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MODULES WITH RESPECT TO
CYCLIC PURITY

LIXIN MAO∗

Abstract
An exact sequence 0 → A → B → C → 0 of leftR-modules is called cyclically pure if for every
right ideal I of R, the sequence 0 → (R/I) ⊗ A → (R/I) ⊗ B → (R/I) ⊗ C → 0 is exact.
In this paper, we study some special modules with respect to cyclic purity, such as CP-projective,
CP-injective and CP-flat modules.

1. Introduction

The notion of purity has an important role in module theory and model theory
since it was presented in the literature [5], [18], [22], [23]. There are several
generalizations of the notion of purity. Among them, the notion of cyclic purity
has been extensively studied by many authors (see, for example, [3], [7], [8],
[13], [17]).

In accordance with the terminology of Hochster in [13], an exact sequence
0 → A → B → C → 0 of left R-modules is called cyclically pure if for
every (finitely generated) right ideal I of R, the sequence 0 → (R/I)⊗A →
(R/I)⊗B → (R/I)⊗C → 0 is exact. Obviously every pure exact sequence
is cyclically pure. But the converse does not hold in general (see [3, Example 1]
or [15, p. 158–159]).

As in [7], we use the abbreviation CP for the term “cyclically pure”. Recall
that a left R-module N is CP-injective [17], [7] if for every cyclically pure
exact sequence 0 → A → B → C → 0 of leftR-modules, the sequence 0 →
Hom(C,N) → Hom(B,N) → Hom(A,N) → 0 is exact. A left R-module
M is called CP-projective [8] if for every cyclically pure exact sequence 0 →
A → B → C → 0 of left R-modules, the sequence 0 → Hom(M,A) →
Hom(M,B) → Hom(M,C) → 0 is exact. Clearly, every CP-injective (resp.
CP-projective) module is pure-injective (resp. pure-projective).
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One reason for the importance of cyclic purity is that for some classes
of rings, cyclic purity coincides with purity. Following his investigations on
“direct summand conjecture” in [13], Hochster explored the structure of No-
etherian rings which are pure in any of their cyclically pure extensions. He
proved that a Noetherian ring R is pure in every module in which it is cyclic-
ally pure if and only if R has small cofinite irreducibles. In [17], Melkersson
provided some characterizations for a finitely generated moduleM over a No-
etherian local ring which is pure in every cyclically pure extension of M . In
[8], Divaani-Aazar, Esmkhani and Tousi characterized locally valuation rings
using the coincidences of cyclic purity and purity. In the present paper, we
will study the relation between cyclic purity and purity using a different ap-
proach. Namely, we introduce the concept of CP-flat modules, which is the
cyclic purity-relativization of flat modules. It is interesting to note that every
right R-module is CP-flat if and only if every cyclically pure exact sequence
of left R-modules is pure. Another important observation is that a right R-
module N is CP-flat if and only if the character module N+ is CP-injective.
In [7], Divaani-Aazar, Esmkhani and Tousi investigated several properties of
CP-injective modules. For example, they proved that every module has a CP-
injective envelope. In this paper, we will give some further applications of
these results. In addition, we also deal with many properties of CP-projective
modules, which may not be dual to properties of CP-injective modules. For in-
stance, CP-projective covers need not exist in general although CP-projective
precovers always exist.

Let us now describe the content of the paper in more details.
In Section 2, we first introduce the concept of CP-flat modules. We call a

rightR-moduleF CP-flat if for every cyclically pure exact sequence 0 → A →
B → C → 0 of left R-modules, the sequence 0 → F ⊗A → F ⊗B → F ⊗
C → 0 is exact. Some preliminary properties of CP-projective, CP-injective
and CP-flat modules are obtained. We then give several characterizations of
cyclic purity and describe singly injective modules and flat modules in terms of
CP-projective and CP-injective modules. Finally we prove that the following
are equivalent for a ring R and an integer n ≥ 0: (1) wD(R) ≤ n. (2) Every
CP-injective left R-module has injective dimension ≤ n. (3) Every CP-flat
right R-module has flat dimension ≤ n. As a consequence, we characterize
von Neumann regular rings and Prüfer rings using CP-projective, CP-injective
and CP-flat modules.

In Section 3, we consider the (pre)covers and (pre)envelopes by some spe-
cial modules, such as CP-projective and CP-flat modules. In [7], it is shown that
every module has a CP-injective envelope. Dually, we get that every module
has a CP-projective precover and a CP-flat cover. Next, using these results,
we study when the class of CP-injective (CP-projective) modules is closed
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under extensions. For example, we prove that the class of CP-injective left
R-modules is closed under extensions if and only if every cotorsion left R-
module is CP-injective. It is also shown that every flat cotorsion leftR-module
is CP-injective if and only if the flat cover of every cotorsion left R-module is
CP-injective if and only if the CP-injective envelope of every flat leftR-module
is flat.

Section 4 is devoted to some additional characterizations of CP-injective
and CP-projective modules. For example, we show that M is a CP-injective
leftR-module if and only ifM is injective relative to every cyclically pure exact
sequence 0 → A → B → C → 0 of left R-modules with B CP-projective.
Dually, M is a CP-projective left R-module if and only if M is projective
relative to every cyclically pure exact sequence 0 → A → B → C → 0 of
left R-modules with B CP-injective. For a commutative ring R, we prove that
M is a CP-injective R-module if and only if Hom(F,M) is a CP-injective
R-module for any CP-flat R-module F .

Throughout this paper,R is an associative ring with identity and all modules
are unitary. wD(R) stands for the weak global dimension of R. The character
module HomZ(M,Q/Z) ofM is denoted byM+. Given R-modulesM andN ,
Hom(M,N) (resp. Extn(M,N)) means HomR(M,N) (resp. ExtnR(M,N)),
and similarlyM⊗N (resp. Torn(M,N)) denotesM⊗RN (resp. TorRn (M,N))
for an integer n ≥ 1. We use freely the module theory terminology and notation
introduced in [11], [12], [15], [21], [24].

2. Definition and general results

We begin with the following

Definition 2.1. Let R be a ring. A right R-module F is called CP-flat
if for every cyclically pure exact sequence 0 → A → B → C → 0 of left
R-modules, the sequence 0 → F ⊗ A → F ⊗ B → F ⊗ C → 0 is exact.

Remark 2.2. (1) By the definition, any cyclic right R-module is CP-flat.
(2) flat right R-modules are clearly CP-flat. But the converse is not true in

general. For example, Z2 is a CP-flat Z-module since Z2 is a cyclic Z-module.
But it is not a flat Z-module.

Lemma 2.3. Let R be a ring. Then

(1) A right R-module N is CP-flat if and only if N+ is CP-injective.

(2) The class of CP-flat right R-modules is closed under pure submodules,
pure quotient modules and direct limits.

Proof. (1) Let 0 → A → B → C → 0 be a cyclically pure exact
sequence of left R-modules and N a right R-module. Then the sequence 0 →
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N ⊗ A → N ⊗ B → N ⊗ C → 0 is exact if and only if the sequence
0 → (N ⊗ C)+ → (N ⊗ B)+ → (N ⊗ A)+ → 0 is exact if and only if
the sequence 0 → Hom(C,N+) → Hom(B,N+) → Hom(A,N+) → 0 is
exact. So N is CP-flat if and only if N+ is CP-injective.

(2) Let 0 → A → B → C → 0 be a pure exact sequence of right R-
modules with B CP-flat. Then we get the split exact sequence 0 → C+ →
B+ → A+ → 0.SinceB+ is CP-injective by (1),A+ andC+ are CP-injective.
So A and C are CP-flat.

In addition, the class of CP-flat right R-modules is clearly closed under
direct limits.

Corollary 2.4. The following are equivalent for a ring R:

(1) Every right R-module is CP-flat.

(2) Every cyclically pure exact sequence 0 → A → B → C → 0 of left
R-modules is pure.

(3) Every pure-projective left R-module is CP-projective.

(4) Every pure-injective left R-module is CP-injective.

Proof. (1) ⇔ (2) ⇔ (3) and (2) ⇒ (4) are clear.
(4) ⇒ (1) Let M be a right R-module. Then M+ is pure-injective and so is

CP-injective by (4). Thus M is CP-flat by Lemma 2.3 (1).

In what follows, S denotes the set of all left R-modules of the form Rn/G

for all n ∈ N and all cyclic submodules G of Rn.
Next we present further characterizations of cyclically pure exact sequences.

Lemma 2.5. The following are equivalent for an exact sequence 0 → A →
B → C → 0 of left R-modules:

(1) 0 → A → B → C → 0 is cyclically pure.

(2) The sequence 0 → Hom(M,A) → Hom(M,B) → Hom(M,C) → 0
is exact for any M ∈ S .

(3) The sequence 0 → Hom(M,A) → Hom(M,B) → Hom(M,C) → 0
is exact for any CP-projective left R-module M .

(4) The sequence 0 → Hom(C,N) → Hom(B,N) → Hom(A,N) → 0
is exact for any CP-injective left R-module N .

(5) Every cyclic right R-module is projective relative to the exact sequence
0 → C+ → B+ → A+ → 0.

(6) The sequence 0 → C+ ⊗M → B+ ⊗M → A+ ⊗M → 0 is exact for
any M ∈ S .

(7) The sequence 0 → F ⊗ A → F ⊗ B → F ⊗ C → 0 is exact for any
CP-flat right R-module F .
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Proof. (1) ⇔ (2) holds by [7, Proposition 2.2].
(3) ⇔ (1) ⇔ (7) and (1) ⇒ (4) are clear.
(4) ⇒ (1) Let I be a right ideal of R. By Lemma 2.3 (1), (R/I)+ is CP-

injective. Thus by (4), we obtain the exact sequence

0 −→ Hom(C, (R/I)+) −→ Hom(B, (R/I)+)
−→ Hom(A, (R/I)+) −→ 0,

which gives rise to the exact sequence

0 −→ ((R/I)⊗ C)+ −→ ((R/I)⊗ B)+ −→ ((R/I)⊗ A)+ −→ 0.

So we get the exact sequence

0 −→ (R/I)⊗ A −→ (R/I)⊗ B −→ (R/I)⊗ C −→ 0.

Therefore 0 → A → B → C → 0 is a cyclically pure exact sequence.
(1) ⇔ (5) Let I be a right ideal ofR. Then the exact sequence 0 → (R/I)⊗

A → (R/I) ⊗ B → (R/I) ⊗ C → 0 is exact if and only if 0 → ((R/I) ⊗
C)+ → ((R/I) ⊗ B)+ → ((R/I) ⊗ A)+ → 0 is exact if and only if 0 →
Hom(R/I, C+) → Hom(R/I, B+) → Hom(R/I,A+) → 0 is exact. So
(1) ⇔ (5) holds.

(2) ⇔ (6) Let M ∈ S . Then we get the following commutative diagram:

0 −−−→ C+ ⊗M −−−→ B+ ⊗M −−−→ A+ ⊗M −−−→ 0

↓τ1 ↓τ2 ↓τ3

0 −−−→ Hom(M,C)+ −−−→ Hom(M,B)+ −−−→ Hom(M,A)+ −−−→ 0.

By [6, Lemma 2], τ1, τ2 and τ3 are isomorphisms. Thus the first row is ex-
act if and only if the second row is exact if and only if the sequence 0 →
Hom(M,A) → Hom(M,B) → Hom(M,C) → 0 is exact. So (2) ⇔ (6)
follows.

The next lemma will be used frequently in the sequel.

Lemma 2.6. Let R be a ring. Then

(1) For any left R-module M , there exists a cyclically pure exact sequence
0 → N → ⊕

Ci → M → 0 with Ci ∈ S .

(2) A leftR-moduleM is CP-projective if and only ifM is a direct summand
of

⊕
Ci with Ci ∈ S .
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Proof. (1) Let M be a left R-module. Given any G ∈ S , there is the
evaluation map ⊕

Hom(G,M)

G −→ M.

So we get the induced map
⊕
G∈S

⊕
Hom(G,M)

G
α−→ M.

Thus we get the exact sequence

Hom
(
G,

⊕
Hom(G,M)

G
)

−→ Hom(G,M) −→ 0.

Therefore for any G′ ∈ S , we have the exact sequence

Hom
(
G′,

⊕
G∈S

⊕
Hom(G,M)

G
)

α∗−→ Hom(G′,M) −→ 0.

Since R ∈ S , α is epic. So by Lemma 2.5, we have the cyclically pure exact
sequence

0 −→ K −→
⊕
G∈S

⊕
Hom(G,M)

G
α−→ M −→ 0.

(2) is easy by (1).

Following [16], a left R-module M is said to be singly injective if Ext1(G,

M) = 0 for any G ∈ S . A right R-module N is called singly flat if Tor1(N,

G) = 0 for any G ∈ S . By [16, Lemma 2.4], a right R-module N is singly
flat if and only ifN+ is singly injective. There exist close connections between
singly injectivity and cyclic purity as shown by the following proposition.

Proposition 2.7. The following are equivalent for a left R-module M:

(1) M is singly injective.

(2) Ext1(N,M) = 0 for any CP-projective left R-module N .

(3) For every CP-injective left R-moduleG, every homomorphismM → G

factors through an injective left R-module.

(4) Every exact sequence 0 → M → B → C → 0 is cyclically pure.

(5) There exists a cyclically pure exact sequence 0 → M → E → F → 0
with E singly injective.

Proof. (1) ⇒ (2) follows from Lemma 2.6 (2).



modules with respect to cyclic purity 183

(2) ⇒ (3) There is an exact sequence 0 → M → E → C → 0 with E
injective. By (2), for any A ∈ S , we have the exact sequence

0 → Hom(A,M) → Hom(A,E) → Hom(A,C) → Ext1(A,M) = 0.

Thus 0 → M → E → C → 0 is cyclically pure, and so every homomorphism
M → G with G CP-injective factors through E.

(3) ⇒ (4) Let 0 → M
i→ B → C → 0 be an exact sequence. For any

CP-injective left R-module G and any homomorphism f : M → G, there
are an injective left R-module E and g : M → E and h : E → G such that
f = hg by (3). Since E is injective, there is α : B → E such that αi = g.

Thus f = (hα)i. So the sequence 0 → M
i→ B → C → 0 is cyclically pure

by Lemma 2.5.
(4) ⇒ (5) is easy since M embeds in an injective R-module.
(5) ⇒ (1) Let 0 → M → E → F → 0 be a cyclically pure exact sequence

with E singly injective. For any N ∈ S , we have the induced exact sequence

Hom(N,E) −→ Hom(N, F ) −→ Ext1(N,M) −→ Ext1(N,E) = 0.

Since Hom(N,E) → Hom(N, F ) → 0 is exact, Ext1(N,M) = 0, and so M
is singly injective.

Recall that a ringR is left PP if every principal left ideal ofR is projective.

Corollary 2.8. The following are equivalent for a ring R:

(1) R is a left PP ring.

(2) Every quotient module of a singly injective left R-module is singly in-
jective.

(3) Every CP-projective left R-module has projective dimension ≤ 1.

Proof. (1) ⇔ (2) holds by [16, Theorem 3.2].
(2) ⇒ (3) LetM be a CP-projective leftR-module andN any leftR-module.

Then there is an exact sequence 0 → N → E → L → 0 with E injective,
which induces the exact sequence

0 = Ext1(M,E) −→ Ext1(M,L) −→ Ext2(M,N) −→ Ext2(M,E) = 0.

By (2), L is singly injective, and so Ext2(M,N) ∼= Ext1(M,L) = 0 by
Proposition 2.7. It follows that M has projective dimension ≤ 1.

(3) ⇒ (1) Let I be a principal left ideal of R. Since R/I has projective
dimension ≤ 1 by (3), I is projective. So R is a left PP ring.

It is well known that a left R-module N is flat if and only if every ho-
momorphism G → N with G any finitely presented left R-module factors
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through a projective left R-module if and only if every exact sequence 0 →
K → Q → N → 0 is pure. The following theorem gives some interesting
characterizations of flat modules in terms of cyclic purity.

Theorem 2.9. The following are equivalent for a left R-module N :

(1) N is flat.

(2) Ext1(N,M) = 0 for any CP-injective left R-module M .

(3) For every CP-projective leftR-moduleG, every homomorphismG → N

factors through a projective left R-module.

(4) Every exact sequence 0 → K → Q → N → 0 is cyclically pure.

(5) There exists a cyclically pure exact sequence 0 → M → F → N → 0
with F flat.

Proof. (1) ⇒ (2) There is an exact sequence 0 → K → P → N → 0
withP projective. SinceN is flat, the exact sequence 0 → K → P → N → 0
is (cyclically) pure. Thus Hom(P,M) → Hom(K,M) → 0 is exact for any
CP-injective left R-module M . Consider the induced exact sequence

Hom(P,M) −→ Hom(K,M) −→ Ext1(N,M) −→ Ext1(P,M) = 0.

So Ext1(N,M) = 0.
(2) ⇒ (3) There is an exact sequence 0 → K → P → N → 0 with P

projective. For any CP-injective left R-module M , by (2), we have the exact
sequence

0 → Hom(N,M) → Hom(P,M) → Hom(K,M) → Ext1(N,M) = 0.

Thus 0 → K → P → N → 0 is cyclically pure by Lemma 2.5, and so every
homomorphism G → N with G CP-projective factors through P .

(3) ⇒ (4) Let 0 → K → Q
π→ N → 0 be an exact sequence. For any

CP-projective left R-module G and any homomorphism f : G → N , there
exist a projective left R-module P and g : G → P and h : P → N such that
f = hg by (3). Since P is projective, there is α : P → Q such that πα = h.
Thus f = π(αg). So the sequence 0 → K → Q

π→ N → 0 is cyclically
pure by Lemma 2.5.

(4) ⇒ (5) There exists an exact sequence 0 → K → P → N → 0 with P
projective, which is cyclically pure by (4).

(5) ⇒ (1) Let 0 → M → F → N → 0 be a cyclically pure exact sequence
with F flat. For any right ideal I , we have the exact sequence

0 = Tor1(R/I, F ) −→ Tor1(R/I,N) −→ (R/I)⊗M −→ (R/I)⊗ F.
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Since (R/I) ⊗M → (R/I) ⊗ F is monic, Tor1(R/I,N) = 0, and so N is
flat.

As an immediate consequence of Theorem 2.9, we get

Corollary 2.10. Let 0 → A → B → C → 0 be a cyclically pure exact
sequence of left R-modules with B projective and A finitely generated. Then
A is projective.

Proof. Since A is finitely generated and B is projective, without loss of
generality, we may assume that B is finitely generated. SoC is finitely presen-
ted. By Theorem 2.9, C is flat. Thus C is projective. HenceA is isomorphic to
a direct summand of B, and so is projective.

The following corollary clarifies the relationship between CP-injective
(resp. CP-projective, CP-flat) modules and injective (resp. projective, flat)
modules.

Corollary 2.11. The following are true for any ring R:

(1) Any singly injective CP-injective left R-module is injective.

(2) Any flat CP-projective left R-module is projective.

(3) Any singly flat CP-flat right R-module is flat.

Proof. (1) Let M be any singly injective CP-injective left R-module. By
Proposition 2.7, there exists a cyclically pure exact sequence 0 → M →
E → C → 0 with E injective. So the exact sequence is split, and hence M is
injective.

(2) LetN be any flat CP-projective leftR-module. By Theorem 2.9, there is
a cyclically pure exact sequence 0 → K → P → N → 0 with P projective.
Thus the exact sequence is split, and hence N is projective.

(3) Let G be any singly flat CP-flat right R-module. Then G+ is singly
injective CP-injective, and so is injective by (1). Thus G is flat.

Recall that a left R-module C is cotorsion [10] if Ext1(F, C) = 0 for
every flat left R-module F . By Theorem 2.9, any CP-injective left R-module
is cotorsion. But the converse is not true in general (see [25, p. 75, Example]).

The equivalence of (1) and (2) in the following theorem has been proved
by Xu (see [25, Theorem 3.3.2]). But here we give an easy proof.

Theorem 2.12. The following are equivalent for a ring R and an integer
n ≥ 0:

(1) wD(R) ≤ n.

(2) Every cotorsion left R-module has injective dimension ≤ n.
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(3) Every CP-injective left R-module has injective dimension ≤ n.

(4) Every CP-flat right R-module has flat dimension ≤ n.

Proof. (1) ⇒ (2) Let M be a cotorsion left R-module and N any left R-
module. Then there is an exact sequence

0 −→ Kn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ N −→ 0

with each Pi projective. By (1), Kn is flat, and so

Extn+1(N,M) ∼= Ext1(Kn,M) = 0.

It follows that M has injective dimension ≤ n.
(2) ⇒ (3) is trivial.
(3) ⇒ (4) For any CP-flat right R-module A, A+ is CP-injective. By (3),

for every left R-module B, we have

Torn+1(A,B)
+ ∼= Extn+1(B,A+) = 0.

So Torn+1(A,B) = 0, and hence A has flat dimension ≤ n.
(4) ⇒ (1) is clear since every cyclic right R-module is CP-flat.

As a consequence of Theorem 2.12, we obtain new characterizations of von
Neumann regular rings and Prüfer rings as follows.

Corollary 2.13. The following are equivalent for a ring R:

(1) R is a von Neumann regular ring.

(2) Every CP-injective left R-module is injective.

(3) Every CP-flat right R-module is flat.

(4) Every CP-projective left R-module is projective.

(5) Every exact sequence 0 → A → B → C → 0 of left R-modules is
cyclically pure.

Proof. (1) ⇔ (2) ⇔ (3) follow from Theorem 2.12.
(1) ⇒ (4) is easy by Lemma 2.6 (2).
(4) ⇒ (1) Let I be a principal left ideal of R. Then R/I is projective by (4),

and so I is a direct summand of R. Thus R is a von Neumann regular ring.
(1) ⇔ (5) holds by Theorem 2.9.

Corollary 2.14. The following are equivalent for a commutative domain
R:

(1) R is a Prüfer ring.

(2) Every CP-injective R-module has injective dimension ≤ 1.
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(3) Every CP-flat R-module has flat dimension ≤ 1.

(4) Every R-module is CP-flat.

Proof. It is known that a commutative domain R is a Prüfer ring if and
only if every ideal of R is flat if and only if wD(R) ≤ 1 (see [24, 40.4]). So
(1) ⇔ (2) ⇔ (3) follow from Theorem 2.12.

(1) ⇔ (4) holds by Corollary 2.4 and [8, Corollary 2.11].

3. Some (pre)covers and (pre)envelopes

Let C be a class ofR-modules andM anR-module. Recall that a homomorph-
ism φ : C → M is a C -precover of M [9] if C ∈ C and the abelian group
homomorphism Hom(C ′, φ) : Hom(C ′, C) → Hom(C ′,M) is surjective for
every C ′ ∈ C . A C -precover φ : C → M is said to be a C -cover of M if
every endomorphism g : C → C such that φg = φ is an isomorphism. Du-
ally we have the definitions of a C -preenvelope and a C -envelope. C -covers
(C -envelopes) may not exist in general, but if they exist, they are unique up to
isomorphism. When specializing C to the class of injective modules and pro-
jective modules respectively, C -envelopes and C -covers agree with the usual
injective envelopes and projective covers respectively (see [25]).

In this section, we first investigate the existence of (pre)covers and (pre)en-
velopes by modules with respect to cyclic purity.

Recall that R is a left coherent ring [4] if every finitely generated left ideal
of R is finitely presented.

Proposition 3.1. Let R be a left coherent ring. Then

(1) Every CP-projective right R-module has a projective preenvelope.

(2) Every CP-injective left R-module has an injective cover.

Proof. (1) If M is a CP-projective right R-module, then by [9, Proposi-
tion 5.1], M has a flat preenvelope f : M → F . By Theorem 2.9, f factors
through a projective right R-module P , i.e., there exist g : M → P and
h : P → F such that f = hg. It is easy to see that g is a projective preenvel-
ope of M .

(2) LetM be a CP-injective left R-module. By [16, Theorem 2.15], M has

a singly injective cover f : F → M . There is an exact sequence 0 → F
i→

E → L → 0 with E injective. Since the exact sequence is cyclically pure by
Proposition 2.7, there exists g : E → M such that gi = f . So there exists
ϕ : E → F such that f ϕ = g since f is a singly injective cover. Therefore
f ϕi = f and hence ϕi is an isomorphism. It follows that F is isomorphic to
a direct summand of E, and so F is injective. Thus f is an injective cover of
M .
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By [7, Theorem 4.10], every R-module M has a CP-injective envelope

i : M → N . Moreover, the exact sequence 0 → M
i→ N → L → 0 is

cyclically pure.

Theorem 3.2. Let R be a ring. Then

(1) Every left R-module has a CP-projective precover.

(2) Every left R-module has a CP-projective cover if and only if the class of
CP-projective left R-modules is closed under direct limits if and only if
the class of CP-projective left R-modules is closed under pure quotient
modules.

(3) Every right R-module has a CP-flat cover.

(4) Every right R-module has a CP-flat preenvelope if and only if the class
of CP-flat right R-modules is closed under direct products.

Proof. (1) is clear by Lemma 2.6 (1).
(2) is easy by [1, Theorem 2.13].
(3) follows from [14, Theorem 2.5] and Lemma 2.3 (2).
(4) holds by [19, Corollary 3.5 (c)] and Lemma 2.3 (2).

Remark 3.3. Although CP-projective precovers always exist, CP-projec-
tive covers need not exist in general. In fact, the ring Z is hereditary but not
pure semisimple. By [8, Corollary 2.11], CP-projective Z-modules coincide
with pure projective Z-modules. So not every Z-module has a CP-projective
cover by [1, Corollary 6.18].

Now we study when the class of CP-projective (CP-injective) left R-mo-
dules is closed under extensions.

We will call a left R-module M S -projective if Ext1(M,G) = 0 for any
singly injective leftR-moduleG. Obviously, any CP-projective leftR-module
is S -projective by Proposition 2.7.

By [12, Corollary 3.2.4], M is S -projective if and only if M is a direct
summand in a left R-module N such that N is a union of a continuous chain,
(Nα : α < λ), for a cardinal λ, N0 = 0 and Nα+1/Nα is isomorphic to a left
R-module in S for all α < λ.

Proposition 3.4. If the class of CP-projective left R-modules is closed
under direct limits, then the following are equivalent:

(1) The class of CP-projective left R-modules is closed under extensions.

(2) Every S -projective left R-module is CP-projective.

Proof. (1) ⇒ (2) Let M be an S -projective left R-module. By Theo-
rem 3.2 (2), we have an exact sequence 0 → K → C → M → 0, where
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C → M is a CP-projective cover ofM . By (1) and Wakamatsu’s Lemma (see
[25, Lemma 2.1.1]), Ext1(N,K) = 0 for every CP-projective left R-module
N , and soK is singly injective by Proposition 2.7. Therefore Ext1(M,K) = 0,
and hence the sequence 0 → K → C → M → 0 is split. Thus M is iso-
morphic to a direct summand of C, and so is CP-projective.

(2) ⇒ (1) is obvious.

Dually, we have

Proposition 3.5. The following are equivalent for a ring R:

(1) The class of CP-injective left R-modules is closed under extensions.

(2) Every cotorsion left R-module is CP-injective.

In this case, the class of CP-flat right R-modules is also closed under exten-
sions.

Proof. (1) ⇒ (2) Let M be a cotorsion left R-module. By [7, Theorem
4.10], we have an exact sequence 0 → M → N → L → 0, where M → N

is a CP-injective envelope of M . By (1) and Wakamatsu’s Lemma (see [25,
Lemma 2.1.2]), Ext1(L,C) = 0 for every CP-injective left R-module C,
and so L is flat by Theorem 2.9. Therefore Ext1(L,M) = 0, and hence the
sequence 0 → M → N → L → 0 is split. Thus M is isomorphic to a direct
summand of N and so is CP-injective.

(2) ⇒ (1) is obvious.
In this case, if 0 → A → B → C → 0 is an exact sequence of right

R-modules withA and C CP-flat, then we get the exact sequence 0 → C+ →
B+ → A+ → 0. By Lemma 2.3 (1), A+ and C+ are CP-injective. Thus B+
is CP-injective, and hence B is CP-flat.

It is well known that all R-modules have flat covers for any ring R [2].
Since every R-module has a cotorsion envelope if and only if every R-module
has a flat cover [25], all R-modules have cotorsion envelopes for an arbitrary
ring R.

By Wakamatsu’s Lemma, the cotorsion envelope of every flat R-module is
flat. In [20], Rothmaler considered when the cotorsion envelope of every flat
R-module is pure-injective. Motivated by this idea, we next study when the
cotorsion envelope of every flat R-module is CP-injective.

Theorem 3.6. The following are equivalent for a ring R:

(1) Every flat cotorsion left R-module is CP-injective.

(2) If 0 → A → B → C → 0 is an exact sequence of left R-modules,
where A is CP-injective and C is a CP-injective envelope of a flat left
R-module, then B is CP-injective.
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(3) The flat cover of every cotorsion left R-module is CP-injective.

(4) The flat cover of every CP-injective left R-module is CP-injective.

(5) The CP-injective envelope of every flat left R-module is flat.

(6) The cotorsion envelope of every flat left R-module is CP-injective.

Proof. (1) ⇒ (3) is easy since the flat cover of every cotorsion left R-
module is cotorsion by Wakamatsu’s Lemma.

(3) ⇒ (4) is trivial.
(4) ⇒ (5) Let M be a flat left R-module, λ : M → N the CP-injective

envelope, and μ : F → N the flat cover of N . Then there exists α : M → F

such that μα = λ. On the other hand, since F is CP-injective by (4), there
exists γ : N → F such that γ λ = α. Thus (μγ )λ = λ, and so μγ is an
isomorphism since λ is an envelope. It follows that N is flat.

(5) ⇒ (1) Let M be a flat cotorsion left R-module. By [7, Theorem 4.10],
we have an exact sequence 0 → M → N → L → 0, where M → N is a
CP-injective envelope of M , and the sequence is cyclically pure. By (5), N is
flat, and so L is flat by Theorem 2.9. Therefore Ext1(L,M) = 0, and hence
the sequence 0 → M → N → L → 0 is split. Thus M is CP-injective.

(2) ⇒ (5) LetN be the CP-injective envelope of a flat leftR-moduleM and
λ : M → N be the inclusion map. We will first show that Ext1(N/M,K) = 0
for any CP-injective leftR-moduleK . In fact, let 0 → K → B → N/M → 0
be any exact sequence. Then we have the following pullback diagram:

0 0

↓ ↓
M 




 M

↓δ ↓λ
0 −−−−→ K ι−−−−→ H π−−−−−→ N −−−−→ 0

↓ρ ↓ϕ

0 −−−−→ K α−−−−−→ B
β−−−−−→ N/M −−−−→ 0

↓ ↓
0 0

By (2),H is CP-injective. So there exists γ : N → H such that δ = γ λ. Note
that λ = πδ = πγλ, thus πγ is an isomorphism since λ is an envelope. So
(πγ )−1λ = λ. It follows that

ργ (πγ )−1(M) = ργ (πγ )−1λ(M) = ργλ(M) = ρδ(M) = 0.
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Thus we get an induced map ψ : N/M → B such that ψϕ = ργ (πγ )−1.
Hence

βψϕ = βργ (πγ )−1 = ϕπγ (πγ )−1 = ϕ.

So βψ = 1 since ϕ is epic. Thus the sequence 0 → K → B → N/M → 0
is split, and so Ext1(N/M,K) = 0. By Theorem 2.9, N/M is flat. Hence N
is flat.

(5) ⇒ (2) If 0 → A → B → C → 0 is an exact sequence of left R-
modules, where A is CP-injective and C is a CP-injective envelope of a flat
left R-module, then C is flat by (5). So the sequence 0 → A → B → C → 0
is split. Thus B ∼= A⊕ C is CP-injective.

(1) ⇒ (6) follows from the fact that the cotorsion envelope of every flat left
R-module is flat by Wakamatsu’s Lemma.

(6) ⇒ (1) is clear.

4. Characterizations of CP-injective and CP-projective modules

In [7], Divaani-Aazar, Esmkhani and Tousi have presented some criteria of
CP-injective modules over a commutative ring R. In this section, we will
give some other conditions that are equivalent to CP-injective (CP-projective,
CP-flat) modules.

Theorem 4.1. Let R be a ring. Then the following are equivalent for a left
R-module M:

(1) M is a CP-injective left R-module.

(2) Every cyclically pure exact sequence 0 → M → N → L → 0 of left
R-modules is split.

(3) M is injective relative to every cyclically pure exact sequence 0 → A →
B → C → 0 of left R-modules with B S -projective.

(4) M is injective relative to every cyclically pure exact sequence 0 → A →
B → C → 0 of left R-modules with B CP-projective.

Proof. (1) ⇒ (2) and (1) ⇒ (3) ⇒ (4) are obvious.
(2) ⇒ (1) By [7, Theorem 2.5], there is a cyclically pure exact sequence

0 → M → N → L → 0 with N CP-injective. So M is CP-injective by (2).
(4) ⇒ (1) Let 0 → X → Y → Z → 0 be a cyclically pure exact sequence

of leftR-modules. By Lemma 2.6 (1), there is a cyclically pure exact sequence
0 → U → V → Y → 0 with V CP-projective. Then we have the following
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pullback diagram:

0 0

↓ ↓
U 




 U

↓δ ↓i
0 −−−−→ Q ι−−−−→ V π−−−−−→ Z −−−−→ 0

↓ϕ ↓ρ
0 −−−−→ X λ−−−−−→ Y

β−−−−−→ Z −−−−→ 0

↓ ↓
0 0

Thus i = ιδ and π = βρ. So 0 → Q → V → Z → 0 is a cyclically pure
exact sequence by Lemma 2.5. Let ψ : X → M be any homomorphism. By
(4), there exists γ : V → M such that ψϕ = γ ι. Since γ ιδ = ψϕδ = 0,
we have ker(ρ) = im(i) = im(ιδ) ⊆ ker(γ ). So there exists an induced map
θ : Y → M such that θρ = γ . Thus ψϕ = θρι = θλϕ, and so ψ = θλ since
ϕ is epic. Hence M is CP-injective.

From Theorem 4.1, we deduce the following corollary.

Corollary 4.2. The following are equivalent for a right R-module N :

(1) N is CP-flat.

(2) For every cyclically pure exact sequence 0 → A → B → C → 0 of
left R-modules with B CP-projective, the sequence 0 → N ⊗ A →
N ⊗ B → N ⊗ C → 0 is exact.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (1) Let 0 → A → B → C → 0 be any cyclically pure exact

sequence of left R-modules with B CP-projective. By (2), we get the exact
sequence 0 → N ⊗ A → N ⊗ B → N ⊗ C → 0, which induces the exact
sequence 0 → Hom(C,N+) → Hom(B,N+) → Hom(A,N+) → 0. So
N+ is CP-injective by Theorem 4.1. Thus N is CP-flat by Lemma 2.3 (1).

Dual to Theorem 4.1, we have

Theorem 4.3. The following are equivalent:

(1) M is a CP-projective left R-module.

(2) Every cyclically pure exact sequence 0 → D → C → M → 0 of left
R-modules is split.
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(3) M is projective relative to every cyclically pure exact sequence 0 →
A → B → C → 0 of left R-modules with B cotorsion.

(4) M is projective relative to every cyclically pure exact sequence 0 →
A → B → C → 0 of left R-modules with B CP-injective.

Proof. (1) ⇒ (2) and (1) ⇒ (3) ⇒ (4) are clear.
(2) ⇒ (1) By Lemma 2.6 (1), there exists a cyclically pure exact sequence

0 → D → C → M → 0 with C CP-projective. So M is CP-projective by
(2).

(4) ⇒ (1) Let 0 → K → G → H → 0 be a cyclically pure exact sequence
of left R-modules. Suppose that λ : G → Q is a CP-injective envelope of G.
Then we have the following pushout diagram:

0 0

↓ ↓
0 −−−−→ K i−−−−→ G

ρ−−−−−→ H −−−−→ 0

↓λ ↓ϕ

0 −−−−→ K α−−−−−→ Q
β−−−−−→ D −−−−→ 0

↓π ↓δ
L 




 L

↓ ↓
0 0

Thus π = δβ and α = λi, which implies that 0 → K → Q → D → 0 is
a cyclically pure exact sequence. Let ψ : M → H be any homomorphism.
By (4), there exists γ : M → Q such that βγ = ϕψ . Since πγ = δβγ =
δϕψ = 0, im(γ ) ⊆ ker(π) = im(λ). So we can define θ : M → G by
θ(x) = λ−1(γ (x)) for any x ∈ M . Thus ϕψ = βγ = βλθ = ϕρθ , and so
ψ = ρθ since ϕ is monic. Hence M is CP-projective.

As a consequence of Theorems 4.1 and 4.3, we have

Corollary 4.4. The following are equivalent for a ring R:

(1) Every left R-module is CP-injective.

(2) Every left R-module is CP-projective.

(3) Every cyclically pure exact sequence 0 → A → B → C → 0 of left
R-modules is split.
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It is well known that any submodule of every projective left R-module is
projective if and only if any quotient module of every injective left R-module
is injective. The next theorem establishes an analogous result for the cyclically
pure version.

Theorem 4.5. Consider the following conditions for a ring R:

(1) For any cyclically pure exact sequence 0 → A → B → C → 0 of left
R-modules with B CP-projective, A is CP-projective.

(2) For any cyclically pure exact sequence 0 → K → M → N → 0 of left
R-modules with M CP-injective, N is CP-injective.

(3) For any cyclically pure exact sequence 0 → A → B → C → 0 of left
R-modules with B projective, A is projective.

Then (1) ⇔ (2) ⇒ (3). Moreover, if the class of CP-injective left R-modules is
closed under extensions, then (3) ⇒ (2).

Proof. (1) ⇒ (2) Let 0 → K → M
π→ N → 0 be a cyclically pure exact

sequence of leftR-modules withM CP-injective and 0 → A
i→ B → C → 0

be a cyclically pure exact sequence of left R-modules with B CP-projective.
For any f : A → N , there exists g : A → M such that πg = f since A
is CP-projective by (1). Hence there is h : B → M such that hi = g since
M is CP-injective. It follows that (πh)i = f , and so N is CP-injective by
Theorem 4.1.

(2) ⇒ (1) Let 0 → A
i→ B → C → 0 be a cyclically pure exact sequence

of left R-modules with B CP-projective and 0 → K → M
π→ N → 0 be a

cyclically pure exact sequence of left R-modules with M CP-injective. Then
N is CP-injective by (2). Thus for any f : A → N , there exists g : B → N

such that f = gi. It follows that there exists h : B → M such that g = πh

since B is CP-projective. Hence f = π(hi) and so A is CP-projective by
Theorem 4.3.

(2) ⇒ (3) Let 0 → A
i→ B → C → 0 be a cyclically pure exact sequence

of left R-modules with B projective. Then C is flat by Theorem 2.9. Let M
be any left R-module. There is a cyclically pure sequence 0 → M → N →
L → 0 withN CP-injective. By (2),L is CP-injective. So we have the induced
exact sequence

0 = Ext1(C,L) −→ Ext2(C,M) −→ Ext2(C,N) = 0.

Thus Ext2(C,M) = 0, and so we get the exact sequence

0 = Ext1(B,M) −→ Ext1(A,M) −→ Ext2(C,M) = 0.

Therefore Ext1(A,M) = 0, and so A is projective.
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(3) ⇒ (2) Let 0 → K → M
π→ N → 0 be a cyclically pure exact sequence

of leftR-modules withM CP-injective. LetF be any flat leftR-module. There
exists a cyclically pure exact sequence 0 → Q → P → F → 0 with P
projective. By (3), Q is projective, so we have the induced exact sequence

0 = Ext1(Q,K) −→ Ext2(F,K) −→ Ext2(P,K) = 0.

Thus Ext2(F,K) = 0. So we have the induced exact sequence

0 = Ext1(F,M) −→ Ext1(F,N) −→ Ext2(F,K) = 0.

Hence Ext1(F,N) = 0, and so N is cotorsion. By Proposition 3.5, N is
CP-injective.

Finally, we characterize CP-injective and CP-flat modules over a commut-
ative ring.

Theorem 4.6. Let R be a commutative ring. The following are equivalent
for an R-module M:

(1) M is a CP-injective R-module.

(2) Hom(F,M) is a CP-injective R-module for any CP-flat R-module F .

Proof. (1) ⇒ (2) Let 0 → A → B → C → 0 be a cyclically pure exact
sequence of R-modules. For any ideal I of R, we get the exact sequence

0 −→ (R/I)⊗ A −→ (R/I)⊗ B −→ (R/I)⊗ C −→ 0.

Moreover, we claim that the exact sequence is also cyclically pure. In fact,
let J be an ideal of R. Since (R/J ) ⊗ (R/I) ∼= R/(J + I ), the cyclically
pure exact sequence 0 → A → B → C → 0 induces the exactness of the
sequence

0 −→ (R/J )⊗ ((R/I)⊗ A) −→ (R/J )⊗ ((R/I)⊗ B)

−→ (R/J )⊗ ((R/I)⊗ C) −→ 0.

So the exact sequence 0 → (R/I)⊗A → (R/I)⊗B → (R/I)⊗C → 0 is
cyclically pure. Thus, for any CP-flat R-module F , we get the exact sequence

0 −→ F ⊗ (R/I)⊗ A −→ F ⊗ (R/I)⊗ B −→ F ⊗ (R/I)⊗ C −→ 0.

Hence the sequence

0 −→ (R/I)⊗ (F ⊗A) −→ (R/I)⊗ (F ⊗B) −→ (R/I)⊗ (F ⊗C) −→ 0



196 lixin mao

is exact. So the exact sequence

0 −→ F ⊗ A −→ F ⊗ B −→ F ⊗ C −→ 0

is cyclically pure. Since M is CP-injective, we obtain the exact sequence

0 −→ Hom(F ⊗C,M) −→ Hom(F ⊗B,M) −→ Hom(F ⊗A,M) −→ 0,

which gives rise to the exactness of the sequence

0 −→ Hom(C,Hom(F,M)) −→ Hom(B,Hom(F,M))

−→ Hom(A,Hom(F,M)) −→ 0.

Thus Hom(F,M) is a CP-injective R-module.
(2) ⇒ (1) is clear by letting F = R.

Corollary 4.7. LetR be a commutative ring. The following are equivalent
for an R-module N :

(1) N is a CP-flat R-module.

(2) Hom(N,E) is a CP-injective R-module for any CP-injective R-mod-
ule E.

(3) N ⊗ F is a CP-flat R-module for any CP-flat R-module F .

Proof. (1) ⇒ (2) follows from Theorem 4.6.
(2) ⇒ (3) Let F be any CP-flat R-module. Then F+ is CP-injective by

Lemma 2.3 (1). So (N ⊗ F)+ ∼= Hom(N, F+) is CP-injective by (2). Thus
N ⊗ F is CP-flat.

(3) ⇒ (1) is clear by letting F = R.
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