ is a right integral
on A.

Proof. (1) By Eq. (3.1), for all ω ∈ Hl we write ω = a � ψ = �(ψ)(1 ⊗
a) for some a ∈ A. Then we have, for all b ∈ A

ω(hb) = �(ψ)(hb ⊗ a) = ψ(hba) = (ψ � h)(ba) = ε(ba)

= ε(b)ε(a) = ε(b)(ψ � h)(a) = ε(b)ψ(ha)

= (�(ψ)(1 ⊗ a))(hε(b)) = ω(hε(b))

and since ω is any element of Hl , we have hb = ε(b)h.
(2) Similar to Part (1).

Corollary 3.6. Let (A,m,�, ε, S, ψ, h) be an algebraic quantum hyper-
group of discrete type. Then

(1) We have the following equivalent identities;

(2a) h � ψ = 1 ∈ M(A); (2b) ψ(h) = 1; (2c) ψ � h = ε;
We say that (h, ψ) is an integral pair if one of these equivalent identities
holds.

(2) Given a non-zero right cointegral h ∈ A, there exists a unique non-zero
linear functional ψ on A such that (h, ψ) is an integral pair.

(3) Given a non-zero right integral ψ on A, there exists a unique non-zero
element h ∈ A such that (h, ψ) is an integral pair.

(4) If (h, ψ) is an integral pair, then any other integral pair is of the form(
λh, 1

λ
ψ

)
, 0 �= λ ∈ k.

(5) If (h, ψ) is an integral pair, then S(a) = (ψ ⊗ ι)(�(h)(a ⊗ 1)) for all
a ∈ A.

Theorem 3.7. Let (A,m,�, ε) be an associative algebra with a non-
degenerate product m, with a regular coproduct � on A and with a counit
ε on A. Assume that S : A → A is an anti-automorphism of algebras and
coalgebras. Then the following statements are equivalent:

(1) There is h ∈ A such that Eq. (3.3) and Eq. (2.1) hold.

(2) There is ψ ∈ Hr such that Eq. (3.1) and Eq. (1.1) hold.

(3) (A,m,�, ε, S, ψ, h) is an algebraic quantum hypergroup of discrete
type.

Proof. By Proposition 2.8, it is obvious that the part (3) implies the part
(1) and the part (2).
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(1) ⇒ (3). Since h � A′ = M(A), there is an element ψ ∈ A′ such that
h � ψ = 1 ∈ M(A). We compute

(ψ ⊗ ι)(�(h)(a⊗ 1))
(2.1)= (ψ ⊗ ι)(�(h)(1 ⊗S(a))) = (h � ψ)S(a) = S(a).

Hence, by Lemma 3.1, the part (3) holds.
(2) ⇒ (3). Since ψ � A = Hr , there is an element h ∈ A such that

ψ � h = ε ∈ Hr . Then

(ψ ⊗ ι)(�(h)(a ⊗ 1))
(1.1)= S((ψ ⊗ 1)(h⊗ 1)�(a))

= (ψ � h⊗ ι)((1 ⊗ S)�(a))

= S((ε ⊗ ι)�(a)) = S(a).

Thus, by Lemma 3.1, the part (3) holds.

4. Sub-algebraic Quantum Hypergroups of Discrete Type

Let (A,m,�, ε, S, ψ, h) be an algebraic quantum hypergroup of discrete type.
By a sub-algebraic quantum hypergroup of discrete type of A we mean a
subalgebraEwith�(E) ⊆ M(E⊗E) andS(E) ⊆ E such that (E,mE,�E =
�|E, εE|E, SE|E, ω, v) is an algebraic quantum hypergroup of discrete type
for some ω ∈ E′ and v ∈ E.

Theorem 4.1. Let (A,m,�, ε, S, ψ, h) be an algebraic quantum hyper-
group of discrete type. Let E be a subalgebra with �(E) ⊆ M(E ⊗ E) and
S(E) ⊆ E. Suppose that E has an map � : E → E satisfying m((� ⊗
ι)(�(x)(1 ⊗ y))) = ε(x)y and m((ι ⊗ �)((y ⊗ 1)�(x))) = ε(x)y for all
x, y ∈ E. Then E is a sub-algebraic quantum hypergroup of discrete type of
A if and only if the following condition holds:

(4.1) (ψ � ⊗ι)((m⊗ ι)((ι⊗�⊗ ι)((ι⊗�)((ι⊗ P)�(h))))) = ω ⊗ v

where ω ∈ E′ and v ∈ E are right integral and cointegral, respectively, where
P : A → E is any linear projection.

Proof. (⇒). Let (E,mE,�E = �|E, εE|E, SE|E, ω, v) be an algebraic
quantum hypergroup of discrete type. Then by S = (ψ(·)⊗ ι)�(h), we have
S|E = (ω(·)⊗ ι)�(v). Since S(E) ⊆ E, we have

(ψ(·)⊗ P)�(h) = S|E = (ω(·)⊗ ι)�(v)

where P : A → E is any linear projection.
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Thus,

(ψ � ⊗ι)((m⊗ ι)((ι⊗�⊗ ι)((ι⊗�)((ι⊗ P)�(h)))))

= (ω � ⊗ι)((m⊗ ι)((ι⊗�⊗ ι)(�⊗ ι)�(v)))

= (ω � ⊗ι)((ε ⊗ ι)�(v)))

= ω ⊗ v.

(⇐). Suppose that any linear projection P : A → E satisfies Eq. (4.1) for
a right integral ω ∈ E′ and a right cointegral v ∈ E. Then we compute

(ω ⊗ ι)(�(v)(x ⊗ y))

= (ψ � ⊗ι)((m⊗ ι)((ι⊗�⊗ ι)((ι⊗�)((ι⊗ P)�(h))))(1 ⊗ x ⊗ y))

= (ψ ⊗ ι)((ι⊗m(�⊗ ι)�⊗ ι)((ι⊗�)((ι⊗ P)�(h))))(1 ⊗ x ⊗ y))

= (ψ ⊗ ι)((ι⊗ ε ⊗ ι)(ι⊗�)((ι⊗ P)�(h))(1 ⊗ x ⊗ y))

= (ψ ⊗ ι)((ι⊗ P)�(h)(1 ⊗ x ⊗ y))

= P((ψ ⊗ ι)�(h)(x ⊗ 1))y

= P(S(x))y = S(x)y

for all x, y ∈ E. Since the product on E is non-degenerate one gets (ω ⊗
ι)(�(v)(x ⊗ 1)) = S|E(x) for all x ∈ E. The result now follows from
Lemma 3.1.

Remark here that for any algebraic quantum group A, if E is a subalgebra
of A with �(E) ⊆ M(E ⊗ E) and S(E) ⊆ E, then by Theorem 4.1, E is
necessarily an algebraic quantum subgroup.

In order to explain the condition Eq. (4.1), we give two concrete examples
as follows:

Example 4.2. Let A be the algebra A≤7 as defined in Example 1.5 with
the same counit as in Example 1.5, and with the same coproduct � on the
elements X0,p, X7,p, Y0,p, Y7,p and Xi,p, Yi,p for all i = 1, 2, 4 and p ∈ Z as
in Example 1.5. Its coproduct on element Xi,p, Yi,p for all i = 3, 5 and p ∈ Z
is the same as in Example 1.8. For the elements X6,p and Y6,p with p ∈ Z, we
have a different coproduct structure as follows:

�(X6,p) =
∑
r∈Z

X0,r ⊗X6,p−r +
∑
r∈Z

X2,r ⊗X4,p−r

+
∑
r∈Z

X4,r ⊗X2,p−r +
∑
r∈Z

X6,r ⊗X0,p−r ,
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�(Y6,p) =
∑
r∈Z

(−1)rX0,r ⊗ Y6,p−r +
∑
r∈Z

Y0,r ⊗X6,p−r

+
∑
r∈Z

(−1)rX2,r ⊗ Y4,p−r +
∑
r∈Z

Y2,r ⊗X4,p−r

+
∑
r∈Z

(−1)rX4,r ⊗ Y2,p−r +
∑
r∈Z

Y4,r ⊗X2,p−r

+
∑
r∈Z

(−1)rX6,r ⊗ Y0,p−r +
∑
r∈Z

Y6,r ⊗X0,p−r

for all p ∈ Z.
The right cointegral in A≤7 is given by Y7,0 and the left cointegral in A≤7

is given by Y7,−1. The right integral ψ is defined by:

ψ(Xi,p) = 0, ψ(Yi,p) = δi,7

for all p ∈ Z and i ∈ N≤7. The left integral ϕ is defined by:

ϕ(Xi,p) = 0, ϕ(Yi,p) = (−1)pδi,7

for all p ∈ Z and i ∈ N≤7.
A bijective antipode on A≤7 is given by:

S(Xi,p) = Xi,−p, S(Yi,p) = (−1)p+1Yi,−p−1

for all p ∈ Z and i ∈ N≤7.
It is straightforward to verify that S is both an anti-algebra map and an

anti-coalgebra map. Then A is an algebraic quantum hypergroup of discrete
type.

Let E be a infinite dimensional subalgebra of A = A≤7 generated by X0,p,
X2,p,X4,p andX6,p for allp ∈ Z. It is obvious that we have�(E) ⊆ M(E⊗E).
Define a Hopf-type antipode � : E → E by

�(X0,p) = X0,−p,
�(X2,p) = −X2,−p,

�(X4,p) = −X4,−p,
�(X6,p) = X6,−p

for allp ∈ Z. We define the linear projectionP : A≤7 → E byP(Xj,p) = Xi,p
for all j = 0, 2, 4, 6; P(Xj,p) = 0 for all j = 1, 3, 5, 7; P(Yi,p) = 0 for all
p ∈ Z and i ∈ N≤7.

For the right cointegral h = Y7,0 we have

(ι⊗ P)�(h) =
∑
r∈Z

Y1,r ⊗X6,−r +
∑
r∈Z

Y3,r ⊗X4,−r

+
∑
r∈Z

Y5,r ⊗X2,−r +
∑
r∈Z

Y7,r ⊗X0,−r .
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Hence

(ι⊗ ι⊗�)((ι⊗ P)�(h))

=
∑
r,t∈Z

Y1,r ⊗X0,t ⊗X6,−r−t +
∑
r,t∈Z

Y1,r ⊗X2,t ⊗X4,−r−t

+
∑
r,t∈Z

Y1,r ⊗X4,t ⊗X2,−r−t +
∑
r,t∈Z

Y1,r ⊗X6,t ⊗X0,−r−t

+
∑
r,t∈Z

Y3,r ⊗X0,t ⊗X4,−r−t +
∑
r,t∈Z

Y3,r ⊗X4,t ⊗X0,−r−t

+
∑
r,t∈Z

Y5,r ⊗X0,t ⊗X2,−r−t +
∑
r,t∈Z

Y5,r ⊗X2,t ⊗X0,−r−t

+
∑
r,t∈Z

Y7,r ⊗X0,t ⊗X0,−r−t .

Therefore,

(m⊗ ι)(ι⊗ ι⊗�)((ι⊗ P)�(h)) =
∑
r∈Z

Y1,r ⊗X6,0.

Finally, we have

(ψ � ⊗ι)((m⊗ ι)((ι⊗�⊗ ι)((ι⊗�)((ι⊗ P)�(h))))) = ω ⊗X6,0

where ω is defined on E by

ω(Xi,p) = δi,6

for all p ∈ Z and i = 0, 2, 4, 6. Obviously, ω and X6,0 are the right integral
and the right cointegral of E, respectively.

Thus by Theorem 4.1, (E,m|E,�|E, ε|E, S|E, ω,X6,0) is an algebraic
quantum hypersubgroup of discrete type of A = A≤7.

Example 4.3. Let A≤7 be the algebraic quantum hypergroup of discrete
type as in Example 1.5 when n = 7. LetE be a infinite dimensional subalgebra
of A≤7 generated byX0,p, X2,p, X4,p andX6,p for all p ∈ Z. It is obvious that
we have �(E) ⊆ M(E ⊗ E). Define a Hopf-type antipode � : E → E by

�(X0,p) = X0,−p,
�(X2,p) = −X2,−p,

�(X4,p) = −X4,−p,
�(X6,p) = −X6,−p

for allp ∈ Z. We define the linear projectionP : A≤7 → E byP(Xj,p) = Xi,p
for all j = 0, 2, 4, 6; P(Xj,p) = 0 for all j = 1, 3, 5, 7; P(Yi,p) = 0 for all
p ∈ Z and i ∈ N≤7.
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For the right cointegral h = Y7,0 we have

(ι⊗ P)�(h) =
∑
r∈Z

Y1,r ⊗X6,−r +
∑
r∈Z

Y3,r ⊗X4,−r

+
∑
r∈Z

Y5,r ⊗X2,−r +
∑
r∈Z

Y7,r ⊗X0,−r .

Hence

(ι⊗ ι⊗�)((ι⊗ P)�(h))

=
∑
r,t∈Z

Y1,r ⊗X0,t ⊗X6,−r−t +
∑
r,t∈Z

Y1,r ⊗X6,t ⊗X0,−r−t

+
∑
r,t∈Z

Y3,r ⊗X0,t ⊗X4,−r−t +
∑
r,t∈Z

Y3,r ⊗X4,t ⊗X0,−r−t

+
∑
r,t∈Z

Y5,r ⊗X0,t ⊗X2,−r−t +
∑
r,t∈Z

Y5,r ⊗X2,t ⊗X0,−r−t

+
∑
r,t∈Z

Y7,r ⊗X0,t ⊗X0,−r−t .

Therefore,

(m⊗ ι)(ι⊗ ι⊗�)((ι⊗ P)�(h))

=
∑
r∈Z

Y1,r ⊗X6,0 +
∑
r∈Z

Y3,r ⊗X4,0 +
∑
r∈Z

Y5,r ⊗X2,0 − 2
∑
r∈Z

Y7,r ⊗X0,0.

Finally, we have

(ψ � ⊗ι)((m⊗ ι)((ι⊗�⊗ ι)((ι⊗�)((ι⊗ P)�(h)))))

= ω ⊗X0,0 + ω′ ⊗X2,0 + ω′′ ⊗X4,0 + ω′′′ ⊗X6,0

where ω,ω′, ω′′, ω′′′ are defined on E by, respectively:

ω(Xi,p) = −2δi,0, ω′(Xi,p) = δi,2, ω′′(Xi,p) = δi,4, ω′′′(Xi,p) = δi,6

for all p ∈ Z and i = 0, 2, 4, 6. Thus Eq. (4.1) is not of the form ω ⊗ v. By
Theorem 4.1, E is not a sub-algebraic quantum hypergroup of discrete type of
A≤7.

In fact, since for h = X6,p with p ∈ Z, we have

h � ω =
∑
r∈Z

ω(X0,r )X6,p−r +
∑
r∈Z

ω(X6,r )X0,p−r

for all ω ∈ E′. Thus we have h � E′ � M(E).
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The following lemma is straightforward.

Lemma 4.4. Let A be an associative algebra with a nondegenerate product
and � : A → M(A ⊗ A) is a coproduct of A and ε : A → k is a counit
on A. Let I be an ideal of A satisfying �(I) ⊂ M(A⊗ I ) +M(I ⊗ A) and
ε(I ) = 0. Then there exists a coproduct � : A → M(A ⊗ A) with a counit
ε : A → k, such that the diagrams commute:

A
�

M(A A)

P P P

A
�

M(A A)

and

A
ε

P

A

k

ε ,

where A = A/I and P ⊗ P is the algebra extension in the sense of [4].

Remark here that the conditions �(I) ⊂ M(A ⊗ I ) + M(I ⊗ A) and
ε(I ) = 0 on the ideal I in Lemma 4.4 means that I is a ‘coideal’ (in the
multiplier sense).

Theorem 4.5. Let (A,m,�, ε, S, ψ, h) be an algebraic quantum group of
discrete type. Let I be an ideal ofA satisfying�(I) ⊂ M(A⊗ I )+M(I ⊗A)
and ε(I ) = 0, and S(I) ⊂ I . Let P : A → A =: A/I be the canonical
projection and S : A → A be the induced anti-automorphism of algebras and
coalgebras. Then the following statements are equivalent:

(1) (A, ω, v, S) is an algebraic quantum hypergroup of discrete type satis-
fying items (1) and (2) of Lemma 3.1.

(2) There is an element u ∈ A such that l(I ) = Au and

(4.2) (ι⊗ P)(�(ua)(b ⊗ 1)) = (ι⊗ P)((u⊗ 1)�(a)(b ⊗ 1))

for all a, b ∈ A.

(3) There is an element u ∈ A such that r(I ) = uA and

(4.3) (ι⊗ P)((b ⊗ 1)�(au)) = (ι⊗ P)((b ⊗ 1)�(a)(u⊗ 1))

for all a, b ∈ A.

Proof. We only prove that the part (1) is equivalent to the part (2). Similarly,
we have (1) ⇔ (3). We will write P(a) = a + I as a for all a ∈ A below.

Assume that there is an element u ∈ A such that l(I ) = Au and Eq. (4.2)
holds. We prove that the part (1) holds. One defines the functional ω on A
by ω(a) = ψ(ua). Since u ∈ l(I ), ω is well-defined. We will apply The-
orem 3.7(2) to complete the claim.
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First we only show that the map � ω : A → Hr , a �→ a � ω is injective.
In fact, assume that (A � ω)(a) = 0. We have (A � ω)(a) = ω(aA) =
ω(aA) = ψ(uaA), we have ua = 0 (since the faithfulness of A � ψ) and so
a ∈ r(Au) = r(l(I )) = I . Hence Eq. (3.1) holds.

Then for all a, b ∈ A, we compute

(ω ⊗ ι)(�(b)(a ⊗ 1)) = (ω ⊗ ι)((P ⊗ P)(�(b)(a ⊗ 1)))

= (ψ ⊗ P)((u⊗ 1)�(b)(a ⊗ 1))
(4.2)= (ψ ⊗ ι)((ι⊗ P)(�(ub)(a ⊗ 1)))

= (ι⊗ P)((ψ ⊗ ι)(�(ub)(a ⊗ 1)))
(1.1)= P(S((ψ ⊗ ι)(ub ⊗ 1)�(a)))

= PS(P ((ψ ⊗ ι)(ub ⊗ 1)�(a)))

= S((ω ⊗ ι)(P ⊗ P)((b ⊗ 1)�(a)))

= S((ω ⊗ ι)((b ⊗ 1)�(a))).

Conversely, since (A,ψ) is an algebraic quantum hypergroup of discrete
type satisfying Eq. (3.1), we have ψ � A = Hr and so there is u such that
ψ � u = ω ◦ P , i.e., ψ(ux) = ω(x) for all x ∈ A. We claim that the u
is a required one. In fact, since ψ(uIA) = (ψ � u)(I ) = ω(P (I)) = 0
and the faithfulness of ψ , we have uI = 0. This means that u ∈ l(I ), i.e.,
Au ⊆ l(I ). We also claim: l(I ) ⊆ Au. For all x ∈ r(Au), we have ux = 0
and ω(xA) = ω(xA) = (ω ◦ P)(xA) = (ψ � u)(xA) = ψ(uxA) = 0.
Thus x = 0 and so r(Au) ⊆ I . Therefore, l(I ) ⊆ l(r(Au)) = Au and so
l(I ) = Au.

Then we have

(ψ ⊗ P)(�(ua)(b ⊗ 1))
(1.1)= P(S((ψ ⊗ ι)((ua ⊗ 1)�(b))))

= S((ω ⊗ ι)((P ⊗ P)((a ⊗ 1)�(b))))

= S((ω ⊗ ι)((a ⊗ 1)�(b))))
(1.1) for A= (ω ⊗ ι)(�(a)(b ⊗ 1))

= (ω ⊗ ι)((P ≤ P)(�(a)(b ⊗ 1)))

= (ψ ⊗ P)((u⊗ 1)(�(a)(b ⊗ 1)))

and so Eq. (4.2) holds since A � ψ = Hr and S is bijective.
This finishes the proof of the theorem.
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