THE UNICITY OF BEST APPROXIMATION IN A SPACE OF COMPACT OPERATORS

JOANNA KOWYNIA*

Abstract

Chebyshev subspaces of $\mathscr{K}\left(c_{0}, c_{0}\right)$ are studied. A k-dimensional non-interpolating Chebyshev subspace is constructed. The unicity of best approximation in non-Chebyshev subspaces is considered.

1. Introduction

Let K be the field of real or complex numbers and let $(X,\|\cdot\|)$ be a normed space over K. Let ext $S_{X^{*}}$ denote the set of all extreme points of $S_{X^{*}}$, where $S_{X^{*}}$ is the unit sphere in X^{\star}.

For every $x \in X$ we put

$$
\begin{equation*}
E(x)=\left\{f \in \operatorname{ext} S_{X^{*}}: f(x)=\|x\|\right\} . \tag{1}
\end{equation*}
$$

By the Hahn-Banach and the Krein-Milman Theorems, $E(x) \neq \emptyset$.
Let for $Y \subset X$,

$$
P_{Y}(x)=\{y \in Y:\|x-y\|=\operatorname{dist}(x, Y)\} .
$$

A linear subspace $Y \subset X$ is called a Chebyshev subspace if for every $x \in X$ the set $P_{Y}(x)$ contains one and only one element.

Theorem 1 (see [3]). Assume X is a normed space, $Y \subset X$ is a linear subspace, and let $x \in X \backslash Y$. Then $y_{0} \in P_{Y}(x)$ if and only iffor every $y \in Y$ there exists $f \in E\left(x-y_{0}\right)$ with $\Re f(y) \leq 0$.

Definition (see, e.g., [8]). An element $y_{0} \in Y$ is called a strongly unique best approximation for $x \in X$ if there exists $r>0$ such that for every $y \in Y$,

$$
\|x-y\| \geq\left\|x-y_{0}\right\|+r\left\|y-y_{0}\right\|
$$

[^0]The biggest constant r satisfying the above inequality is called a strong unicity constant. There exist two main applications of a strong unicity constant:

- the error estimate of the Remez algorithm (see e.g. [13]),
- the Lipschitz continuity of the best approximation mapping at x_{0} (assuming that there exists a strongly unique best approximation to x_{0}) (see e.g. [5], [9], [11]).

Theorem 2 (see [17]). Let $x \in X \backslash Y$ and let Y be a linear subspace of X. Then $y_{0} \in Y$ is a strongly unique best approximation for x with a constant $r>0$ if and only iffor every $y \in Y$ there exists $f \in E\left(x-y_{0}\right)$ with $\mathfrak{R} f(y) \leq-r\|y\|$.

Recall that a k-dimensional subspace \mathscr{V} of a normed space X is called an interpolating subspace if for any linearly independent $f_{1}, f_{2}, \ldots, f_{k} \in \operatorname{ext} S_{X^{\star}}$ and for every $v \in \mathscr{V}$ the following holds:

$$
\text { if } \quad f_{i}(v)=0, \quad i=1,2, \ldots, k \quad \text { then } \quad v=0
$$

Every interpolating subspace is a finite dimensional Chebyshev subspace. If $\mathscr{V} \subset X$ is an interpolating subspace then every $x \in X$ has a strongly unique best approximation in \mathscr{V} (see [2]).

In this paper we consider $X=\mathscr{K}\left(c_{0}, c_{0}\right)$ (the space of all compact operators from c_{0} to c_{0} equipped with the operator norm). Here c_{0} denotes the space of all real sequences convergent to zero. For any $x=\left(x_{k}\right) \in c_{0}$ we put

$$
\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|
$$

In [8, Theorem 3.1] it has been proved that if $\mathscr{V} \subset \mathscr{K}\left(c_{0}, c_{0}\right)$ is a finitedimensional Chebyshev subspace then every $A \in \mathscr{K}\left(c_{0}, c_{0}\right)$ has a strongly unique best approximation in \mathscr{V}. However, in [8] no example of a non-interpolating Chebyshev subspace has been proposed. If it were true that any finitedimensional Chebyshev subspace of $\mathscr{K}\left(c_{0}, c_{0}\right)$ is an interpolating subspace we would have obtained the proof of Theorem 3.1, [8] immediately (see [2] for more details).

The aim of this paper is to show that for every $k<\infty$ there exists a k dimensional non-interpolating Chebyshev subspace of $\mathscr{K}\left(c_{0}, c_{0}\right)$. This result is quite different from the result obtained in [7]. In the space $\mathscr{L}\left(l_{1}^{n}, c_{0}\right)$ any finite-dimensional Chebyshev subspace is an interpolating subspace.

Additionally, we discuss the strong unicity of best approximation in some (not necessarily Chebyshev) subspaces of $\mathscr{K}\left(c_{0}, c_{0}\right)$.

2. \boldsymbol{k}-dimensional Chebyshev subspaces of $\mathscr{K}\left(\boldsymbol{c}_{\mathbf{0}}, \boldsymbol{c}_{\mathbf{0}}\right)$

Let $A \in \mathscr{K}\left(c_{0}, c_{0}\right)$ be represented by a matrix $\left[a_{i j}\right]_{i, j \in \mathrm{~N}}$. Note that

$$
\left(a_{i j}\right)_{i=1}^{\infty} \in c_{0} \quad \text { for every } \quad j \in \mathrm{~N}
$$

Since each row of a matrix $\left[a_{i j}\right]_{i, j \in \mathrm{~N}}$ corresponds to a linear functional on c_{0},

$$
\left(a_{i j}\right)_{j=1}^{\infty} \in l^{1} \quad \text { for every } \quad i \in \mathrm{~N}
$$

Moreover, by the Schur Theorem (see [6])

$$
\lim _{i \rightarrow \infty}\left(\sum_{j=1}^{\infty}\left|a_{i j}\right|\right)=0
$$

Recall (see [4]) that ext $S_{\mathscr{K} *}{ }^{*}\left(c_{0}, c_{0}\right)$ consists of functionals of the form $e_{i} \otimes x$, where $x \in \operatorname{ext} S_{l \infty}$ and

$$
\begin{equation*}
\left(e_{i} \otimes x\right)(A)=\sum_{j=1}^{\infty} x_{j} a_{i j} \tag{2}
\end{equation*}
$$

It is easy to see that

$$
\|A\|=\sup _{i \geq 1} \sum_{j=1}^{\infty}\left|a_{i j}\right|
$$

Remark 1. Let X be a Banach space and let \mathscr{V} be a finite-dimensional subspace with $V_{1}, V_{2}, \ldots, V_{k}$ as a basis. Then \mathscr{V} is an interpolating subspace if and only if for any linearly independent $f_{1}, f_{2}, \ldots, f_{k} \in \operatorname{ext} S_{X^{\star}}$ the determinant of $\left[f_{i}\left(V_{j}\right)\right]_{i, j=1,2, \ldots, k}$ is not equal to zero.

Proof. We apply the definition of a k-dimensional interpolating subspace and the theory of linear equations. This completes the proof.

In the sequel, we denote by $\operatorname{lin}\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ the k-dimensional subspace of $\mathscr{K}\left(c_{0}, c_{0}\right)$ with $V_{1}, V_{2}, \ldots, V_{k}$ as a basis.

Example 1. Let $V=\left[v_{i j}\right]_{i, j \in \mathrm{~N}}$, where $v_{i 1}=\frac{1}{2^{i}}, v_{i j}=0, i, j \in \mathrm{~N}, j \geq 2$. It is obvious that $\mathscr{V}=\operatorname{lin}\{V\}$ is a one-dimensional interpolating subspace of $\mathscr{K}\left(c_{0}, c_{0}\right)$.

Theorem 3. Let $\mathscr{V}=\operatorname{lin}\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$. Let $V_{m}=\left[\left(v_{m}\right)_{i j}\right]_{i, j \in \mathrm{~N}}, m=$ $1,2, \ldots, n$. If \mathscr{V} is a Chebyshev subspace then

$$
\left|\begin{array}{ccccc}
f_{1}\left(V_{1}\right) & \cdot & \cdot & \cdot & f_{1}\left(V_{n}\right) \tag{3}\\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
f_{n}\left(V_{1}\right) & \cdot & \cdot & \cdot & f_{n}\left(V_{n}\right)
\end{array}\right| \neq 0
$$

for any $f_{1}, \ldots, f_{n} \in \operatorname{ext} S_{\mathscr{H}^{*}\left(c_{0}, c_{0}\right)}$ such that $f_{m}=e_{i_{m}} \otimes x^{i_{m}}, m=1,2, \ldots, n$, where $i_{m} \neq i_{k}$ for $m \neq k$.

Proof. Assume (3) does not hold. Therefore there exist $f_{1}, \ldots, f_{n} \in$ ext $S_{\mathscr{C} *\left(c_{0}, c_{0}\right)}, f_{m}=e_{i_{m}} \otimes x^{i_{m}}, m=1,2, \ldots, n$, where $i_{m} \neq i_{k}$ for $m \neq k$ such that $\operatorname{det} D=0$, where

$$
D=\left[\begin{array}{ccccc}
f_{1}\left(V_{1}\right) & \cdot & \cdot & \cdot & f_{1}\left(V_{n}\right) \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
f_{n}\left(V_{1}\right) & \cdot & \cdot & \cdot & f_{n}\left(V_{n}\right)
\end{array}\right]
$$

Since det $D=\operatorname{det} D^{T}$, there exists $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0$ such that $D^{T} y=$ 0 . Consequently,

$$
\begin{equation*}
\left.\sum_{m=1}^{n} y_{m} f_{m}\right|_{\mathscr{V}}=0 \tag{4}
\end{equation*}
$$

Since $y \neq 0$, replacing f_{m} by $-f_{m}$ if necessary, we may assume $y_{m} \geq 0$ for $m=1,2, \ldots, n$ and

$$
\sum_{m=1}^{n} y_{m}=1
$$

Set $\mathscr{C}=\left\{l \in\{1,2, \ldots, n\}: y_{l}>0\right\}$.
Fix $\left(d_{j}\right)_{j \in \mathrm{~N}}$ with the following properties:

$$
d_{j}>0, \quad j \in \mathrm{~N} \quad \text { and } \quad \sum_{j=1}^{\infty} d_{j}=1
$$

Define $A=\left[a_{i_{p} j}\right]_{i_{p}, j \in \mathrm{~N}} \in \mathscr{K}\left(c_{0}, c_{0}\right)$ by

$$
\begin{array}{ll}
a_{i_{p} j}=0 & \text { for } \quad p \notin \mathscr{C}, j \in \mathbf{N} \\
a_{i_{p} j}=d_{j} \cdot \operatorname{sgn} x^{i_{p}}(j) & \text { for } \quad p \in \mathscr{C}, j \in \mathbf{N} .
\end{array}
$$

Note that $\|A\|=1$ and

$$
E(A)=\left\{f_{p}: p \in \mathscr{C}\right\}
$$

By (4) and Theorem $1,0 \in \mathscr{P}_{\mathscr{V}}(A)$.
Since det $D=0$, there exists $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq 0$ such that $D x=0$. Put

$$
V=\sum_{m=1}^{n} x_{m} V_{m}
$$

Note that $V \neq 0$ and $f_{m}(V)=0, m=1,2, \ldots, n$. By Theorem 2,0 is not a strongly unique best approximation for A in \mathscr{V}. By [8, Theorem 3.1], \mathscr{V} is not a Chebyshev subspace and the proof is complete.

Theorem 4. Let $\mathscr{V}=\operatorname{lin}\{V\}, V \in \mathscr{K}\left(c_{0}, c_{0}\right), V \neq 0$. Then \mathscr{V} is a Chebyshev subspace if and only if \mathscr{V} is an interpolating subspace.

Proof. The classical work here is [12]. In l^{1}, the one-dimensional subspace $\operatorname{lin}\{v\}$ is Chebyshev iff for every $x \in \operatorname{ext} S_{l \infty}$ the following holds

$$
\sum_{j=1}^{\infty} x(j) v(j) \neq 0
$$

Note that for any $x \in c_{0}$ we obtain $V(x)=\left[f_{1}(x), f_{2}(x), \ldots\right]$, where the functionals f_{i} correspond to elements of l^{1}.

It is obvious that if for any $j, \operatorname{lin}\left\{f_{j}\right\}$ is not a Chebyshev subspace of l^{1}, then $\operatorname{lin}\{V\}$ is not a Chebyshev subspace of $\mathscr{K}\left(c_{0}, c_{0}\right)$. This proves the theorem.

Note that by a result of Malbrock (see [10], Theorem 3.3) each one-dimensional subspace $\mathscr{V}=\operatorname{lin}\{V\} \subset \mathscr{L}\left(c_{0}, c_{0}\right)$ is a Chebyshev subspace iff there exists $\delta>0$ such that

$$
\left|\sum_{j=1}^{\infty} x(j) v_{i j}\right| \geq \delta,
$$

where $|x(j)|=1, j \in \mathbf{N}$.
Corollary. Let $\mathscr{V} \subset \mathscr{K}\left(c_{0}, c_{0}\right)$ be a one-dimensional Chebyshev subspace. Every operator $A \in \mathscr{K}\left(c_{0}, c_{0}\right)$ has a strongly unique best approximation in \mathscr{V}.

Proof. Obvious. For more details we refer the reader to [2].
It is clear that (3) is satisfied for any n-dimensional interpolating subspace. However, (3) is not sufficient for an n-dimensional ($n \geq 2$) subspace to be Chebyshev.

Example 2. Let $\mathscr{V}=\operatorname{lin}\left\{V_{1}, V_{2}\right\}$, where

$$
V_{1}=\left[\begin{array}{ccccc}
1 & 0 & . & . & . \\
\frac{1}{2} & 0 & . & . & . \\
\frac{1}{4} & 0 & . & . & . \\
. & . & . & . & . \\
. & . & . & . & .
\end{array}\right], \quad V_{2}=\left[\begin{array}{ccccc}
1 & 0 & . & . & . \\
\frac{1}{3} & 0 & . & . & . \\
\frac{1}{9} & 0 & . & . & . \\
. & . & . & . & . \\
. & . & . & . & .
\end{array}\right]
$$

Note that \mathscr{V} satisfies (3). We claim that \mathscr{V} is a non-Chebyshev subspace.
Indeed, define $A=\left[a_{i j}\right]_{i, j \in \mathrm{~N}}$ by

$$
a_{12}=100, \quad a_{i j}=0 \quad \text { for each } \quad(i, j) \neq(1,2), i, j \in \mathrm{~N}
$$

It follows that

$$
A-\left(\alpha_{1} V_{1}+\alpha_{2} V_{2}\right)=\left[\begin{array}{ccccc}
-\alpha_{1}-\alpha_{2} & 100 & 0 & . & . \\
-\frac{1}{2} \alpha_{1}-\frac{1}{3} \alpha_{2} & 0 & . & . & . \\
-\frac{1}{4} \alpha_{1}-\frac{1}{9} \alpha_{2} & 0 & . & . & . \\
. & . & . & . & . \\
. & . & . & . & .
\end{array}\right], \quad \alpha_{1}, \alpha_{2} \in \mathbf{R}
$$

Hence

$$
\|A\|=\left\|A-\left(600 V_{1}-600 V_{2}\right)\right\|=100=\inf _{\alpha_{1}, \alpha_{2} \in \mathrm{R}}\left\|A-\left(\alpha_{1} V_{1}+\alpha_{2} V_{2}\right)\right\|
$$

Theorem 5. Let $V_{1}, V_{2}, \ldots, V_{n}$ be given by

$$
V_{j}=\left[\begin{array}{cccccccc}
0 & 0 & . & . & v_{1 j} & 0 & . & . \\
0 & 0 & . & . & v_{2 j} & 0 & . & . \\
0 & 0 & . & . & v_{3 j} & 0 & . & . \\
. & . & . & . & . & & & \\
. & . & . & . & . & & \\
. & . & . & . & . & & & \\
. & . & . & . & . & & &
\end{array}\right]
$$

where $v_{i j} \neq 0$ for each $i \in \mathbf{N}, j \in\{1,2, \ldots, n\}$ and

$$
\lim _{i \rightarrow \infty} v_{i j}=0 \quad \text { for each } \quad j \in\{1,2, \ldots, n\}
$$

The following statements are equivalent:
(i) For every choice of distinct j_{1}, \ldots, j_{k} from $\{1,2, \ldots, n\}, \mathscr{V}\left(j_{1}, \ldots, j_{k}\right)$ $:=\operatorname{lin}\left\{V_{j_{1}}, \ldots, V_{j_{k}}\right\}$ is a Chebyshev subspace of $\mathscr{K}\left(c_{0}, c_{0}\right)$
(ii)

$$
\begin{gathered}
\forall 1 \leq k \leq n, \quad \forall 1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq n, \\
\forall 1 \leq i_{1}<i_{2}<\cdots<i_{k}, \\
\forall x_{m l} \in \mathrm{R}:\left|x_{m l}\right|=1, \quad m, l=1,2, \ldots, k \\
\operatorname{det}\left[x_{m l} v_{i_{m} j_{l}}\right]_{m=1,2, \ldots, k, l=1,2, \ldots, k} \neq 0 .
\end{gathered}
$$

Proof. First, we assume that (ii) holds.
If $k=1$ then $\mathscr{V}\left(j_{1}\right)$ is an interpolating subspace for every $j_{1} \in\{1,2, \ldots, n\}$.
Let $1<k<n$ and assume that for any $j_{1}, \ldots, j_{k} \in\{1,2, \ldots, n\}, j_{p} \neq j_{q}$, $p \neq q, \mathscr{V}_{k}:=\mathscr{V}\left(j_{1}, \ldots, j_{k}\right)$ is a Chebyshev subspace.

Suppose that there exist $1 \leq j_{1}<j_{2}<\cdots<j_{k}<j_{k+1} \leq n$ such that

$$
\mathscr{V}_{k+1}:=\mathscr{V}\left(j_{1}, \ldots, j_{k}, j_{k+1}\right)
$$

is a non-Chebyshev subspace. Without loss of generality we can assume that for any $k+1 \in\{1,2, \ldots, n\}, j_{m}=m, m=1,2, \ldots, k+1$. This means precisely that $V_{j_{m}}=\left[\left(V_{j_{m}}\right)_{i j}\right]_{i, j \in \mathrm{~N}}$, where

$$
\left(V_{j_{m}}\right)_{i j}= \begin{cases}v_{i j_{m}}, & j=m \\ 0, & j \neq m\end{cases}
$$

for $i \in \mathrm{~N}, m \in\{1,2, \ldots, k, k+1\}$.
Since $\mathscr{\mathscr { N }}_{k+1}$ is a non-Chebyshev subspace, there exists $A=\left[a_{i j}\right]_{i, j \in \mathrm{~N}} \in$ $\mathscr{K}\left(c_{0}, c_{0}\right)$ such that $\sharp \mathscr{P}_{\mathscr{V}_{k+1}}(A)>1$. We can assume that $0, W \in \mathscr{P}_{\mathscr{V}_{k+1}}(A)$, where $W \neq 0$. Let $\mathscr{U}=\left\{i:\left\|e_{i} \circ A\right\|=\|A\|\right\}$. Since $A \in \mathscr{K}\left(c_{0}, c_{0}\right), \sharp \mathscr{U}<\infty$. For every $i \in \mathscr{U}$ we put

$$
E_{i}=\left\{x \in \operatorname{ext} S_{l^{\infty}}:\left(e_{i} \otimes x\right)(A)=\|A\|\right\}
$$

Since $0, W \in \mathscr{P}_{\gamma_{k+1}}(A)$, we conclude that for all $i \in \mathscr{U}$ and $x \in E_{i}$

$$
\begin{equation*}
\left(e_{i} \otimes x\right)(W) \geq 0 \tag{5}
\end{equation*}
$$

Let

$$
\mathscr{U}_{1}=\left\{i \in \mathscr{U}: \exists x \in E_{i}:\left(e_{i} \otimes x\right)(W)=0\right\} .
$$

Since $0 \in \mathscr{P}_{\mathscr{V}_{k+1}}(A), \mathscr{U}_{1} \neq \emptyset$.
We will prove that for any $i \in \mathscr{U}_{1}$ and $x, y \in E_{i}$ such that

$$
\begin{align*}
\left(e_{i} \otimes x\right)(W) & =\left(e_{i} \otimes y\right)(W)=0 \\
x(l) & =y(l), \quad l=1,2, \ldots, k+1 \tag{6}
\end{align*}
$$

On the contrary, suppose that (6) does not hold. Let $x, y \in E_{i}$ be such that

$$
\left(e_{i} \otimes x\right)(W)=0, \quad\left(e_{i} \otimes y\right)(W)=0
$$

and

$$
x(l) \neq y(l) \quad \text { for some } \quad l \in\{1,2, \ldots, k+1\} .
$$

Without loss of generality we can assume

$$
x(j)=y(j) \quad \text { for } \quad j=1,2, \ldots, p, \quad p<k+1
$$

and

$$
x(j)=-y(j) \quad \text { for } \quad j=p+1, p+2, \ldots, k+1
$$

Hence

$$
\begin{equation*}
\sum_{j=1}^{p} x(j) w_{i j}=0, \quad \sum_{j=p+1}^{k+1} x(j) w_{i j}=0 \tag{7}
\end{equation*}
$$

As

$$
x(j)=-y(j) \quad \text { for } \quad j=p+1, p+2, \ldots, k+1
$$

we obtain

$$
a_{i j}=0 \quad \text { for } \quad j=p+1, p+2, \ldots, k+1
$$

By (5),

$$
\begin{aligned}
& \sum_{j=p+1}^{k} x(j) w_{i j}-x(k+1) w_{i, k+1} \geq 0 \\
& \sum_{j=p+1}^{k}-x(j) w_{i j}+x(k+1) w_{i, k+1} \geq 0
\end{aligned}
$$

Therefore

$$
\sum_{j=p+1}^{k} x(j) w_{i j}=x(k+1) w_{i, k+1}
$$

By (7), $x(k+1) w_{i, k+1}=0$. Consequently, $w_{i, k+1}=0$. Hence $W \in \mathscr{V}_{k}$. Since $0 \in \mathscr{V}_{k}$ and \mathscr{V}_{k} is a Chebyshev subspace, (6) is proved.

We will show that there exists $\alpha_{0}>0$ such that for every $\alpha \in\left(0, \alpha_{0}\right]$,
(8) $E(A-\alpha W)=\left\{e_{i} \otimes x: i \in \mathscr{U}_{1},\left(e_{i} \otimes x\right)(W)=0,\left(e_{i} \otimes x\right)(A)=\|A\|\right\}$.

We first prove that
(9) $\sup \left\{f(A): f=e_{i} \otimes x, i \in \mathscr{U}: f(W)<0\right\}$

$$
\leq\|A\|-2 \min \left\{\left|a_{i j}\right|: i \in \mathscr{U}, j \in\{1,2, \ldots, n\}, a_{i j} \neq 0\right\}
$$

where $A=\left[a_{i j}\right]_{i, j \in \mathrm{~N}}$.
Let $i \in \mathscr{U}, f=e_{i} \otimes x, f(W)<0$. Hence there exists $j_{0} \in\{1,2, \ldots, n\}$ satisfying

$$
x\left(j_{0}\right) \neq \operatorname{sgn}\left(a_{i j_{0}}\right) \quad \text { for } \quad a_{i j_{0}} \neq 0
$$

Now, we will show

$$
\begin{aligned}
f(A)= & \sum_{j=1}^{\infty} x(j) a_{i j} \leq\|A\|-2\left|a_{i j_{0}}\right| \\
& \leq\|A\|-2 \min \left\{\left|a_{i j}\right|: i \in \mathscr{U}, j=1,2, \ldots, n,\left|a_{i j}\right| \neq 0\right\},
\end{aligned}
$$

and (9) is proved.
We conclude from (9) that there exist $\alpha_{0}>0, b>0$ such that for every $\alpha \in\left(0, \alpha_{0}\right]$,

$$
f(A-\alpha W)<b<\|A\|
$$

where $f \in \operatorname{ext} S_{\mathscr{K}{ }^{*}\left(c_{0}, c_{0}\right)}, f(W)<0$.
Assume α_{0} is so small that

$$
\sup _{i \in \mathrm{~N} \backslash \mathscr{U}}\left\|e_{i} \circ\left(A-\alpha_{0} W\right)\right\|<\|A\| .
$$

Consequently, if $f \in E\left(A-\alpha_{0} W\right)$ then $f=e_{i} \otimes x$, where $i \in \mathscr{U}_{1}$ and $f(W)=0$. Since

$$
\left\|A-\alpha_{0} W\right\|=\|A\|=\operatorname{dist}\left(A, \mathscr{V}_{k+1}\right)
$$

(8) is proved.

Since $\alpha_{0} W \in \mathscr{P}_{\vartheta_{k+1}}(A)$, we conclude (see [16]) that

$$
\exists 1 \leq q \leq k+2, \quad \exists \lambda_{1}, \ldots, \lambda_{q}>0, \quad \sum_{m=1}^{q} \lambda_{m}=1
$$

such that

$$
\begin{equation*}
\left.\sum_{m=1}^{q} \lambda_{m}\left(e_{i_{m}} \otimes x^{i_{m}}\right)\right|_{\mathscr{V}_{k+1}}=0 \tag{10}
\end{equation*}
$$

where $\left(e_{i_{m}} \otimes x^{i_{m}}\right)\left(A-\alpha_{0} W\right)=\left\|A-\alpha_{0} W\right\|$. Let q be the smallest number having property (10). $\mathrm{By}(6), i_{j} \neq i_{l}$ for $j \neq l, j, l \in\{1,2, \ldots, q\}$. If $q=k+2$ then (see [18]) $\alpha_{0} W$ is the strongly unique best approximation for A in \mathscr{V}_{k+1}, a contradiction. Suppose that $1 \leq q \leq k+1$. This contradicts (ii).

Let us assume that \mathscr{V}_{k} is a Chebyshev subspace of $\mathscr{K}\left(c_{0}, c_{0}\right)$ for every $1 \leq k \leq n$. Suppose that (ii) is false. Consequently, there exist

$$
\begin{gathered}
1 \leq k \leq n, \quad 1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq n \\
1 \leq i_{1}<i_{2}<\cdots<i_{k} \\
x_{m l} \in \mathrm{R}:\left|x_{m l}\right|=1, \quad m, l=1,2, \ldots, k
\end{gathered}
$$

satisfying

$$
\operatorname{det}\left[x_{m l} v_{i_{m} j_{l}}\right]_{m=1,2, \ldots, k, l=1,2, \ldots, k}=0
$$

It follows that there exist

$$
\lambda_{1}, \ldots, \lambda_{k} \in \mathrm{R}, \quad \sum_{m=1}^{k}\left|\lambda_{m}\right|>0
$$

such that

$$
\begin{equation*}
\left.\sum_{m=1}^{k} \lambda_{m}\left(e_{i_{m}} \otimes x^{i_{m}}\right)\right|_{\mathscr{V}_{k}}=0 \tag{11}
\end{equation*}
$$

where $x^{i_{m}}=\left(x^{i_{m}}(1), x^{i_{m}}(2), \ldots\right), x^{i_{m}}(l)=x_{m l}$.
Without loss of generality we can assume

$$
\lambda_{m}>0, \quad m=1,2, \ldots, k, \quad \sum_{m=1}^{k} \lambda_{m}=1
$$

We define an operator $B=\left[b_{i j}\right]_{i, j \in \mathrm{~N}}$ by

$$
\begin{array}{ll}
b_{i j}=\frac{\operatorname{sgn} x^{i}(j)}{2^{j}}, & i \in\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}, \\
b_{i j}=0, & i \notin\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}, \quad j \in \mathrm{~N}
\end{array}
$$

Hence $\left(e_{i_{m}} \otimes x^{i_{m}}\right)(B)=\|B\|, m=1,2, \ldots, k$. By $(11), 0 \in \mathscr{P}_{\gamma_{k}}(B)$ and

$$
\operatorname{dim} \operatorname{span}\left\{e_{i_{m}} \otimes x^{i_{m}} \mid \mathscr{V}_{k}\right\}<k,
$$

where $\operatorname{dim} \mathscr{V}_{k}=k$. Therefore there exists $V \in \mathscr{V}_{k} \backslash\{0\}$ such that

$$
\left(e_{i_{m}} \otimes x^{i_{m}}\right)(V)=0, \quad m=1,2, \ldots, k
$$

Note that (see the proof of the formula (9))

$$
\begin{aligned}
\sup \{f(B): f & \left.=e_{i_{m}} \otimes x, m=1,2, \ldots, k, f(V)<0\right\} \\
& <\|B\|-\min \left\{\left|b_{i j}\right|: i=i_{1}, i_{2}, \ldots, i_{k}, j=1,2, \ldots, n\right\}
\end{aligned}
$$

Hence there exist $\alpha_{0}>0, b>0$ such that

$$
f\left(B-\alpha_{0} V\right) \leq b<\|B\|, \quad f \in \operatorname{ext} S_{\mathscr{K} *\left(c_{0}, c_{0}\right)}, \quad f(V) \leq 0
$$

Consequently, $\left\|B-\alpha_{0} V\right\|=\|B\|$, a contradiction. The proof is complete.
Example 3. We will construct an n-dimensional Chebyshev subspace $\mathscr{V} \subset$ $\mathscr{K}\left(c_{0}, c_{0}\right)$. Let $0<t_{1}<t_{2}<\cdots<t_{n-1}$ be such that

$$
\lim _{i \rightarrow \infty} \frac{1}{2^{i}} t_{m}^{i}=0, \quad m=1,2, \ldots, n-1
$$

Define $V_{m}=\left[\left(v_{m}\right)_{i j}\right]_{i, j \in \mathrm{~N}}$ by

$$
\left(v_{m}\right)_{i m}=\frac{1}{2^{i}} t_{m}^{i}, \quad\left(v_{m}\right)_{i j}=0, \quad i \in \mathrm{~N}, \quad j \neq m
$$

Hence $V_{m} \in \mathscr{K}\left(c_{0}, c_{0}\right)$ for every $m=1,2, \ldots, n-1$.
Let $\mathscr{V}_{n-1}:=\operatorname{lin}\left\{V_{1}, V_{2}, \ldots, V_{n-1}\right\}$ satisfy the formula (ii) for every $1 \leq$ $k \leq n-1$.

We will construct an operator $V_{n} \in \mathscr{K}\left(c_{0}, c_{0}\right)$ such that $\mathscr{V}_{n}:=\operatorname{lin}\left\{V_{1}, V_{2}\right.$, $\left.\ldots, V_{n-1}, V_{n}\right\}$ satisfies the formula (ii) for every $1 \leq k \leq n$. Our goal is to find $x \in \mathrm{R}$ such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \frac{1}{2^{i}} x^{i}=0 \tag{12}
\end{equation*}
$$

and

$$
\left.\begin{align*}
& W\left(x, y^{1}, \ldots, y^{k}, i_{1}, \ldots, i_{k}, m_{1}, \ldots m_{k-1}\right) \tag{13}\\
& \qquad:=\left\lvert\, \begin{array}{cccccc}
y_{1}^{1} \frac{1}{2^{i}} t_{m_{1}}^{i_{1}} & \cdot & \cdot & . & y_{1}^{k-1} \frac{1}{2^{i_{1}}} t_{m_{k-1}}^{i_{1}} & y_{1}^{k} \frac{1}{2^{i_{1}}} x^{i_{1}} \\
\cdot & \cdot & \cdot & \cdot & \\
\cdot & \cdot & \cdot & \cdot \\
y_{k}^{1} \frac{1}{2^{i}} t_{m_{1}}^{i_{k}} & \cdot & \cdot & \cdot & . & y_{k}^{k-1} \frac{1}{2^{i_{k}}} t_{m_{k-1}}^{i_{k}}
\end{array} y_{k}^{k} \frac{1}{2^{i_{k}}} x^{i_{k}}\right.
\end{align*} \right\rvert\, \neq 0,
$$

where $k \in\{1,2, \ldots, n\}, i_{1}, i_{2}, \ldots, i_{k} \in \mathrm{~N}, y^{1}, \ldots, y^{k} \in\{-1,1\}^{k}, m_{1}, m_{2}$, $\ldots, m_{k-1} \in\{1,2, \ldots, n-1\}$. Since $W\left(x, y^{1}, \ldots, y^{k}, i_{1}, \ldots, i_{k}, m_{1}, \ldots\right.$, $\left.m_{k-1}\right)$ is not totally equal to zero, we conclude that the set of roots of $W\left(x, y^{1}\right.$, $\left.\ldots, y^{k}, i_{1}, \ldots, i_{k}, m_{1}, \ldots m_{k-1}\right)$ is finite for arbitrary but fixed y^{1}, \ldots, y^{k}, $i_{1}, \ldots, i_{k}, m_{1}, \ldots m_{k-1}$. Therefore for all $y^{1}, \ldots, y^{k}, i_{1}, \ldots, i_{k}, m_{1}, \ldots m_{k-1}$ as above, the set of roots of $W\left(x, y^{1}, \ldots, y^{k}, i_{1}, \ldots, i_{k}, m_{1}, \ldots m_{k-1}\right)$ is countable. Since R is not countable we see that there exists $x \in \mathrm{R}$ satisfying (12) and (13).

Remark 2. An n-dimensional Chebyshev subspace proposed in Example 3 is a non-interpolating subspace of $\mathscr{K}\left(c_{0}, c_{0}\right)$.

Proof. Let us assume that $\mathscr{V}_{n}=\operatorname{lin}\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ is an n-dimensional Chebyshev subspace, where $V_{m}, m=1,2, \ldots, n$ are defined in Example 3.

Put $V=\frac{1}{t_{1}} V_{1}-\frac{1}{t_{2}} V_{2}$. Note that $V \neq 0$ and $v_{i j}=0, j \geq 3, i \in \mathrm{~N}$, where $V=\left[v_{i j}\right]_{i, j \in \mathrm{~N}}$. It is obvious that there exist $x^{1}, x^{2}, \ldots, x^{n} \in \operatorname{ext} S_{l \infty}$ such that $x^{m}(1)=x^{m}(2)=1, m=1,2, \ldots, n$ and $f_{m}:=e_{1} \otimes x^{m}, m=1,2, \ldots, n$ are linearly independent. Note that

$$
f_{m}(V)=0, \quad m=1,2, \ldots, n
$$

This completes the proof.
Lemma. Let X be a normed space and let \mathscr{V} be a finite-dimensional subspace of X. Let $T \in X$. If $0 \in \mathscr{P}_{\mathscr{V}}(T)$ and 0 is not a strongly unique best approximation for T in \mathscr{V} then

$$
\exists V \in \mathscr{V}, \quad V \neq 0 \quad: \quad \forall f \in E(T) \quad f(V) \geq 0
$$

Proof. Let us assume that

$$
\forall V \in \mathscr{V}, \quad V \neq 0, \quad \exists f \in E(T) \quad: \quad f(V)<0
$$

Set for any $V \in \mathscr{V},\|V\|=1$,

$$
\begin{aligned}
-r_{V} & =\inf \{f(V): f \in E(T)\} \\
-r & =\sup \left\{-r_{V}: V \in \mathscr{V},\|V\|=1\right\}
\end{aligned}
$$

We show that $r>0$. If not, there exists $\left(V_{n}\right) \subset S_{\mathscr{V}}$ such that $-r_{V_{n}} \geq-\frac{1}{n}$. Since \mathscr{V} is a finite-dimensional subspace, we may assume that $V_{n} \rightarrow V \in S_{\mathscr{V}}$. Take $f \in E(T), f(V)<0$. Hence for $n \geq n_{0}$ there exists $d>0$ such that

$$
-\frac{1}{n} \leq-r_{V_{n}} \leq f\left(V_{n}\right)<f(V)+d<0
$$

a contradiction. Therefore

$$
\forall V \in \mathscr{V}, \quad V \neq 0, \quad \exists f \in E(T) \quad: \quad f\left(\frac{V}{\|V\|}\right)<-r .
$$

By the above,

$$
\forall V \in \mathscr{V}, \quad V \neq 0, \quad \exists f \in E(T) \quad: \quad f(V) \leq-r\|V\|
$$

Hence 0 is a strongly unique best approximation for T, a contradiction. This proves the lemma.

Theorem 6. Let $\mathscr{V} \subset \mathscr{K}\left(c_{0}, c_{0}\right)$ be an n-dimensional subspace such that

$$
\forall V \in \mathscr{V}, \quad \forall i \in \mathbf{N} \quad \sharp\left\{j \in \mathrm{~N}: v_{i j} \neq 0\right\}<\infty,
$$

where $V=\left[v_{i j}\right]_{i, j \in \mathrm{~N}}$ and let $T \in \mathscr{K}\left(c_{0}, c_{0}\right)$. Then T has a unique best approximation in \mathscr{V} if and only if T has a strongly unique best approximation in \mathscr{V}.

Proof. Let us assume that 0 is the unique best approximation for T in \mathscr{V}. Suppose that 0 is not a strongly unique best approximation. Hence (see Lemma)

$$
\exists V \in \mathscr{V}, \quad V \neq 0 \quad: \quad \forall f \in E(T) \quad f(V) \geq 0
$$

where $f=e_{i} \otimes x^{i}$ for some $x^{i} \in \operatorname{ext} S_{l \infty}$.
Put

$$
\mathcal{N}=\left\{i \in \mathrm{~N}: \exists x^{i} \in \operatorname{ext} S_{l^{\infty}}: e_{i} \otimes x^{i} \in E(T)\right\}
$$

Since T is compact, we conclude that $\sharp \mathcal{N}<\infty$.
For every $i \in \mathcal{N}$ we set

$$
E_{i}=\left\{x^{i} \in \operatorname{ext} S_{l \infty}:\left(e_{i} \otimes x^{i}\right)(T)=\|T\|\right\}
$$

Let $i \in \mathbf{N} \backslash \mathcal{N}$. Hence there exists $b>0$ such that

$$
\left(e_{i} \otimes x\right)(T)<b<\|T\|, \quad x \in \operatorname{ext} S_{l^{\infty}}
$$

Consequently, there exists $\alpha_{0}>0$ such that for every $\alpha \in\left(0, \alpha_{0}\right]$,

$$
\left|\left(e_{i} \otimes x\right)(T-\alpha V)\right|<b
$$

Therefore

$$
\sup _{i \in \mathbb{N} \backslash \mathcal{N}}\left|\left(e_{i} \otimes x\right)(T-\alpha V)\right| \leq b<\|T\| .
$$

Let $i \in \mathcal{N}$ and let $x^{i} \notin E_{i}$. From this we conclude that there exists $j_{0} \in \mathrm{~N}$ such that

$$
\operatorname{sgn} x^{i}\left(j_{0}\right) \neq \operatorname{sgn}\left(t_{i j_{0}}\right), \quad t_{i j_{0}} \neq 0,
$$

where $T=\left[t_{i j}\right]_{i, j \in \mathrm{~N}}$.
Set $J=\left\{j \in \mathrm{~N}: v_{i j} \neq 0\right\}$. If $\operatorname{sgn} x^{i}(j)=\operatorname{sgn}\left(t_{i j}\right)$ for any $j \in J$, then there exists $y^{i} \in E_{i}$ such that

$$
\left(e_{i} \otimes y^{i}\right)(T)=\|T\|, \quad\left(e_{i} \otimes y^{i}\right)(V)=\left(e_{i} \otimes x^{i}\right)(V)
$$

By the above,

$$
\left(e_{i} \otimes x^{i}\right)(T-\alpha V) \leq\|T\|-\left(e_{i} \otimes y^{i}\right)(\alpha V) \leq\|T\| .
$$

Let $\operatorname{sgn} x^{i}\left(j_{0}\right) \neq \operatorname{sgn}\left(t_{i j_{0}}\right)$ for some $j_{0} \in J$, where $t_{j_{0}} \neq 0$. Since J is finite, there exists $\alpha_{0}>0$ such that

$$
\left\|\alpha_{0} V\right\|<\min \left\{\left|t_{i j}\right|: j \in J, t_{i j} \neq 0\right\} .
$$

Let $\alpha \in\left(0, \alpha_{0}\right]$. Hence

$$
\begin{aligned}
\left(e_{i} \otimes x^{i}\right)(T-\alpha V) & =\sum_{j \in J} x^{i}(j)\left(t_{i j}-\alpha v_{i j}\right)+\sum_{j \notin J} x^{i}(j)\left(t_{i j}-\alpha v_{i j}\right) \\
& \leq \sum_{j \in J}\left|t_{i j}\right|-2\left|t_{i j_{0}}\right|+\sum_{j \notin J}\left|t_{i j}\right|+\alpha\|V\| \\
& =\|T\|+\alpha\|V\|-2\left|t_{i j_{0}}\right|<\|T\|
\end{aligned}
$$

Finally,

$$
\|T-\alpha V\|=f(T-\alpha V)
$$

where $f=e_{i} \otimes x^{i}, i \in \mathcal{N}, x^{i} \in E_{i}$. Hence

$$
\|T-\alpha V\|=f(T-\alpha V) \leq\|T\|
$$

The proof is complete.
Acknowledgments. The author wishes to thank Professor Lewicki for his remarks and suggestions concerning this article.

REFERENCES

1. Aleksiewicz, A., Analiza funkcjonalna, PWN, Warszawa 1969.
2. Ault, D. A., Deutsch, F. R., Morris, P. D., Olson, J. E., Interpolating subspaces in approximation theory, J. Approx. Theory 3 (1970), 164-182.
3. Brosowski, B., Wegmann, R., Charakterisierung bester Approximationen in normierten Vektorräumen, J. Approx. Theory 3 (1970), 369-397.
4. Collins, H. S., Ruess, W., Weak compactness in spaces of compact operators and vector-valued functions, Pacific J. Math. 106 (1983), 45-71.
5. Deutsch, F., Li, W., Strong uniqueness, Lipschitz continuity and continuous selections for metric projections in L_{1}, J. Approx. Theory 66 (1991), 198-224.
6. Edwards, R. E., Functional Analysis. Theory and Applications, Dover, New York 1995.
7. Kowynia, J., Best approximation in finite dimensional Chebyshev subspaces of $L\left(l_{1}^{n}, c\right)$, East J. Approx. 12 (2006), 407-416.
8. Lewicki, G., Best approximation in finite-dimensional subspaces of $L(W, V)$, J. Approx. Theory 81 (1995), 151-165.
9. Li, W., Strong uniqueness and Lipschitz continuity of metric projections: a generalization of the classical Haar theory, J. Approx. Theory 56 (1989), 164-184.
10. Malbrock, J., Chebyshev subspaces in the space of bounded linear operators from c_{0} to c_{0}, J. Approx. Theory 9 (1973), 149-164.
11. Nürnberger, G., Strong unicity constants in Chebyshev approximation, pp. 144-154 in: Numerical Methods of Approximation Theory 8 (Proc. Oberwolfach 1986), Internat. Schriftenreihe Numer. Math. 81, Birkhäuser, Basel 1987.
12. Phelps, R. R., Čebyšev subspaces of finite dimension in L_{1}, Proc. Amer. Math. Soc. 17 (1966), 646-652.
13. Remez, E., General Computation Methods for Chebyshev Approximation, Atomic Energy, Voroneck 1957.
14. Rudin, W., Functional Analysis, McGraw-Hill, New York 1973.
15. Ruess, W. M., Stegall, C., Extreme points in duals of operator spaces, Math. Ann. 261 (1982), 535-546.
16. Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Grundlehren math. Wiss. 171, Springer, Berlin 1970.
17. Wójcik, A., Characterization of strong unicity by tangent cones, pp. 854-866 in: Z. Ciesielski (ed.), Approximation and Function Spaces (Proc. Gdańsk 1979), PWN, Warszawa/NorthHolland, Amsterdam 1981.
18. Sudolski, J., Wójcik, A., Some remarks on strong uniqueness of best approximation, J. Approx. Theory Appl. 6 (1990), 44-78.
```
DEPARTMENT OF MATHEMATICS
AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY
AL. MICKIEWICZA 30
30-059 CRACOW
POLAND
E-mail: joannakowynia@tlen.pl
```


[^0]: * Research supported by local grant No. 10.420.03.

 Received 29 June 2009.

