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THE UNICITY OF BEST APPROXIMATION IN A
SPACE OF COMPACT OPERATORS

JOANNA KOWYNIA∗

Abstract
Chebyshev subspaces of K (c0, c0) are studied. A k-dimensional non-interpolating Chebyshev
subspace is constructed. The unicity of best approximation in non-Chebyshev subspaces is con-
sidered.

1. Introduction

Let K be the field of real or complex numbers and let (X, ‖ · ‖) be a normed
space over K. Let ext SX� denote the set of all extreme points of SX� , where
SX� is the unit sphere in X�.

For every x ∈ X we put

(1) E(x) = {f ∈ ext SX� : f (x) = ‖x‖}.
By the Hahn-Banach and the Krein-Milman Theorems, E(x) �= ∅.
Let for Y ⊂ X,

PY (x) = {y ∈ Y : ‖x − y‖ = dist(x, Y )}.
A linear subspace Y ⊂ X is called a Chebyshev subspace if for every x ∈ X

the set PY (x) contains one and only one element.

Theorem 1 (see [3]). Assume X is a normed space, Y ⊂ X is a linear
subspace, and let x ∈ X \ Y . Then y0 ∈ PY (x) if and only if for every y ∈ Y

there exists f ∈ E(x − y0) with �f (y) ≤ 0.

Definition (see, e.g., [8]). An element y0 ∈ Y is called a strongly unique
best approximation for x ∈ X if there exists r > 0 such that for every y ∈ Y ,

‖x − y‖ ≥ ‖x − y0‖ + r‖y − y0‖.
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The biggest constant r satisfying the above inequality is called a strong
unicity constant. There exist two main applications of a strong unicity constant:

• the error estimate of the Remez algorithm (see e.g. [13]),

• the Lipschitz continuity of the best approximation mapping at x0 (assuming
that there exists a strongly unique best approximation to x0) (see e.g. [5],
[9], [11]).

Theorem 2 (see [17]). Let x ∈ X \ Y and let Y be a linear subspace
of X. Then y0 ∈ Y is a strongly unique best approximation for x with a
constant r > 0 if and only if for every y ∈ Y there exists f ∈ E(x − y0) with
�f (y) ≤ −r‖y‖.

Recall that a k-dimensional subspace V of a normed space X is called an
interpolating subspace if for any linearly independent f1, f2, . . . , fk ∈ ext SX�

and for every v ∈ V the following holds:

if fi(v) = 0, i = 1, 2, . . . , k then v = 0.

Every interpolating subspace is a finite dimensional Chebyshev subspace. If
V ⊂ X is an interpolating subspace then every x ∈ X has a strongly unique
best approximation in V (see [2]).

In this paper we consider X = K (c0, c0) (the space of all compact operators
from c0 to c0 equipped with the operator norm). Here c0 denotes the space of
all real sequences convergent to zero. For any x = (xk) ∈ c0 we put

‖x‖∞ = sup
k

|xk|.

In [8, Theorem 3.1] it has been proved that if V ⊂ K (c0, c0) is a finite-
dimensional Chebyshev subspace then every A ∈ K (c0, c0) has a strongly
unique best approximation in V . However, in [8] no example of a non-inter-
polating Chebyshev subspace has been proposed. If it were true that any finite-
dimensional Chebyshev subspace of K (c0, c0) is an interpolating subspace we
would have obtained the proof of Theorem 3.1, [8] immediately (see [2] for
more details).

The aim of this paper is to show that for every k < ∞ there exists a k-
dimensional non-interpolating Chebyshev subspace of K (c0, c0). This result
is quite different from the result obtained in [7]. In the space L (ln1 , c0) any
finite-dimensional Chebyshev subspace is an interpolating subspace.

Additionally, we discuss the strong unicity of best approximation in some
(not necessarily Chebyshev) subspaces of K (c0, c0).



148 joanna kowynia

2. k-dimensional Chebyshev subspaces of K (c0, c0)

Let A ∈ K (c0, c0) be represented by a matrix [aij ]i,j∈N. Note that

(aij )
∞
i=1 ∈ c0 for every j ∈ N.

Since each row of a matrix [aij ]i,j∈N corresponds to a linear functional on c0,

(aij )
∞
j=1 ∈ l1 for every i ∈ N.

Moreover, by the Schur Theorem (see [6])

lim
i→∞

( ∞∑
j=1

|aij |
)

= 0.

Recall (see [4]) that ext SK ∗(c0,c0) consists of functionals of the form ei ⊗ x,
where x ∈ ext Sl∞ and

(2) (ei ⊗ x)(A) =
∞∑

j=1

xjaij .

It is easy to see that

‖A‖ = sup
i≥1

∞∑
j=1

|aij |.

Remark 1. Let X be a Banach space and let V be a finite-dimensional sub-
space with V1, V2, . . . , Vk as a basis. Then V is an interpolating subspace if and
only if for any linearly independent f1, f2, . . . , fk ∈ ext SX� the determinant
of [fi(Vj )]i,j=1,2,...,k is not equal to zero.

Proof. We apply the definition of a k-dimensional interpolating subspace
and the theory of linear equations. This completes the proof.

In the sequel, we denote by lin{V1, V2, . . . , Vk} the k-dimensional subspace
of K (c0, c0) with V1, V2, . . . , Vk as a basis.

Example 1. Let V = [vij ]i,j∈N, where vi1 = 1
2i , vij = 0, i, j ∈ N, j ≥ 2.

It is obvious that V = lin{V } is a one-dimensional interpolating subspace of
K (c0, c0).
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Theorem 3. Let V = lin{V1, V2, . . . , Vn}. Let Vm = [(vm)ij ]i,j∈N, m =
1, 2, . . . , n. If V is a Chebyshev subspace then

(3)

∣∣∣∣∣∣∣∣∣

f1(V1) . . . f1(Vn)

. . . . .

. . . . .

. . . . .

fn(V1) . . . fn(Vn)

∣∣∣∣∣∣∣∣∣
�= 0

for any f1, . . . , fn ∈ ext SK ∗(c0,c0) such that fm = eim ⊗ xim , m = 1, 2, . . . , n,
where im �= ik for m �= k.

Proof. Assume (3) does not hold. Therefore there exist f1, . . . , fn ∈
ext SK ∗(c0,c0), fm = eim ⊗ xim , m = 1, 2, . . . , n, where im �= ik for m �= k such
that det D = 0, where

D =

⎡
⎢⎢⎢⎣

f1(V1) . . . f1(Vn)

. . . . .

. . . . .

. . . . .

fn(V1) . . . fn(Vn)

⎤
⎥⎥⎥⎦ .

Since det D = det DT , there exists y = (y1, y2, . . . , yn) �= 0 such that DT y =
0. Consequently,

(4)

n∑
m=1

ymfm

∣∣
V

= 0.

Since y �= 0, replacing fm by −fm if necessary, we may assume ym ≥ 0 for
m = 1, 2, . . . , n and

n∑
m=1

ym = 1.

Set C = {l ∈ {1, 2, . . . , n} : yl > 0}.
Fix (dj )j∈N with the following properties:

dj > 0, j ∈ N and
∞∑

j=1

dj = 1.

Define A = [aipj ]ip,j∈N ∈ K (c0, c0) by

aipj = 0 for p /∈ C , j ∈ N,

aipj = dj · sgn xip (j) for p ∈ C , j ∈ N.
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Note that ‖A‖ = 1 and

E(A) = {fp : p ∈ C }.
By (4) and Theorem 1, 0 ∈ PV (A).

Since det D = 0, there exists x = (x1, x2, . . . , xn) �= 0 such that Dx = 0.
Put

V =
n∑

m=1

xmVm.

Note that V �= 0 and fm(V ) = 0, m = 1, 2, . . . , n. By Theorem 2, 0 is not a
strongly unique best approximation for A in V . By [8, Theorem 3.1], V is not
a Chebyshev subspace and the proof is complete.

Theorem 4. Let V = lin{V }, V ∈ K (c0, c0), V �= 0. Then V is a
Chebyshev subspace if and only if V is an interpolating subspace.

Proof. The classical work here is [12]. In l1, the one-dimensional subspace
lin{v} is Chebyshev iff for every x ∈ ext Sl∞ the following holds

∞∑
j=1

x(j)v(j) �= 0.

Note that for any x ∈ c0 we obtain V (x) = [f1(x), f2(x), . . .], where the
functionals fi correspond to elements of l1.

It is obvious that if for any j , lin{fj } is not a Chebyshev subspace of l1, then
lin{V } is not a Chebyshev subspace of K (c0, c0). This proves the theorem.

Note that by a result of Malbrock (see [10], Theorem 3.3) each one-dimen-
sional subspace V = lin{V } ⊂ L (c0, c0) is a Chebyshev subspace iff there
exists δ > 0 such that ∣∣∣∣

∞∑
j=1

x(j)vij

∣∣∣∣ ≥ δ,

where |x(j)| = 1, j ∈ N.

Corollary. Let V ⊂ K (c0, c0) be a one-dimensional Chebyshev sub-
space. Every operator A ∈ K (c0, c0) has a strongly unique best approxima-
tion in V .

Proof. Obvious. For more details we refer the reader to [2].

It is clear that (3) is satisfied for any n-dimensional interpolating subspace.
However, (3) is not sufficient for an n-dimensional (n ≥ 2) subspace to be
Chebyshev.
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Example 2. Let V = lin{V1, V2}, where

V1 =

⎡
⎢⎢⎢⎢⎣

1 0 . . .
1
2 0 . . .

1
4 0 . . .

. . . . .

. . . . .

⎤
⎥⎥⎥⎥⎦ , V2 =

⎡
⎢⎢⎢⎢⎣

1 0 . . .
1
3 0 . . .

1
9 0 . . .

. . . . .

. . . . .

⎤
⎥⎥⎥⎥⎦ .

Note that V satisfies (3). We claim that V is a non-Chebyshev subspace.
Indeed, define A = [aij ]i,j∈N by

a12 = 100, aij = 0 for each (i, j) �= (1, 2), i, j ∈ N.

It follows that

A − (α1V1 + α2V2) =

⎡
⎢⎢⎢⎢⎣

−α1 − α2 100 0 . .

− 1
2α1 − 1

3α2 0 . . .

− 1
4α1 − 1

9α2 0 . . .

. . . . .

. . . . .

⎤
⎥⎥⎥⎥⎦ , α1, α2 ∈ R.

Hence

‖A‖ = ‖A − (600V1 − 600V2)‖ = 100 = inf
α1,α2∈R

‖A − (α1V1 + α2V2)‖.

Theorem 5. Let V1, V2, . . . , Vn be given by

Vj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . v1j 0 . .

0 0 . . v2j 0 . .

0 0 . . v3j 0 . .

. . . . .

. . . . .

. . . . .

. . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where vij �= 0 for each i ∈ N, j ∈ {1, 2, . . . , n} and

lim
i→∞ vij = 0 for each j ∈ {1, 2, . . . , n}.

The following statements are equivalent:

(i) For every choice of distinct j1, . . . , jk from {1, 2, . . . , n}, V (j1, . . . , jk)

:= lin{Vj1 , . . . , Vjk
} is a Chebyshev subspace of K (c0, c0)
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(ii) ∀ 1 ≤ k ≤ n, ∀ 1 ≤ j1 < j2 < · · · < jk ≤ n,

∀ 1 ≤ i1 < i2 < · · · < ik,

∀ xml ∈ R : |xml| = 1, m, l = 1, 2, . . . , k

det[xmlvimjl
]m=1,2,...,k, l=1,2,...,k �= 0.

Proof. First, we assume that (ii) holds.
If k = 1 then V (j1) is an interpolating subspace for every j1 ∈ {1, 2, . . . , n}.

Let 1 < k < n and assume that for any j1, . . . , jk ∈ {1, 2, . . . , n}, jp �= jq ,
p �= q, Vk := V (j1, . . . , jk) is a Chebyshev subspace.

Suppose that there exist 1 ≤ j1 < j2 < · · · < jk < jk+1 ≤ n such that

Vk+1 := V (j1, . . . , jk, jk+1)

is a non-Chebyshev subspace. Without loss of generality we can assume that
for any k + 1 ∈ {1, 2, . . . , n}, jm = m, m = 1, 2, . . . , k + 1. This means
precisely that Vjm

= [(Vjm
)ij ]i,j∈N, where

(Vjm
)ij =

{
vijm

, j = m

0, j �= m
.

for i ∈ N, m ∈ {1, 2, . . . , k, k + 1}.
Since Vk+1 is a non-Chebyshev subspace, there exists A = [aij ]i,j∈N ∈

K (c0, c0) such that �PVk+1(A) > 1. We can assume that 0, W ∈ PVk+1(A),
where W �= 0. Let U = {i : ‖ei ◦A‖ = ‖A‖}. Since A ∈ K (c0, c0), �U < ∞.
For every i ∈ U we put

Ei = {x ∈ ext Sl∞ : (ei ⊗ x)(A) = ‖A‖}.
Since 0, W ∈ PVk+1(A), we conclude that for all i ∈ U and x ∈ Ei

(5) (ei ⊗ x)(W) ≥ 0.

Let
U1 = {i ∈ U : ∃ x ∈ Ei : (ei ⊗ x)(W) = 0}.

Since 0 ∈ PVk+1(A), U1 �= ∅.
We will prove that for any i ∈ U1 and x, y ∈ Ei such that

(6)
(ei ⊗ x)(W) = (ei ⊗ y)(W) = 0,

x(l) = y(l), l = 1, 2, . . . , k + 1.

On the contrary, suppose that (6) does not hold. Let x, y ∈ Ei be such that

(ei ⊗ x)(W) = 0, (ei ⊗ y)(W) = 0,
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and
x(l) �= y(l) for some l ∈ {1, 2, . . . , k + 1}.

Without loss of generality we can assume

x(j) = y(j) for j = 1, 2, . . . , p, p < k + 1

and
x(j) = −y(j) for j = p + 1, p + 2, . . . , k + 1.

Hence

(7)

p∑
j=1

x(j)wij = 0,

k+1∑
j=p+1

x(j)wij = 0.

As
x(j) = −y(j) for j = p + 1, p + 2, . . . , k + 1

we obtain

aij = 0 for j = p + 1, p + 2, . . . , k + 1.

By (5),
k∑

j=p+1

x(j)wij − x(k + 1)wi,k+1 ≥ 0

k∑
j=p+1

−x(j)wij + x(k + 1)wi,k+1 ≥ 0.

Therefore
k∑

j=p+1

x(j)wij = x(k + 1)wi,k+1.

By (7), x(k + 1)wi,k+1 = 0. Consequently, wi,k+1 = 0. Hence W ∈ Vk . Since
0 ∈ Vk and Vk is a Chebyshev subspace, (6) is proved.

We will show that there exists α0 > 0 such that for every α ∈ (0, α0],

(8) E(A−αW) = {ei ⊗x : i ∈ U1, (ei ⊗x)(W) = 0, (ei ⊗x)(A) = ‖A‖}.
We first prove that

(9) sup{f (A) : f = ei ⊗ x, i ∈ U : f (W) < 0}
≤ ‖A‖ − 2 min{|aij | : i ∈ U, j ∈ {1, 2, . . . , n}, aij �= 0},
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where A = [aij ]i,j∈N.
Let i ∈ U, f = ei ⊗ x, f (W) < 0. Hence there exists j0 ∈ {1, 2, . . . , n}

satisfying
x(j0) �= sgn(aij0) for aij0 �= 0.

Now, we will show

f (A) =
∞∑

j=1

x(j)aij ≤ ‖A‖ − 2|aij0 |
≤ ‖A‖ − 2 min{|aij | : i ∈ U, j = 1, 2, . . . , n, |aij | �= 0},

and (9) is proved.
We conclude from (9) that there exist α0 > 0, b > 0 such that for every

α ∈ (0, α0],
f (A − αW) < b < ‖A‖,

where f ∈ ext SK ∗(c0,c0), f (W) < 0.
Assume α0 is so small that

sup
i∈N\U

‖ei ◦ (A − α0W)‖ < ‖A‖.

Consequently, if f ∈ E(A − α0W) then f = ei ⊗ x, where i ∈ U1 and
f (W) = 0. Since

‖A − α0W‖ = ‖A‖ = dist(A, Vk+1),

(8) is proved.
Since α0W ∈ PVk+1(A), we conclude (see [16]) that

∃ 1 ≤ q ≤ k + 2, ∃ λ1, . . . , λq > 0,

q∑
m=1

λm = 1

such that

(10)

q∑
m=1

λm(eim ⊗ xim)
∣∣
Vk+1

= 0,

where (eim ⊗ xim)(A − α0W) = ‖A − α0W‖. Let q be the smallest number
having property (10). By (6), ij �= il for j �= l, j, l ∈ {1, 2, . . . , q}. If q = k+2
then (see [18]) α0W is the strongly unique best approximation for A in Vk+1,
a contradiction. Suppose that 1 ≤ q ≤ k + 1. This contradicts (ii).
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Let us assume that Vk is a Chebyshev subspace of K (c0, c0) for every
1 ≤ k ≤ n. Suppose that (ii) is false. Consequently, there exist

1 ≤ k ≤ n, 1 ≤ j1 < j2 < · · · < jk ≤ n,

1 ≤ i1 < i2 < · · · < ik,

xml ∈ R : |xml| = 1, m, l = 1, 2, . . . , k

satisfying
det[xmlvimjl

]m=1,2,...,k, l=1,2,...,k = 0.

It follows that there exist

λ1, . . . , λk ∈ R,

k∑
m=1

|λm| > 0

such that

(11)

k∑
m=1

λm(eim ⊗ xim)
∣∣
Vk

= 0,

where xim = (xim(1), xim(2), . . .), xim(l) = xml .
Without loss of generality we can assume

λm > 0, m = 1, 2, . . . , k,

k∑
m=1

λm = 1.

We define an operator B = [bij ]i,j∈N by

bij = sgn xi(j)

2j
, i ∈ {i1, i2, . . . , ik},

bij = 0, i /∈ {i1, i2, . . . , ik}, j ∈ N.

Hence (eim ⊗ xim)(B) = ‖B‖, m = 1, 2, . . . , k. By (11), 0 ∈ PVk
(B) and

dim span{eim ⊗ xim | Vk} < k,

where dim Vk = k. Therefore there exists V ∈ Vk \ {0} such that

(eim ⊗ xim)(V ) = 0, m = 1, 2, . . . , k.

Note that (see the proof of the formula (9))

sup{f (B) : f = eim ⊗ x, m = 1, 2, . . . , k, f (V ) < 0}
< ‖B‖ − min{| bij |: i = i1, i2, . . . , ik, j = 1, 2, . . . , n}.
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Hence there exist α0 > 0, b > 0 such that

f (B − α0V ) ≤ b < ‖B‖, f ∈ ext SK ∗(c0,c0), f (V ) ≤ 0.

Consequently, ‖B − α0V ‖ = ‖B‖, a contradiction. The proof is complete.

Example 3. We will construct an n-dimensional Chebyshev subspace V ⊂
K (c0, c0). Let 0 < t1 < t2 < · · · < tn−1 be such that

lim
i→∞

1

2i
t im = 0, m = 1, 2, . . . , n − 1.

Define Vm = [(vm)ij ]i,j∈N by

(vm)im = 1

2i
t im, (vm)ij = 0, i ∈ N, j �= m.

Hence Vm ∈ K (c0, c0) for every m = 1, 2, . . . , n − 1.
Let Vn−1 := lin{V1, V2, . . . , Vn−1} satisfy the formula (ii) for every 1 ≤

k ≤ n − 1.
We will construct an operator Vn ∈ K (c0, c0) such that Vn := lin{V1, V2,

. . . , Vn−1, Vn} satisfies the formula (ii) for every 1 ≤ k ≤ n. Our goal is to
find x ∈ R such that

(12) lim
i→∞

1

2i
xi = 0

and

(13) W(x, y1, . . . , yk, i1, . . . , ik, m1, . . . mk−1)

:=

∣∣∣∣∣∣∣∣∣

y1
1

1
2i1

t i1
m1

. . . yk−1
1

1
2i1

t i1
mk−1

yk
1

1
2i1

xi1

. . . .

. . . .

. . . .

y1
k

1
2ik

t ikm1
. . . yk−1

k
1

2ik
t ikmk−1

yk
k

1
2ik

xik

∣∣∣∣∣∣∣∣∣
�= 0,

where k ∈ {1, 2, . . . , n}, i1, i2, . . . , ik ∈ N, y1, . . . , yk ∈ {−1, 1}k , m1, m2,

. . . , mk−1 ∈ {1, 2, . . . , n − 1}. Since W(x, y1, . . . , yk, i1, . . . , ik, m1, . . . ,

mk−1) is not totally equal to zero, we conclude that the set of roots of W(x, y1,

. . . , yk, i1, . . . , ik, m1, . . . mk−1) is finite for arbitrary but fixed y1, . . . , yk ,
i1, . . . , ik , m1, . . . mk−1. Therefore for all y1, . . . , yk , i1, . . . , ik , m1, . . . mk−1

as above, the set of roots of W(x, y1, . . . , yk, i1, . . . , ik, m1, . . . mk−1) is count-
able. Since R is not countable we see that there exists x ∈ R satisfying (12)
and (13).
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Remark 2. An n-dimensional Chebyshev subspace proposed in Example 3
is a non-interpolating subspace of K (c0, c0).

Proof. Let us assume that Vn = lin{V1, V2, . . . , Vn} is an n-dimensional
Chebyshev subspace, where Vm, m = 1, 2, . . . , n are defined in Example 3.

Put V = 1
t1
V1 − 1

t2
V2. Note that V �= 0 and vij = 0, j ≥ 3, i ∈ N, where

V = [vij ]i,j∈N. It is obvious that there exist x1, x2, . . . , xn ∈ ext Sl∞ such that
xm(1) = xm(2) = 1, m = 1, 2, . . . , n and fm := e1 ⊗ xm, m = 1, 2, . . . , n

are linearly independent. Note that

fm(V ) = 0, m = 1, 2, . . . , n.

This completes the proof.

Lemma. Let X be a normed space and let V be a finite-dimensional sub-
space of X. Let T ∈ X. If 0 ∈ PV (T ) and 0 is not a strongly unique best
approximation for T in V then

∃ V ∈ V , V �= 0 : ∀ f ∈ E(T ) f (V ) ≥ 0.

Proof. Let us assume that

∀ V ∈ V , V �= 0, ∃ f ∈ E(T ) : f (V ) < 0.

Set for any V ∈ V , ‖V ‖ = 1,

−rV = inf{f (V ) : f ∈ E(T )},
−r = sup{−rV : V ∈ V , ‖V ‖ = 1}.

We show that r > 0. If not, there exists (Vn) ⊂ SV such that −rVn
≥ − 1

n
.

Since V is a finite-dimensional subspace, we may assume that Vn → V ∈ SV .
Take f ∈ E(T ), f (V ) < 0. Hence for n ≥ n0 there exists d > 0 such that

−1

n
≤ −rVn

≤ f (Vn) < f (V ) + d < 0,

a contradiction. Therefore

∀ V ∈ V , V �= 0, ∃ f ∈ E(T ) : f

(
V

‖V ‖
)

< −r.

By the above,

∀ V ∈ V , V �= 0, ∃ f ∈ E(T ) : f (V ) ≤ −r‖V ‖.
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Hence 0 is a strongly unique best approximation for T , a contradiction. This
proves the lemma.

Theorem 6. Let V ⊂ K (c0, c0) be an n-dimensional subspace such that

∀ V ∈ V , ∀ i ∈ N �{j ∈ N : vij �= 0} < ∞,

where V = [vij ]i,j∈N and let T ∈ K (c0, c0). Then T has a unique best ap-
proximation in V if and only if T has a strongly unique best approximation in
V .

Proof. Let us assume that 0 is the unique best approximation for T in
V . Suppose that 0 is not a strongly unique best approximation. Hence (see
Lemma)

∃ V ∈ V , V �= 0 : ∀ f ∈ E(T ) f (V ) ≥ 0,

where f = ei ⊗ xi for some xi ∈ ext Sl∞ .
Put

N = {i ∈ N : ∃ xi ∈ ext Sl∞ : ei ⊗ xi ∈ E(T )}.
Since T is compact, we conclude that �N < ∞.

For every i ∈ N we set

Ei = {xi ∈ ext Sl∞ : (ei ⊗ xi)(T ) = ‖T ‖}.
Let i ∈ N \ N . Hence there exists b > 0 such that

(ei ⊗ x)(T ) < b < ‖T ‖, x ∈ ext Sl∞ .

Consequently, there exists α0 > 0 such that for every α ∈ (0, α0],

| (ei ⊗ x)(T − αV ) |< b.

Therefore
sup

i∈N\N

| (ei ⊗ x)(T − αV ) |≤ b < ‖T ‖.

Let i ∈ N and let xi /∈ Ei . From this we conclude that there exists j0 ∈ N
such that

sgn xi(j0) �= sgn(tij0), tij0 �= 0,

where T = [tij ]i,j∈N.
Set J = {j ∈ N : vij �= 0}. If sgn xi(j) = sgn(tij ) for any j ∈ J , then

there exists yi ∈ Ei such that

(ei ⊗ yi)(T ) = ‖T ‖, (ei ⊗ yi)(V ) = (ei ⊗ xi)(V ).
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By the above,

(ei ⊗ xi)(T − αV ) ≤ ‖T ‖ − (ei ⊗ yi)(αV ) ≤ ‖T ‖.
Let sgn xi(j0) �= sgn(tij0) for some j0 ∈ J , where tij0 �= 0. Since J is finite,
there exists α0 > 0 such that

‖α0V ‖ < min{|tij | : j ∈ J, tij �= 0}.
Let α ∈ (0, α0]. Hence

(ei ⊗ xi)(T − αV ) =
∑
j∈J

xi(j)(tij − αvij ) +
∑
j /∈J

xi(j)(tij − αvij )

≤
∑
j∈J

|tij | − 2|tij0 | +
∑
j /∈J

|tij | + α‖V ‖

= ‖T ‖ + α‖V ‖ − 2|tij0 | < ‖T ‖.
Finally,

‖T − αV ‖ = f (T − αV ),

where f = ei ⊗ xi , i ∈ N , xi ∈ Ei . Hence

‖T − αV ‖ = f (T − αV ) ≤ ‖T ‖.
The proof is complete.
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