THE UNICITY OF BEST APPROXIMATION IN A SPACE OF COMPACT OPERATORS

JOANNA KOWYNIA

Abstract
Chebyshev subspaces of \(\mathcal{K}(c_0, c_0) \) are studied. A \(k \)-dimensional non-interpolating Chebyshev subspace is constructed. The unicity of best approximation in non-Chebyshev subspaces is considered.

1. Introduction
Let \(K \) be the field of real or complex numbers and let \((X, \| \cdot \|) \) be a normed space over \(K \). Let \(\text{ext}_{S_X^*} \) denote the set of all extreme points of \(S_X^* \), where \(S_X^* \) is the unit sphere in \(X^* \).
For every \(x \in X \) we put
\[
E(x) = \{ f \in \text{ext}_{S_X^*} : f(x) = \|x\| \}.
\]

By the Hahn-Banach and the Krein-Milman Theorems, \(E(x) \neq \emptyset \).
Let for \(Y \subset X \),
\[
P_Y(x) = \{ y \in Y : \|x - y\| = \text{dist}(x, Y) \}.
\]

A linear subspace \(Y \subset X \) is called a Chebyshev subspace if for every \(x \in X \) the set \(P_Y(x) \) contains one and only one element.

THEOREM 1 (see [3]). Assume \(X \) is a normed space, \(Y \subset X \) is a linear subspace, and let \(x \in X \setminus Y \). Then \(y_0 \in P_Y(x) \) if and only if for every \(y \in Y \) there exists \(f \in E(x - y_0) \) with \(\Re f(y) \leq 0 \).

DEFINITION (see, e.g., [8]). An element \(y_0 \in Y \) is called a strongly unique best approximation for \(x \in X \) if there exists \(r > 0 \) such that for every \(y \in Y \),
\[
\|x - y\| \geq \|x - y_0\| + r \|y - y_0\|.
\]

* Research supported by local grant No. 10.420.03.
Received 29 June 2009.
The biggest constant r satisfying the above inequality is called a **strong unicity constant**. There exist two main applications of a strong unicity constant:

- the error estimate of the Remez algorithm (see e.g. [13]),
- the Lipschitz continuity of the best approximation mapping at x_0 (assuming that there exists a strongly unique best approximation to x_0) (see e.g. [5], [9], [11]).

Theorem 2 (see [17]). Let $x \in X \setminus Y$ and let Y be a linear subspace of X. Then $y_0 \in Y$ is a strongly unique best approximation for x with a constant $r > 0$ if and only if for every $y \in Y$ there exists $f \in E(x - y_0)$ with $\Re f(y) \leq -r \|y\|$.

Recall that a k-dimensional subspace \mathcal{V} of a normed space X is called an **interpolating subspace** if for any linearly independent $f_1, f_2, \ldots, f_k \in \text{ext} S_X$ and for every $v \in \mathcal{V}$ the following holds:

$$
\text{if } f_i(v) = 0, \ i = 1, 2, \ldots, k \ \text{ then } \ v = 0.
$$

Every interpolating subspace is a finite dimensional Chebyshev subspace. If $\mathcal{V} \subset X$ is an interpolating subspace then every $x \in X$ has a strongly unique best approximation in \mathcal{V} (see [2]).

In this paper we consider $X = \mathcal{K}(c_0, c_0)$ (the space of all compact operators from c_0 to c_0 equipped with the operator norm). Here c_0 denotes the space of all real sequences convergent to zero. For any $x = (x_k) \in c_0$ we put

$$
\|x\|_{\infty} = \sup_k |x_k|.
$$

In [8, Theorem 3.1] it has been proved that if $\mathcal{V} \subset \mathcal{K}(c_0, c_0)$ is a finite-dimensional Chebyshev subspace then every $A \in \mathcal{K}(c_0, c_0)$ has a strongly unique best approximation in \mathcal{V}. However, in [8] no example of a non-interpolating Chebyshev subspace has been proposed. If it were true that any finite-dimensional Chebyshev subspace of $\mathcal{K}(c_0, c_0)$ is an interpolating subspace we would have obtained the proof of Theorem 3.1, [8] immediately (see [2] for more details).

The aim of this paper is to show that for every $k < \infty$ there exists a k-dimensional non-interpolating Chebyshev subspace of $\mathcal{K}(c_0, c_0)$. This result is quite different from the result obtained in [7]. In the space $\mathcal{L}(l_1^n, c_0)$ any finite-dimensional Chebyshev subspace is an interpolating subspace.

Additionally, we discuss the strong unicity of best approximation in some (not necessarily Chebyshev) subspaces of $\mathcal{K}(c_0, c_0)$.
2. \(k\)-dimensional Chebyshev subspaces of \(\mathcal{H}(c_0, c_0)\)

Let \(A \in \mathcal{H}(c_0, c_0)\) be represented by a matrix \([a_{ij}]_{i,j \in \mathbb{N}}\). Note that

\[
(a_{ij})_{i=1}^{\infty} \in c_0 \quad \text{for every} \quad j \in \mathbb{N}.
\]

Since each row of a matrix \([a_{ij}]_{i,j \in \mathbb{N}}\) corresponds to a linear functional on \(c_0\),

\[
(a_{ij})_{j=1}^{\infty} \in l^1 \quad \text{for every} \quad i \in \mathbb{N}.
\]

Moreover, by the Schur Theorem (see [6])

\[
\lim_{i \to \infty} \left(\sum_{j=1}^{\infty} |a_{ij}| \right) = 0.
\]

Recall (see [4]) that \(\text{ext}_{\mathcal{H}^*(c_0,c_0)}\) consists of functionals of the form \(e_i \otimes x\), where \(x \in \text{ext}_{S_{l^\infty}}\) and

\[
(2) \quad (e_i \otimes x)(A) = \sum_{j=1}^{\infty} x_j a_{ij}.
\]

It is easy to see that

\[
\|A\| = \sup_{i \geq 1} \sum_{j=1}^{\infty} |a_{ij}|.
\]

Remark 1. Let \(X\) be a Banach space and let \(\mathcal{V}\) be a finite-dimensional subspace with \(V_1, V_2, \ldots, V_k\) as a basis. Then \(\mathcal{V}\) is an interpolating subspace if and only if for any linearly independent \(f_1, f_2, \ldots, f_k \in \text{ext}_{S_X^*}\) the determinant of \([f_i(V_j)]_{i,j=1,2,\ldots,k}\) is not equal to zero.

Proof. We apply the definition of a \(k\)-dimensional interpolating subspace and the theory of linear equations. This completes the proof.

In the sequel, we denote by \(\text{lin}\{V_1, V_2, \ldots, V_k\}\) the \(k\)-dimensional subspace of \(\mathcal{H}(c_0, c_0)\) with \(V_1, V_2, \ldots, V_k\) as a basis.

Example 1. Let \(V = \{v_{ij}\}_{i,j \in \mathbb{N}}, \) where \(v_{i1} = \frac{1}{2^i}, v_{ij} = 0, i, j \in \mathbb{N}, j \geq 2\). It is obvious that \(\mathcal{V} = \text{lin}\{V\}\) is a one-dimensional interpolating subspace of \(\mathcal{H}(c_0, c_0)\).
THEOREM 3. Let $\mathcal{V} = \text{lin}(V_1, V_2, \ldots, V_n)$. Let $V_m = [(v_{m})_{ij}]_{i,j \in \mathbb{N}}, m = 1, 2, \ldots, n$. If \mathcal{V} is a Chebyshev subspace then

$$\begin{vmatrix} f_1(V_1) & \cdots & f_1(V_n) \\ \vdots & \ddots & \vdots \\ f_n(V_1) & \cdots & f_n(V_n) \end{vmatrix} \neq 0$$

(3)

for any $f_1, \ldots, f_n \in \text{ext } S_{\mathcal{H}^\ast(c_0, c_0)}$ such that $f_m = e_{i_m} \otimes x^{i_m}, m = 1, 2, \ldots, n$, where $i_m \neq i_k$ for $m \neq k$.

PROOF. Assume (3) does not hold. Therefore there exist $f_1, \ldots, f_n \in \text{ext } S_{\mathcal{H}^\ast(c_0, c_0)}$, $f_m = e_{i_m} \otimes x^{i_m}, m = 1, 2, \ldots, n$, where $i_m \neq i_k$ for $m \neq k$ such that det $D = 0$, where

$$D = \begin{bmatrix} f_1(V_1) & \cdots & f_1(V_n) \\ \vdots & \ddots & \vdots \\ f_n(V_1) & \cdots & f_n(V_n) \end{bmatrix}$$

Since det $D = \text{det } D^T$, there exists $y = (y_1, y_2, \ldots, y_n) \neq 0$ such that $D^T y = 0$. Consequently,

$$\sum_{m=1}^{n} y_m f_m |_{\mathcal{V}} = 0.$$

(4)

Since $y \neq 0$, replacing f_m by $-f_m$ if necessary, we may assume $y_m \geq 0$ for $m = 1, 2, \ldots, n$ and

$$\sum_{m=1}^{n} y_m = 1.$$

Set $\mathcal{C} = \{l \in \{1, 2, \ldots, n\} : y_l > 0\}$.

Fix $(d_j)_{j \in \mathbb{N}}$ with the following properties:

$$d_j > 0, \quad j \in \mathbb{N} \quad \text{and} \quad \sum_{j=1}^{\infty} d_j = 1.$$

Define $A = [a_{ip,j}]_{p,i,j \in \mathcal{H}(c_0, c_0)}$ by

$$a_{ip,j} = 0 \quad \text{for} \quad p \notin \mathcal{C}, j \in \mathbb{N},$$

$$a_{ip,j} = d_j \cdot \text{sgn } x^{i_p}(j) \quad \text{for} \quad p \in \mathcal{C}, j \in \mathbb{N}.$$
Note that \(\|A\| = 1 \) and
\[
E(A) = \{ f_p : p \in C \}.
\]

By (4) and Theorem 1, \(0 \in \mathcal{P}_\mathcal{V}(A) \).

Since \(\det D = 0 \), there exists \(x = (x_1, x_2, \ldots, x_n) \neq 0 \) such that \(Dx = 0 \).

Put
\[
V = \sum_{m=1}^{n} x_m V_m.
\]

Note that \(V \neq 0 \) and \(f_m(V) = 0, m = 1, 2, \ldots, n \). By Theorem 2, 0 is not a strongly unique best approximation for \(A \) in \(\mathcal{V} \). By [8, Theorem 3.1], \(\mathcal{V} \) is not a Chebyshev subspace and the proof is complete.

Theorem 4. Let \(\mathcal{V} = \text{lin}\{V\}, V \in \mathcal{K}(c_0, c_0), V \neq 0 \). Then \(\mathcal{V} \) is a Chebyshev subspace if and only if \(\mathcal{V} \) is an interpolating subspace.

Proof. The classical work here is [12]. In \(l^1 \), the one-dimensional subspace \(\text{lin}\{v\} \) is Chebyshev iff for every \(x \in \text{ext } S_\infty \) the following holds
\[
\sum_{j=1}^{\infty} x(j)v(j) \neq 0.
\]

Note that for any \(x \in c_0 \) we obtain \(V(x) = [f_1(x), f_2(x), \ldots] \), where the functionals \(f_i \) correspond to elements of \(l^1 \).

It is obvious that if for any \(j \), \(\text{lin}\{f_j\} \) is not a Chebyshev subspace of \(l^1 \), then \(\text{lin}\{V\} \) is not a Chebyshev subspace of \(\mathcal{K}(c_0, c_0) \). This proves the theorem.

Note that by a result of Malbrock (see [10], Theorem 3.3) each one-dimensional subspace \(\mathcal{V} = \text{lin}\{V\} \subset \mathcal{K}(c_0, c_0) \) is a Chebyshev subspace iff there exists \(\delta > 0 \) such that
\[
\left| \sum_{j=1}^{\infty} x(j)v_{ij} \right| \geq \delta,
\]
where \(|x(j)| = 1, j \in \mathbb{N} \).

Corollary. Let \(\mathcal{V} \subset \mathcal{K}(c_0, c_0) \) be a one-dimensional Chebyshev subspace. Every operator \(A \in \mathcal{K}(c_0, c_0) \) has a strongly unique best approximation in \(\mathcal{V} \).

Proof. Obvious. For more details we refer the reader to [2].

It is clear that (3) is satisfied for any \(n \)-dimensional interpolating subspace. However, (3) is not sufficient for an \(n \)-dimensional \((n \geq 2) \) subspace to be Chebyshev.
Example 2. Let $Y = \text{lin}\{V_1, V_2\}$, where

$$V_1 = \begin{bmatrix} 1 & 0 & \ldots & \frac{1}{4} & 0 & \ldots \\ \frac{1}{4} & 0 & \ldots & \frac{1}{4} & 0 & \ldots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ \frac{1}{8} & 0 & \ldots & \frac{1}{8} & 0 & \ldots \end{bmatrix}, \quad V_2 = \begin{bmatrix} 1 & 0 & \ldots & \frac{1}{9} & 0 & \ldots \\ \frac{1}{9} & 0 & \ldots & \frac{1}{9} & 0 & \ldots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ \frac{1}{16} & 0 & \ldots & \frac{1}{16} & 0 & \ldots \end{bmatrix}. $$

Note that Y satisfies (3). We claim that Y is a non-Chebyshev subspace. Indeed, define $A = [a_{ij}]_{i,j \in \mathbb{N}}$ by

$$a_{12} = 100, \quad a_{ij} = 0 \quad \text{for each} \quad (i, j) \neq (1, 2), \quad i, j \in \mathbb{N}. $$

It follows that

$$A - (\alpha_1 V_1 + \alpha_2 V_2) = \begin{bmatrix} -\alpha_1 - \alpha_2 & 100 & 0 & \ldots \\ -\frac{1}{2}\alpha_1 - \frac{1}{3}\alpha_2 & 0 & \ldots \\ -\frac{1}{4}\alpha_1 - \frac{1}{9}\alpha_2 & 0 & \ldots \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}, \quad \alpha_1, \alpha_2 \in \mathbb{R}. $$

Hence

$$\|A\| = \|A - (600 V_1 - 600 V_2)\| = 100 = \inf_{\alpha_1, \alpha_2 \in \mathbb{R}} \|A - (\alpha_1 V_1 + \alpha_2 V_2)\|. $$

Theorem 5. Let V_1, V_2, \ldots, V_n be given by

$$V_j = \begin{bmatrix} 0 & 0 & \ldots & v_{1j} & 0 & \ldots \\ 0 & 0 & \ldots & v_{2j} & 0 & \ldots \\ 0 & 0 & \ldots & v_{3j} & 0 & \ldots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \end{bmatrix}, $$

where $v_{ij} \neq 0$ for each $i \in \mathbb{N}, \ j \in \{1, 2, \ldots, n\}$ and

$$\lim_{i \to \infty} v_{ij} = 0 \quad \text{for each} \quad j \in \{1, 2, \ldots, n\}. $$

The following statements are equivalent:

(i) For every choice of distinct j_1, \ldots, j_k from $\{1, 2, \ldots, n\}$, $Y(j_1, \ldots, j_k) := \text{lin}\{V_{j_1}, \ldots, V_{j_k}\}$ is a Chebyshev subspace of $\mathcal{H}(c_0, c_0)$.
Proof. First, we assume that (ii) holds.
If \(k = 1 \) then \(V(j_1) \) is an interpolating subspace for every \(j_1 \in \{1, 2, \ldots, n\} \).
Let \(1 < k < n \) and assume that for any \(j_1, \ldots, j_k \in \{1, 2, \ldots, n\} \), \(j_p \neq j_q \), \(p \neq q \), \(V_k := V(j_1, \ldots, j_k) \) is a Chebyshev subspace.
Suppose that there exist \(1 \leq j_1 < j_2 < \cdots < j_k < j_{k+1} \leq n \) such that
\[
V_{k+1} := V(j_1, \ldots, j_k, j_{k+1})
\]
is a non-Chebyshev subspace. Without loss of generality we can assume that for any \(k+1 \in \{1, 2, \ldots, n\} \), \(j_m = m, m = 1, 2, \ldots, k+1 \). This means precisely that \(V_{j_m} = [(V_{j_m})_{ij}]_{i,j \in \mathbb{N}}, \) where
\[
(V_{j_m})_{ij} = \begin{cases} v_{ijm}, & j = m \\ 0, & j \neq m \end{cases}.
\]
for \(i \in \mathbb{N}, m \in \{1, 2, \ldots, k, k+1\} \).

Since \(V_{k+1} \) is a non-Chebyshev subspace, there exists \(A = [a_{ij}]_{i,j \in \mathbb{N}} \in \mathcal{K}(c_0, c_0) \) such that \(\#P_{V_{k+1}}(A) > 1 \). We can assume that \(0, W \in P_{V_{k+1}}(A), \) where \(W \neq 0 \). Let \(\mathcal{U} = \{i : \|e_i \circ A\| = \|A\|\} \). Since \(A \in \mathcal{K}(c_0, c_0), \#\mathcal{U} < \infty \). For every \(i \in \mathcal{U} \) we put
\[
E_i = \{x \in \text{ext } S_{l^\infty} : (e_i \otimes x)(A) = \|A\|\}.
\]
Since \(0, W \in P_{V_{k+1}}(A), \) we conclude that for all \(i \in \mathcal{U} \) and \(x \in E_i \)
\[
(e_i \otimes x)(W) \geq 0. \tag{5}
\]
Let
\[
\mathcal{U}_1 = \{i \in \mathcal{U} : \exists x \in E_i : (e_i \otimes x)(W) = 0\}.
\]
Since \(0 \in P_{V_{k+1}}(A), \mathcal{U}_1 \neq \emptyset \).
We will prove that for any \(i \in \mathcal{U}_1 \) and \(x, y \in E_i \) such that
\[
(e_i \otimes x)(W) = (e_i \otimes y)(W) = 0, \tag{6}
\]
\(x(l) = y(l), \quad l = 1, 2, \ldots, k+1 \).
On the contrary, suppose that (6) does not hold. Let \(x, y \in E_i \) be such that
\[
(e_i \otimes x)(W) = 0, \quad (e_i \otimes y)(W) = 0,
\]
and
\[x(l) \neq y(l) \quad \text{for some} \quad l \in \{1, 2, \ldots, k + 1\}. \]

Without loss of generality we can assume
\[x(j) = y(j) \quad \text{for} \quad j = 1, 2, \ldots, p, \quad p < k + 1 \]
and
\[x(j) = -y(j) \quad \text{for} \quad j = p + 1, p + 2, \ldots, k + 1. \]

Hence

\[\sum_{j=1}^{p} x(j)w_{ij} = 0, \quad \sum_{j=p+1}^{k+1} x(j)w_{ij} = 0. \]

As
\[x(j) = -y(j) \quad \text{for} \quad j = p + 1, p + 2, \ldots, k + 1 \]
we obtain

\[a_{ij} = 0 \quad \text{for} \quad j = p + 1, p + 2, \ldots, k + 1. \]

By (5),
\[\sum_{j=p+1}^{k} x(j)w_{ij} - x(k + 1)w_{i,k+1} \geq 0 \]
\[\sum_{j=p+1}^{k} -x(j)w_{ij} + x(k + 1)w_{i,k+1} \geq 0. \]

Therefore
\[\sum_{j=p+1}^{k} x(j)w_{ij} = x(k + 1)w_{i,k+1}. \]

By (7), \(x(k + 1)w_{i,k+1} = 0 \). Consequently, \(w_{i,k+1} = 0 \). Hence \(W \in \mathcal{V}_k \). Since \(0 \in \mathcal{V}'_k \) and \(\mathcal{V}'_k \) is a Chebyshev subspace, (6) is proved.

We will show that there exists \(\alpha_0 > 0 \) such that for every \(\alpha \in (0, \alpha_0] \),

\[E(A - \alpha W) = \{ e_i \otimes x : i \in \mathcal{U}_1, (e_i \otimes x)(W) = 0, (e_i \otimes x)(A) = \|A\| \}. \]

We first prove that

\[\sup\{ f(A) : f = e_i \otimes x, i \in \mathcal{U} : f(W) < 0 \} \leq \|A\| - 2 \min\{|a_{ij}| : i \in \mathcal{U}, j \in \{1, 2, \ldots, n\}, a_{ij} \neq 0\}, \]
where $A = [a_{ij}]_{i,j \in \mathbb{N}}$.

Let $i \in \mathcal{U}$, $f = e_i \otimes x$, $f(W) < 0$. Hence there exists $j_0 \in \{1, 2, \ldots, n\}$ satisfying
\[
x(j_0) \neq \text{sgn}(a_{ij_0}) \quad \text{for} \quad a_{ij_0} \neq 0.
\]

Now, we will show
\[
f(A) = \sum_{j=1}^{\infty} x(j)a_{ij} \leq \|A\| - 2|a_{ij_0}|
\]
\[
\leq \|A\| - 2 \min\{|a_{ij}| : i \in \mathcal{U}, j = 1, 2, \ldots, n, \ |a_{ij}| \neq 0\},
\]
and (9) is proved.

We conclude from (9) that there exist $\alpha_0 > 0, b > 0$ such that for every $\alpha \in (0, \alpha_0]$,
\[
f(A - \alpha W) < b < \|A\|,
\]
where $f \in \text{ext } S_{\mathcal{H}^* (c_0, c_0)}$, $f(W) < 0$.

Assume α_0 is so small that
\[
\sup_{i \in \mathbb{N} \setminus \mathcal{U}} \|e_i \circ (A - \alpha_0 W)\| < \|A\|.
\]

Consequently, if $f \in E(A - \alpha_0 W)$ then $f = e_i \otimes x$, where $i \in \mathcal{U}_1$ and $f(W) = 0$. Since
\[
\|A - \alpha_0 W\| = \|A\| = \text{dist}(A, \mathcal{Y}_{k+1}),
\]
(8) is proved.

Since $\alpha_0 W \in \mathcal{P}_{\mathcal{Y}_{k+1}}(A)$, we conclude (see [16]) that
\[
\exists 1 \leq q \leq k + 2, \quad \exists \lambda_1, \ldots, \lambda_q > 0, \quad \sum_{m=1}^{q} \lambda_m = 1
\]
such that
\[
\sum_{m=1}^{q} \lambda_m (e_{i_m} \otimes x^{i_m})|_{\mathcal{Y}_{k+1}} = 0,
\]
where $(e_{i_m} \otimes x^{i_m})(A - \alpha_0 W) = \|A - \alpha_0 W\|$. Let q be the smallest number having property (10). By (6), $i_j \neq i_l$ for $j \neq l, j, l \in \{1, 2, \ldots, q\}$. If $q = k + 2$ then (see [18]) $\alpha_0 W$ is the strongly unique best approximation for A in \mathcal{Y}_{k+1}, a contradiction. Suppose that $1 \leq q \leq k + 1$. This contradicts (ii).
Let us assume that \mathcal{H}_k is a Chebyshev subspace of $\mathcal{H}(c_0, c_0)$ for every $1 \leq k \leq n$. Suppose that (ii) is false. Consequently, there exist

$$1 \leq k \leq n, \quad 1 \leq j_1 < j_2 < \cdots < j_k \leq n,$$

$$1 \leq i_1 < i_2 < \cdots < i_k,$$

$$x_{ml} \in \mathbb{R} : |x_{ml}| = 1, \quad m, l = 1, 2, \ldots, k$$

satisfying

$$\det[x_{ml}v_{mji}]_{m=1,2,\ldots,k,\quad i=1,2,\ldots,k} = 0.$$

It follows that there exist

$$\lambda_1, \ldots, \lambda_k \in \mathbb{R}, \quad \sum_{m=1}^k |\lambda_m| > 0$$

such that

$$(11) \quad \sum_{m=1}^k \lambda_m (e_{im} \otimes x^{im})|_{\mathcal{H}_k} = 0,$$

where $x^{im} = (x^{im}(1), x^{im}(2), \ldots), x^{im}(l) = x_{ml}$.

Without loss of generality we can assume

$$\lambda_m > 0, \quad m = 1, 2, \ldots, k, \quad \sum_{m=1}^k \lambda_m = 1.$$

We define an operator $B = [b_{ij}]_{i,j \in \mathbb{N}}$ by

$$b_{ij} = \frac{\text{sgn} x^i(j)}{2^j}, \quad i \in \{i_1, i_2, \ldots, i_k\},$$

$$b_{ij} = 0, \quad i \notin \{i_1, i_2, \ldots, i_k\}, \quad j \in \mathbb{N}.$$

Hence $(e_{im} \otimes x^{im})(B) = \|B\|, m = 1, 2, \ldots, k$. By (11), $0 \in \mathcal{P}_{\mathcal{H}_k}(B)$ and

$$\dim \text{span}\{e_{im} \otimes x^{im} | \mathcal{H}_k\} < k,$$

where $\dim \mathcal{H}_k = k$. Therefore there exists $V \in \mathcal{H}_k \setminus \{0\}$ such that

$$(e_{im} \otimes x^{im})(V) = 0, \quad m = 1, 2, \ldots, k.$$

Note that (see the proof of the formula (9))

$$\sup\{f(B) : f = e_{im} \otimes x, \quad m = 1, 2, \ldots, k, \quad f(V) < 0\}$$

$$< \|B\| - \min\{|b_{ij}| : i = i_1, i_2, \ldots, i_k, \quad j = 1, 2, \ldots, n\}.$$
Hence there exist $\alpha_0 > 0$, $b > 0$ such that
\[
f(B - \alpha_0 V) \leq b < \|B\|, \quad f \in \text{ext} \mathcal{K}^*(c_0, c_0), \quad f(V) \leq 0.
\]
Consequently, $\|B - \alpha_0 V\| = \|B\|$, a contradiction. The proof is complete.

Example 3. We will construct an n-dimensional Chebyshev subspace $V \subset \mathcal{K}(c_0, c_0)$. Let $0 < t_1 < t_2 < \cdots < t_{n-1}$ be such that
\[
\lim_{i \to \infty} \frac{1}{2^i} t_m^i = 0, \quad m = 1, 2, \ldots, n - 1.
\]
Define $V_m = [(v_m)_{ij}]_{i,j \in \mathbb{N}}$ by
\[
(v_m)_{im} = \frac{1}{2^i} t_m^i, \quad (v_m)_{ij} = 0, \quad i \in \mathbb{N}, \quad j \neq m.
\]
Hence $V_m \in \mathcal{K}(c_0, c_0)$ for every $m = 1, 2, \ldots, n - 1$.

Let $\mathcal{V}_{n-1} := \text{lin}\{V_1, V_2, \ldots, V_{n-1}\}$ satisfy the formula (ii) for every $1 \leq k \leq n - 1$.

We will construct an operator $V_n \in \mathcal{K}(c_0, c_0)$ such that $\mathcal{V}_n := \text{lin}\{V_1, V_2, \ldots, V_{n-1}, V_n\}$ satisfies the formula (ii) for every $1 \leq k \leq n$. Our goal is to find $x \in \mathbb{R}$ such that
\[
\lim_{i \to \infty} \frac{1}{2^i} x_i^i = 0
\]
and
\[
W(x, y^1, \ldots, y^k, i_1, \ldots, i_k, m_1, \ldots m_{k-1})
\]
\[
\begin{vmatrix}
 y_1^{1/2^1} t_{m_1}^{i_1} & \cdots & y_1^{k-1/2^1} t_{m_{k-1}}^{i_k} & y_1^{1/2^1} x_1^{i_1} \\
 \vdots & \ddots & \vdots & \vdots \\
 y_k^{1/2^k} t_{m_1}^{i_k} & \cdots & y_k^{k-1/2^k} t_{m_{k-1}}^{i_k} & y_k^{1/2^k} x_1^{i_k}
\end{vmatrix} \neq 0,
\]
where $k \in \{1, 2, \ldots, n\}$, $i_1, i_2, \ldots, i_k \in \mathbb{N}$, $y^1, \ldots, y^k \in \{-1, 1\}^k$, $m_1, m_2, \ldots, m_{k-1} \in \{1, 2, \ldots, n - 1\}$. Since $W(x, y^1, \ldots, y^k, i_1, \ldots, i_k, m_1, \ldots, m_{k-1})$ is not totally equal to zero, we conclude that the set of roots of $W(x, y^1, \ldots, y^k, i_1, \ldots, i_k, m_1, \ldots, m_{k-1})$ is finite for arbitrary but fixed $y^1, \ldots, y^k, i_1, \ldots, i_k, m_1, \ldots, m_{k-1}$. Therefore for all $y^1, \ldots, y^k, i_1, \ldots, i_k, m_1, \ldots, m_{k-1}$ as above, the set of roots of $W(x, y^1, \ldots, y^k, i_1, \ldots, i_k, m_1, \ldots, m_{k-1})$ is countable. Since \mathbb{R} is not countable we see that there exists $x \in \mathbb{R}$ satisfying (12) and (13).
Remark 2. An n-dimensional Chebyshev subspace proposed in Example 3 is a non-interpolating subspace of $\mathcal{K}(c_0, c_0)$.

Proof. Let us assume that $\mathcal{V}_n = \text{lin}\{V_1, V_2, \ldots, V_n\}$ is an n-dimensional Chebyshev subspace, where $V_m, m = 1, 2, \ldots, n$ are defined in Example 3.

Put $V = \frac{1}{t_1}V_1 - \frac{1}{t_2}V_2$. Note that $V \neq 0$ and $v_{ij} = 0$, $j \geq 3, i \in \mathbb{N}$, where $V = [v_{ij}]_{i,j \in \mathbb{N}}$. It is obvious that there exist $x^1, x^2, \ldots, x^n \in \text{ext } S_{\mathcal{V}}$ such that $x^m(1) = x^m(2) = 1, m = 1, 2, \ldots, n$ and $f_m := e_1 \otimes x^m, m = 1, 2, \ldots, n$ are linearly independent. Note that

$$f_m(V) = 0, \quad m = 1, 2, \ldots, n.$$

This completes the proof.

Lemma. Let X be a normed space and let \mathcal{V} be a finite-dimensional subspace of X. Let $T \in X$. If $0 \in \mathcal{P}_T \mathcal{V}$ and 0 is not a strongly unique best approximation for T in \mathcal{V} then

$$\exists V \in \mathcal{V}, \quad V \neq 0: \forall f \in E(T) \quad f(V) \geq 0.$$

Proof. Let us assume that

$$\forall V \in \mathcal{V}, \quad V \neq 0, \quad \exists f \in E(T): \quad f(V) < 0.$$

Set for any $V \in \mathcal{V}$, $\|V\| = 1$,

$$-r_V = \inf \{f(V) : f \in E(T)\},$$

$$-r = \sup \{-r_V : V \in \mathcal{V}, \|V\| = 1\}.$$

We show that $r > 0$. If not, there exists $(V_n) \subset S_{\mathcal{V}}$ such that $-r_{V_n} \geq -\frac{1}{n}$. Since \mathcal{V} is a finite-dimensional subspace, we may assume that $V_n \rightarrow V \in S_{\mathcal{V}}$. Take $f \in E(T), f(V) < 0$. Hence for $n \geq n_0$ there exists $d > 0$ such that

$$-\frac{1}{n} \leq -r_{V_n} \leq f(V_n) < f(V) + d < 0,$$

a contradiction. Therefore

$$\forall V \in \mathcal{V}, \quad V \neq 0, \quad \exists f \in E(T) : \quad f \left(\frac{V}{\|V\|} \right) < -r.$$

By the above,

$$\forall V \in \mathcal{V}, \quad V \neq 0, \quad \exists f \in E(T) : \quad f(V) \leq -r\|V\|.$$
Hence 0 is a strongly unique best approximation for T, a contradiction. This proves the lemma.

Theorem 6. Let $\mathcal{V} \subset \mathcal{K}(c_0, c_0)$ be an n-dimensional subspace such that
\[
\forall V \in \mathcal{V}, \forall i \in \mathbb{N} \quad \exists \{j \in \mathbb{N} : v_{ij} \neq 0\} < \infty,
\]
where $V = [v_{ij}]_{i,j \in \mathbb{N}}$ and let $T \in \mathcal{K}(c_0, c_0)$. Then T has a unique best approximation in \mathcal{V} if and only if T has a strongly unique best approximation in \mathcal{V}.

Proof. Let us assume that 0 is the unique best approximation for T in \mathcal{V}. Suppose that 0 is not a strongly unique best approximation. Hence (see Lemma)
\[
\exists V \in \mathcal{V}, V \neq 0 : \forall f \in E(T) \quad f(V) \geq 0,
\]
where $f = e_i \otimes x^i$ for some $x^i \in \text{ext} S_{l^\infty}$.

Put $\mathcal{N} = \{i \in \mathbb{N} : \exists x^i \in \text{ext} S_{l^\infty} : e_i \otimes x^i \in E(T)\}$.

Since T is compact, we conclude that $\#\mathcal{N} < \infty$.

For every $i \in \mathcal{N}$ we set
\[
E_i = \{x^i \in \text{ext} S_{l^\infty} : (e_i \otimes x^i)(T) = \|T\|\}.
\]
Let $i \in \mathbb{N} \setminus \mathcal{N}$. Hence there exists $b > 0$ such that
\[
(e_i \otimes x)(T) < b < \|T\|, \quad x \in \text{ext} S_{l^\infty}.
\]
Consequently, there exists $\alpha_0 > 0$ such that for every $\alpha \in (0, \alpha_0]$,
\[
| (e_i \otimes x)(T - \alpha V) | < b.
\]
Therefore
\[
\sup_{i \in \mathbb{N} \setminus \mathcal{N}} | (e_i \otimes x)(T - \alpha V) | \leq b < \|T\|.
\]
Let $i \in \mathcal{N}$ and let $x^i \notin E_i$. From this we conclude that there exists $j_0 \in \mathbb{N}$ such that
\[
\text{sgn} x^i(j_0) \neq \text{sgn}(t_{ij_0}), \quad t_{ij_0} \neq 0,
\]
where $T = [t_{ij}]_{i,j \in \mathbb{N}}$.

Set $J = \{j \in \mathbb{N} : v_{ij} \neq 0\}$. If $\text{sgn} x^i(j) = \text{sgn}(t_{ij})$ for any $j \in J$, then there exists $y^i \in E_i$ such that
\[
(e_i \otimes y^i)(T) = \|T\|, \quad (e_i \otimes y^i)(V) = (e_i \otimes x^i)(V).
\]
By the above,
\[(e_i \otimes x^i)(T - \alpha V) \leq \|T\| - (e_i \otimes y^i)(\alpha V) \leq \|T\| .\]

Let \(\text{sgn} x^i(j_0) \neq \text{sgn}(t_{ij_0})\) for some \(j_0 \in J\), where \(t_{ij_0} \neq 0\). Since \(J\) is finite, there exists \(\alpha_0 > 0\) such that
\[
\|\alpha_0 V\| < \min\{|t_{ij}| : j \in J, t_{ij} \neq 0\}.
\]

Let \(\alpha \in (0, \alpha_0]\). Hence
\[
(e_i \otimes x^i)(T - \alpha V) = \sum_{j \in J} x^i(j)(t_{ij} - \alpha v_{ij}) + \sum_{j \notin J} x^i(j)(t_{ij} - \alpha v_{ij}) \\
\leq \sum_{j \in J} |t_{ij}| - 2|t_{ij_0}| + \sum_{j \notin J} |t_{ij}| + \alpha \|V\| \\
= \|T\| + \alpha \|V\| - 2|t_{ij_0}| < \|T\|.
\]

Finally,
\[
\|T - \alpha V\| = f(T - \alpha V),
\]
where \(f = e_i \otimes x^i, i \in \mathcal{N}, x^i \in E_i\). Hence
\[
\|T - \alpha V\| = f(T - \alpha V) \leq \|T\|.
\]

The proof is complete.

ACKNOWLEDGMENTS. The author wishes to thank Professor Lewicki for his remarks and suggestions concerning this article.

REFERENCES

10. Malbrock, J., Chebyshev subspaces in the space of bounded linear operators from c_0 to c_0, J. Approx. Theory 9 (1973), 149–164.

