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UNIFORM METRIC SPACES, ANNULAR
QUASICONVEXITY AND POINTED

TANGENT SPACES

DAVID A. HERRON∗

(Dedicated to the memory of Juha Heinonen)

Abstract
We establish Väisälä’s tangent space characterization for uniformity in the doubling metric space
setting. We present similar results for other geometric properties.

1. Introduction

Uniform metric spaces were introduced in [5] and play a noteworthy role in
the program of doing analysis in the metric space setting; these generalize the
Euclidean uniform subspaces of Rn whose importance in geometric analysis
is well established as documented in [12] and [27]. Euclidean uniform spaces
were first studied by John [20] and Martio and Sarvas [25]. Every bounded
Lipschitz domain in Rn is uniform, but a generic uniform space may have a
fractal boundary.

Many important concepts in potential theory are known to hold in uniform
spaces; for example, see [1] and [2]. There are close ties between uniformity
and extension of Sobolev functions; see [21] for Euclidean space and [4] for the
metric space setting. Recently, uniform subspaces of the Heisenberg groups,
as well as more general Carnot groups, have become a focus of study; see [10],
[9], [13].

Thanks to the aforementioned work of Bonk, Heinonen and Koskela, uni-
form metric spaces also feature prominently in geometric group theory. To
wit, the quasihyperbolization of a (locally compact) uniform metric space is
a (proper geodesic) Gromov hyperbolic space, and roughly speaking the con-
verse holds as well.

The purpose of this article is to characterize the uniform subspaces of reas-
onable ambient spaces in term of tangent spaces. See Sections 2 and 3 for basic
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information including definitions, notation and terminology; especially, §3.2
describes the families Tan(X) and Tanb(X, A) of pointed tangent spaces.

Roughly speaking, the uniformity of such a subspace U is determined by
the geometry of its boundary in the sense that U is not uniform if and only
if we can zoom in (or zoom out) at points of its boundary in such a way
that either the boundary points look more and more like interior points of
the complement, or the ‘zoomed’ complement of U disconnects the ‘zoomed’
ambient space. The generic examples are R × (0, 1) ⊂ R2 (zoom out at the
origin) and R2 \ {(x, 0) : x ≤ 1} (zoom in at the origin).

Theorem A. Let X be a complete doubling annular quasiconvex metric
space. Suppose U is an open connected subspace of X with bd(U) �= ∅. Put
A := X \ U . Then U is uniform if and only if for each (X∞, A∞; a∞) in
Tanb(X, A), the point a∞ belongs to bd(A∞) and X∞ \ A∞ is connected.

Our proof relies on a similar characterization for plump open subspaces. In
the length space setting, these are the subspaces U that have the property that
for each metric ball B centered in U there is another comparably sized metric
ball that is centered in B and contained in U . An infinite cylinder in Euclidean
space does not possess this property.

Proposition B. Let X be a complete doubling length metric space. Suppose
U is an open subspace of X with bd(U) �= ∅. Put A := X\U . Then U is plump
in X if and only if for each (X∞, A∞; a∞) in Tanb(X, A), a∞ ∈ bd(A∞).

In addition, we utilize the following plumpness characterization for uni-
formity.

Proposition C. Let U be a non-complete locally complete metric space.
Suppose U is c-plump and 3c-proximate points in U can be joined by b-uniform
paths. Then U is a-uniform with a = 18b2c. The converse holds with c = 4a

and b = a.

Note that in contrast to the above, neither Theorem A nor Proposition B
is quantitative. In the Euclidean space setting, these three results are due to
Väisälä; see [27, Theorems 2.15, 3.5, 3.8].

A natural question to ask is what other geometric properties of spaces can be
characterized in terms of their tangent spaces. As described in Proposition 2.3,
there is a close connection between annular quasiconvexity and uniformity, so
the following is not surprising.

Theorem D. Let X be a complete doubling length metric space. Then X is
annular quasiconvex if and only if for each (X∞; a∞) in Tan(X), X∞ \ {a∞}
is connected.
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Our final result suggests that the bounded turning and linear local connectiv-
ity properties cannot be detected at the tangent space level.

Example E. Let C ⊂ Rn be closed and a ∈ C. There exists a 1-bounded
turning 1-linearly locally connected open connected U ⊂ Rn with (C; a) in
Tan(Rn \ U).

The necessary conditions in each of Theorems A and D and Proposition B
above can be strengthened as indicated in Section 4. Roughly speaking, the
geometric property of interest is always inherited by the tangent space.

This document is organized as follows: Section 2 contains preliminary in-
formation including basic definitions and terminology descriptions; e.g., our
definition of uniform spaces is given in §2.2.2. Section 3 includes a discus-
sion of pointed Gromov-Hausdorff distance as well as the construction for
Example E. We establish the above results in Section 4.

The author is grateful to Stephen Buckley and Nageswari Shanmugalingam
for helpful discussions. The author thanks the referee for their insightful sug-
gestions. After preparing this manuscript, the author learned that Xiangdong
Xie has also proven Theorem D.

2. Preliminaries

Here we set forth our (relatively standard) notation and terminology and
provide fundamental definitions and basic information. For real numbers a

and b,
a ∧ b := min{a, b} and a ∨ b := max{a, b}.

2.1. Metric Space Definitions

Throughout this article (X, d) denotes a general metric space which we often
refer to as just X. In this setting, all topological notions refer to the metric
topology; here cl(A), bd(A), int(A) are the closure, boundary, interior (re-
spectively) of A ⊂ X. We write X̄ = X̄d and ∂X = ∂dX := X̄d \ X to denote
the metric completion and metric boundary, respectively, of (X, d). We note
that when A is an open subspace of X, bd(A) ⊂ ∂A and equality holds if X

is complete (but not in general). When there are several metric spaces under
consideration, such as X and Y , we denote the distance functions as dX and
dY , respectively, if there is any chance of confusion.

In general, we write the distance between points x, y as |x − y| = d(x, y).
The open and closed balls of radius r centered at the point x are B(x; r) :=
Bd(x; r) := {y : |x − y| < r} and B̄(x; r) := {y : |x − y| ≤ r}. The closed
annular ring centered at x with inner radius r and outer radius s is

A(x; r, s) := B̄(x; s) \ B(x; r) = {y : r ≤ |x − y| ≤ s}.
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The open t-neighborhood about A ⊂ X is

N[A; t] := {x ∈ X | dist(x, A) < t} =
⋃
a∈A

B(a; t).

For convenience, we set

�(X) :=
{

(0, diam(X)] when X is bounded,

(0, ∞) otherwise.

A metric space X is locally complete provided d(x) := dist(x, ∂X) > 0
for every x ∈ X; equivalently, X is an open subspace of X̄. In a non-complete
locally complete space X we write

B(x) := B(x; d(x)) and for any c > 0, cB(x) := B(x; cd(x)).

Two points x, y are a-proximate, for some constant a > 0, if |x − y| ≤
a[d(x) ∧ d(y)]. If this holds, then also (a + 1)−1 ≤ d(x)/d(y) ≤ a + 1.

A metric space X is doubling, or, satisfies a (metric) doubling condition if
there is a constant ν such that each ball in X of radius r can be covered by using
at most ν balls of radius r/2; these are precisely the spaces of finite Assouad
dimension. In other words, for all x ∈ X and all r > 0, N(r; B(x; 2r)) ≤ ν,
where

N(r; E) := min{n ∈ N | ∃ x1, . . . , xn st E ⊂ ∪n
i=1B(xi; r)}.

Examples of doubling spaces include all Euclidean spaces, Heisenberg groups,
and Ahlfors regular spaces.

Note that balls in doubling spaces are totally bounded. Thus every com-
plete doubling space is proper (i.e., has the Heine-Borel property that closed
bounded subsets are compact).

A path is a continuous map of an interval; all path parametrization intervals
are assumed to be compact unless explicitly indicated otherwise. The notation
|γ | stands for the trajectory (i.e., image) of a path γ . For a path γ , the phrase γ

joins x to y is also meant to describe an orientation, and when γ is injective, we
write γ [x, y], γ (x, y), γ [x, y) for the various (closed, open, etc.) subpaths of
γ that join x to y. We also use this notation for a general path γ ; here γ [x, y]
denotes the unique injective subpath of γ that joins x, y obtained by using the
last time γ is at x up to the first time γ is at y.

When α and β are paths that join x to y and y to z respectively, we write
α � β for the concatenation of α and β; so α � β joins x to z. Of course,
|α � β| = |α| ∪ |β|.
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We mention the useful fact that every path contains an injective subpath that
joins its endpoints. This observation follows by cutting out loops; see [28].

The length of a path [0, 1]
γ→ X is defined by

	(γ ) := sup

{ n∑
i=1

|γ (ti) − γ (ti−1)| : 0 = t0 < t1 < · · · < tn = 1

}
,

and γ is rectifiable when 	(γ ) < ∞. A geodesic in X is the trajectory (image)

|γ | of some isometric embedding I
γ→ X where I ⊂ R is an interval; we use

the adjectives segment, ray, or line (respectively) to indicate that I is bounded,
semi-infinite, or all of R.

A metric space is geodesic if each pair of points can be joined by a geodesic
segment. We use the notation [x, y] to mean a (not necessarily unique) geodesic
segment joining points x, y; such geodesics always exist if our space is geo-
desic, but may not be unique. We consider a given geodesic [x, y] as being
ordered from x to y (so we can use phrases such as the ‘first’point encountered).
Abusing notation, we also view a given [x, y] as the path [0, |x − y|] � t �→
γ (t) ∈ [x, y] where |γ (t) − x| = t ; this permits us to write expressions such
as [x, y] � [y, z].

2.2. Annular Quasiconvex, Uniform, and Plump Spaces

A rectifiable path γ with endpoints x, y is a c-quasiconvex path, c ≥ 1 some
constant, provided 	(γ ) ≤ c|x − y|. A metric space is c-quasiconvex if each
pair of points in it can be joined by a c-quasiconvex path. (Note that in general
the trajectory of a quasiconvex path need not be quasiconvex.) Thus a metric
space is: quasiconvex if and only if it is bilipschitz equivalent to a length space,
a length space if and only if it is c-quasiconvex for each c > 1, and a geodesic
space if and only if it is 1-quasiconvex.

2.2.1. Annular QuasiConvexity. A metric space X is c-annular quasiconvex
at p ∈ X, c ≥ 1, provided it is connected and for all r > 0, points in A(p; r, 2r)

can be joined by c-quasiconvex paths lying in A(p; r/c, 2cr). We call X c-
annular quasiconvex if it is c-annular quasiconvex at each point. Examples of
quasiconvex and annular quasiconvex metric spaces include Banach spaces and
upper regular Loewner spaces; the latter includes Carnot groups and certain
Riemannian manifolds with non-negative Ricci curvature; see [16, 3.13, 3.18,
Section 6]. Korte [22] has recently verified that doubling metric measure spaces
that support a (1, p)-Poincaré inequality with sufficiently small p are annular
quasiconvex.

To the best of our knowledge, the notion of annular quasiconvexity was
first introduced in [22] and [7]; it was an essential ingredient in [19]. A similar
concept has recently been employed in [23].
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The assumption that an annular quasiconvex space is connected can be
relaxed, e.g., to something like uniformly perfect. We want to rule out spaces
such as {0} ∪ [1, 2] ∪ [100, 101] ∪ [10000, 10002] . . .. We also note that any
c-quasiconvex path joining points in a ball B̄(p; r) will lie in B̄(p; (c + 1)r).
To see this, assume z ∈ |γ | for some such path γ joining x, y ∈ B̄(p; r) and
note that

(2.1) |z−p| ≤ (|z−x|+|x−p|)∧(|z−y|+|y−p|) ≤ r+	(γ )/2 ≤ (c+1)r.

The important consequence of annular quasiconvexity, versus quasiconvexity,
is that we can join points by avoiding the centers of such balls.

Here are some elementary properties of annular quasiconvex spaces. For
example, with regards to annular quasiconvexity, there is no harm in assuming
that our space is complete. See [7, Propositions 6.1, 6.3] and [18, Theorem 2.7]
for ideas behind the proofs of the following.

Fact 2.2. Let X be annular c-quasiconvex at some point p. Then:
(a) X is 9c-quasiconvex.

(b) X̄ is 10c-annular quasiconvex at p.

(c) points in A(p; r, R) can be joined in A(p; r/c, cR) by 45c-quasiconvex
paths.

There is an intimate connection between the annular quasiconvexity of a
space and uniformity of certain of its subspaces; the definition of a uniform
space is given in §2.2.2. For related information see [7, §6.C]. Roughly speak-
ing, annular quasiconvex spaces are those for which single points are removable
for uniformity.

A rectifiable path γ with endpoints x, y is a c-cone path from x to y provided
c ≥ 1 and

∀ z ∈ |γ |, 	(γ [x, z]) ≤ c d(z);
here we assume that x, y, γ lie in some non-complete locally complete space
U and d(z) := dist(z, ∂U).

Proposition 2.3. Let X be a complete connected metric space. Fix p ∈ X.
The following are quantitatively equivalent:

(a) X is c-annular quasiconvex at p ∈ X.

(b) ∀ x, y ∈ X \ {p} satisfying |x − p| ≤ |y − p|, ∃ a c-quasiconvex c-cone
path from x to y.

(c) X \ {p} is c-uniform.

The constant c varies from (a) to (b) to (c), but each depends only on the other.
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Proof. We establish (a)⇒(b)⇒(c)⇒(a). The middle implication is trivial.
To prove (c)⇒(a), assume X \ {p} is c-uniform and fix points x, y in some
annular ring A(p; r, 2r). Let γ be a c-uniform path joining x, y. Then as in
(2.1), |γ | ⊂ B̄(p; 2(c + 1)r). Also for each z ∈ |γ |: if dist(z, {x, y}) ≤ r/2,
then |z − p| ≥ r/2 whereas when dist(z, {x, y}) ≥ r/2,

|z − p| = d(z) ≥ c−1[	(γ [x, z]) ∧ 	(γ [y, z])] ≥ r/(2c).

Thus in all cases |γ | ⊂ A(p; r/2c, 2(c + 1)r); so, X is 2(c + 1)-annular
quasiconvex at p.

To prove (a)⇒(b), assume X is c-annular quasiconvex at p. Fix points
x, y ∈ X \ {p} with r := |x − p| ≤ |y − p|. Suppose first that |y − p| ≤ 2r .
There is a c-quasiconvex path γ joining x, y in A(p; r/c, 2cr). Then 	(γ ) ≤
3cr , so for all z ∈ |γ |,

d(z) = |z − p| ≥ r

c
≥ 	(γ )

3c2

and thus γ is a 3c2-cone path from x to y.
Now suppose |y − p| > 2r and pick n ∈ N with 2nr < |y − p| ≤ 2n+1r .

Put x0 := x, xn+1 := y and for each 1 ≤ i ≤ n select a point xi with
|xi − p| = ri := 2i r . For each 1 ≤ i ≤ n + 1, there are c-quasiconvex paths
αi joining xi−1, xi in A(p; ri−1/c, cri). We claim that γ := α1 � · · · � αn+1 is
a b-quasiconvex b-cone path from x to y with b := 3c(3 ∧ 2c). To check the
b-quasiconvex property, we calculate

	(γ ) =
n+1∑
i=1

	(αi) ≤ c

n+1∑
i=1

|xi − xi−1| ≤ 3cr

n+1∑
i=1

2i−1

= 3c(2n+1 − 1)r < 3c
2n+1 − 1

2n − 1
|x − y| ≤ 9c|x − y|.

The penultimate inequality above holds because |x −y| ≥ |y −p|− |x −p| ≥
2nr − r .

It remains to verify the b-cone property. Let z ∈ |γ |, say z ∈ |αj | for some
1 ≤ j ≤ n + 1. The choice of αj ensures that

d(z) = |z − p| ≥ rj−1/c = 2j−1r/c.

Thus

	(γ [z, x]) ≤
j∑

i=1

	(αj ) ≤ c

j∑
i=1

|xi − xi−1| ≤ 3cr

j∑
i=1

2i−1 ≤ 6c2d(z).
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2.2.2. Uniformity. Roughly speaking, a space is uniform when points in
it can be joined by paths that are not too long and that move away from the
boundary. A non-complete locally complete metric space U is a uniform space
if there is a constant c ≥ 1 such that each pair of points in U can be joined by
a c-uniform path. A rectifiable path γ that joins points x, y in such a metric
space U is a c-uniform path provided it is both c-quasiconvex and

∀ z ∈ |γ |, 	(γ [x, z]) ∧ 	(γ [y, z]) ≤ cd(z),

where d(z) := dist(z, ∂U). We call γ a double c-cone path if it satisfies
the above condition (the phrases cigar path and corkscrew are also used). In
[27] Väisälä provides a description of various possible double cone conditions
(which he calls length cigars, diameter cigars, distance cigars, and Möbius
cigars). Martio’s work [24] should also be mentioned.

An elementary, but useful, observation is that any path γ in U with endpoints
x, y is a c-uniform path where c := 	(γ )/[|x − y| ∧ dist(|γ |, ∂U)]. Here are
some additional facts.

Lemma 2.4. Let U ⊂ X be an open subspace of a complete geodesic space
X with bd(U) �= ∅. Suppose x, y ∈ U with d(x) ≤ d(y). If y ∈ B̄(x), then
every geodesic [x, y] is a 1-uniform path in U .

Proof. Select w ∈ [x, y] with |x − w| = |x − y|/2 = |y − w|. Suppose
z ∈ [x, w]. Then |x − z| ≤ |x − w|, so

d(z) ≥ d(x) − |x − z| ≥ d(x) − |x − y|
2

≥ |x − y|
2

≥ |x − z| = 	([x, z]).

Since d(y) ≥ d(x), x ∈ B̄(y) and so the same argument applies for z ∈ [y, w].

Lemma 2.5. Let U ⊂ X be an open subspace of a complete geodesic b-
annular quasiconvex space X with bd(U) �= ∅. Fix a ≥ 1 + 2b and x, y ∈ U

with d(x) ≤ d(y). Pick u ∈ bd(U) with r := d(x) = |x − u|. Suppose

r ≤ |x − y| ≤ ar and A := (X \ U) ∩ B̄(x; 3ar) ⊂ B̄(u; r/2b).

Then there is a c-uniform path in U joining x and y, where c := b(a ∨ 6b).

Proof. Note thaty �∈ B(u; r), and for all z ∈ aB̄(x), d(z) := dist(z, bd(U))

= dist(z, A).
Suppose y ∈ B̄(u; 2r). Then x, y ∈ A(u; r, 2r). Since X is b-annular

quasiconvex, there is a b-quasiconvex path γ joining x, y in A(u; r/b, 2br).
In particular, 	(γ ) ≤ b|x − y| ≤ 3br and |γ | ⊂ B̄(u; 2br) ⊂ aB̄(x). Thus for
all z ∈ |γ |, d(z) ≥ r/2b, so

	(γ [x, z]) ∧ 	(γ [y, z]) ≤ 1

2
	(γ ) ≤ 3br

2
≤ 3b2d(z)
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x

y

u
w

r

α

β := [w, y]

γ :=

Figure 1. Using annular quasiconvexity

and we see that γ is a double 3b2-cone path.
Now suppose y �∈ B̄(u; 2r). See Figure 1. Fix a geodesic [x, y] from x to

y, let w be the last point of [x, y] in B̄(u; 2r), and put β := [w, y] ⊂ [x, y].
By the first case there is a path α joining x, w in A(u; r/b, 2br) ⊂ aB̄(x) with

	(α) ≤ b|x − w| ≤ 3br and ∀ z ∈ |α|, d(z) ≥ r/2b.

Let γ := α � β. Then

	(γ ) = 	(α) + 	(β) ≤ 3br + |w − y| ≤ 3b|x − y| ≤ 3abr.

To check the double cone condition, we observe that:

z ∈ |α| ⇒ d(z) ≥ r/2b, so 	(γ [x, z]) ≤ 	(α) ≤ 3br ≤ 6b2d(z);
and since |β| ∩ B̄(u; 2r) = {w},

z ∈ |β| ⇒ d(z) = dist(z, A) ≥ dist(w, A) ≥ 3r/2,

so
	(γ [x, z]) ∧ 	(γ [y, z]) ≤ 1

2
	(γ ) ≤ 3abr

2
≤ abd(z).

2.2.3. Plump Metric Spaces. A non-complete locally complete metric space
U is c-plump, c ≥ 1, provided for each x ∈ U and all r ∈ (0, diam(U))

(2.6) ∃ z ∈ B̄(x; r) with d(z) := dist(z, ∂U) ≥ r/c.
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This terminology was introduced by Väisälä (see [27]) and perhaps is best
understood when U is an open subspace of a length space X, for then (2.6)
asserts that dist(z, X \U) ≥ r/c, so the open ball B(z; r/c), in X, is contained
in U . (Note that this may not hold if X is not a length space.) The plumpness
of U is quantitatively equivalent to ∂U being porous in Ū in the following
sense: If ∂U is c-porous in Ū , then U is c-plump. If U is c-plump, then for
each b > c, ∂U is b-porous in Ū .

The following results are straightforward to prove.

Remark 2.7. Let U be a non-complete locally complete metric space.

(a) If (2.6) holds for each x ∈ U and each r ∈ (0, diam(U)/2), then U is
2c-plump.

(b) If U is c-plump, then (2.6) also holds for x ∈ Ū and r ∈ �(U).

(c) If (2.6) holds for each x ∈ ∂U and r ∈ (0, diam(∂U)), then U is 6c-
plump.

Here is an analog of [27, Lemma 2.14].

Lemma 2.8. Let U be a c-plump metric space. Fix points x, y ∈ U . Put
R := |x − y| > 0 and Rn := R/2n. There exists points xn ∈ B̄(x; Rn) and
yn ∈ B̄(y; Rn) such that

d(xn) ≥ Rn/c, d(yn) ≥ Rn/c,

and xn, xn+1 and yn, yn+1 and x0, y0 are respectively 3c-proximate.

Proof. Since R ∈ �(U) and U is c-plump, there are points xn ∈ B̄(x; Rn)

and yn ∈ B̄(yn; Rn) with d(xn) ≥ Rn/c and d(yn) ≥ Rn/c. Then

|xn − xn+1| ≤ Rn + Rn+1 = 3

2
Rn = 3Rn+1 ≤ 3c[d(xn) ∧ d(xn+1)],

so xn and xn+1, and likewise yn and yn+1, are 3c-proximate. Also,

|x0 − y0| ≤ |x − x0| + |x − y| + |y − y0| ≤ 3R = 3R0 ≤ 3c[d(x0) ∧ d(y0)],

so x0 and y0 are 3c-proximate.

3. Pointed Gromov-Hausdorff Tangent Spaces

Here we recall the notion of pointed Gromov-Hausdorff distance, mention
some basic properties, define the notion of tangent spaces and subspaces, and
provide two examples.
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3.1. Gromov-Hausdorff Distance

A pointed metric space is a triple (X, d; a), that we often abbreviate as (X; a)

when the distance is understood, where (X, d) is a metric space and a is a
fixed base-point in X. Maps between pointed spaces are assumed to preserve
base-points; thus f : (X; a) → (Y ; b) means in particular that f (a) = b.

A distance function δ on the disjoint union X � Y of two metric spaces is
admissible if its restriction to each of X, Y agrees with their original distances.
Given t > 0 and points a ∈ X and b ∈ Y , we say that δ : X � Y × X � Y →
[0, ∞) is (t; a, b)-admissible provided it is an admissible distance on X � Y

and

δ(a, b) < t, B̄δ(a; t−1) ⊂ Nδ[Y ; t], B̄δ(b; t−1) ⊂ Nδ[X; t].

Following Gromov, we define the pointed Gromov-Hausdorff distance be-
tween two pointed metric spaces (X; a) and (Y ; b) via

distGH ∗((X; a), (Y ; b)) := (1/2) ∧ ˜distGH ∗((X; a), (Y ; b))

where

˜distGH ∗((X; a), (Y ; b))

:= inf{t > 0 | ∃ a (t; a, b)-admissible distance δ on X � Y }.
The quantity ˜distGH ∗((X; a), (Y ; b)) is easily seen to be non-negative and
symmetric. In addition, the triangle inequality holds provided at least two of
the quantities in question are small enough.

The above definition of ˜distGH ∗((X; a), (Y ; b)) is due to Gromov†. In fact,
distGH ∗ is a distance function on the collection GH ∗ of all isometry classes
of pointed proper metric spaces. We define pointed Gromov-Hausdorff con-
vergence in the usual way: a sequence ((Xn; an))

∞
n=1 of pointed metric spaces

Gromov-Hausdorff converges to (X∞; a∞) provided

lim
n→∞ distGH ∗((Xn; an), (X∞; a∞)) = 0;

we denote this by writing

(Xn; an)
GH∗−−→ (X∞; a∞).

Now we collect some information that we require in the sequel. The fol-
lowing is well known in the compact non-pointed setting (cf. [3], [26], [14]);
see [17] for a detailed proof in the pointed category.

† Gromov [14, p. 63] calls this “modified Hausdorff distance” and credits it to O. Gabber.
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Embedding Theorem. Let ((Xn, dn; an))
∞
n=1 be a sequence of pointed

proper metric spaces. Suppose that

∞∑
n=1

distGH ∗((Xn, dn; an), (Xn+1, dn+1; an+1)) < ∞.

Then there exists a non-complete locally complete metric space (Y, d∞) and a
point a∞ in X∞ := ∂Y with the following properties:

(a) for each n the space (Xn, dn) naturally isometrically embeds into
(Y, d∞),

(b) the space (Ȳ , d∞) is proper (of course, Ȳ = Y ∪ ∂Y = Y ∪ X∞), and

(c) (X∞, d∞; a∞) is the pointed Gromov-Hausdorff limit of
((Xn, dn; an))

∞
n=1.

Moreover, if in addition each (Xn, dn) is a length space, then so is (X∞; d∞)

and in this setting

(d) ∀ R > 0 : as n → ∞, B̄d∞(an; R) ∩ Xn
H−→ B̄d∞(a∞; R) ∩ X∞;

i.e., for each fixed radius, there is ordinary Hausdorff convergence, in Ȳ , of
balls centered at the base-points.

In fact, the space Y is simply the disjoint union
⊔∞

1 Xn with an appropriate
distance function defined on it.

In particular we note that a pointed Gromov-Hausdorff limit of complete
uniformly doubling length spaces is a complete doubling length space (and
hence geodesic).

For the record, here is a version of the compactness result for pointed proper
spaces. See [14, p. 64].

Gromov’s Compactness Theorem. The metric space (GH ∗, distGH ∗) is
complete, and a collection X of (isometry classes of) pointed proper metric
spaces is precompact in GH ∗ if and only if there exists (0, ∞)

ν→ (0, ∞) such
that ∀ ε > 0, ∀ (X, d; a) ∈ X , N(ε; B̄d(a; 1/ε)) ≤ ν(ε).

We need some information regarding sequences in the space Y := ⊔∞
1 Xn

constructed in the Embedding Theorem. In the sequel, the notation (xn)
∞
1 ⊂⊔∞

1 Xn means that (xn)
∞
1 is a sequence in Y and that for each n ∈ N, xn ∈ Xn.

Fact 3.1. Let (yn)
∞
n=1 be a sequence in Y := ⊔∞

1 Xn (the space construc-
ted in the Embedding Theorem) that converges to some point y ∈ Ȳ . Suppose
there are strictly increasing sequences (nk)

∞
k=1, (mk)

∞
k=1 in N such that for all

k ∈ N, ynk
∈ Xmk

. Then y ∈ X∞.
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We also need to know that Lipschitz maps induce Lipschitz maps on pointed
Gromov-Hausdorff limits as indicated below. Basically, this is a consequence
of the Arzela-Ascoli theorem; see [11, Lemma 8.20] or [17].

Fact 3.2. Suppose (Xn; an)
fn−→ (Yn; bn) are uniformly Lipschitz maps

between pointed proper metric spaces that pointed Gromov-Hausdorff con-
verge to (X∞, a∞) and (Y∞; b∞) respectively. Then there exist a Lipschitz
map f∞ : (X∞; a∞) → (Y∞; b∞) and a subsequence (fnk

)∞k=1 of (fn)
∞
n=1

such that (fnk
)∞k=1 converges locally uniformly to f∞.

3.2. Tangent Spaces, Tangent Subspaces, and Examples

Let X be a complete doubling metric space. Then for every σ > 0, σX :=
(X, σ |·|) is also doubling with the same doubling parameter. Let (an)

∞
1 be any

sequence in X and (τn)
∞
1 a sequence in �(X). Put Xn := τ−1

n X := (X, dn),
where dn := τ−1

n |·|. A simple application of Gromov’s Compactness The-
orem reveals that ((Xn; an))

∞
1 subconverges with respect to pointed Gromov-

Hausdorff distance. We write Tan(X) to denote the collection of all such limits,
each of which is a pointed complete doubling space and called a pointed tan-
gent space of X.

Next we describe the collections Tan(X; A) and Tanb(X, A) that, roughly
speaking, consist of certain “pointed tangent subspaces of tangent spaces”
(X∞, A∞; a∞) with a∞ ∈ A∞ ⊂ X∞. Let A be a non-empty closed subspace
of a complete doubling metric space X; so A itself is complete and doubling.
Let (an)

∞
1 be a sequence in A and (τn)

∞
1 a sequence in �(X). As above,

Xn := τ−1
n X := (X, dn), with dn := τ−1

n |·|, and An := τ−1
n A ⊂ Xn. Passing

to an appropriate subsequence, we may assume that

∞∑
n=1

distGH ∗((Xn; an), (Xn+1; an+1)) < ∞,

∞∑
n=1

distGH ∗((An; an), (An+1; an+1)) < ∞.

Appealing to the Embedding Theorem we can assert that as n → ∞:

(Xn; an)
GH∗−−→ (X∞; x∞) where X∞ := ∂Y and Y :=

∞⊔
n=1

Xn,

(An; an)
GH∗−−→ (A∞; a∞) where A∞ := ∂Z and Z :=

∞⊔
n=1

An.
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Here Y and Z come with distances dY and dZ which are defined by ‘chaining’
certain admissible distances on Xn � Xn+1 and An � An+1 respectively. See
[17].

We claim that there is a closed subspace Ã∞ ⊂ X∞ such that (A∞; a∞) is
isometric to (Ã∞; x∞). With this fact in hand, we define Tan(X; A) to be the
collection of all such triples (X∞, A∞; a∞) where we view a∞ ∈ A∞ ⊂ X∞.
And then Tanb(X, A) is the subcollection of Tan(X; A) determined by the
additional requirement that the original sequence (an)

∞
1 lies in bd(A).

We note that when A ⊂ Rn, Tan(Rn, A) can be identified with Tan(A).
For the readers convenience, we confirm the above claim. First, let b∞ ∈

A∞ = ∂Z and suppose (bn)
∞
1 , (cn)

∞
1 are any two sequences in Z with bn, cn ∈

An for all n, dZ(bn, b∞) → 0, dZ(cn, b∞) → 0, and with (bn)
∞
1 , (cn)

∞
1 also

convergent in Ȳ . Then

dY (bn, cn) = dn(bn, cn) = dZ(bn, cn) ≤ dZ(bn, b) + dZ(cn, b) → 0,

so in fact (bn)
∞
1 , (cn)

∞
1 also have the same limit in Ȳ .

We define a distance preserving map (A∞; a∞)
f

↪→ (X∞; x∞) as follows.
We begin by setting f (a∞) := x∞. Next, let b∞ ∈ A∞ = ∂Z. Choose
any sequence (bn)

∞
1 in Z with bn ∈ An for all n and dZ(bn, b∞) → 0. We

show below that (bn)
∞
1 converges to some y∞ ∈ X∞. The previous paragraph

explains why this limit is independent of the choice of the sequence (bn)
∞
1 .

Thus we may define f (b∞) := y∞.
Using the information that (bn)

∞
1 converges to b∞ in Z̄ and that (Xn; an)

Gromov-Hausdorff converges to (X∞; x∞), it is straightforward to find an
R > 0 such that for all sufficiently large n, bn ∈ B̄∞(x∞; R) ⊂ Ȳ . (For
instance, one can take R := dZ(b∞, a∞) + 2.) Since Ȳ is proper, it follows
that (bn)

∞
1 subconverges to some point, say y∞, of Y . According to Fact 3.1,

y∞ ∈ X∞. In fact, using the work two paragraphs above we easily see that
every convergent subsequence of (bn)

∞
1 must also have limit y∞, thus (bn)

∞
1

itself converges to y∞.
Finally, to see that f preserves distances, let b∞, c∞ ∈ A∞. Put y∞ :=

f (b∞), z∞ := f (c∞). By definition, there are sequences (bn)
∞
1 , (cn)

∞
1 in Z

with bn, cn ∈ An for all n and such that

bn → b∞ in Z̄, bn → y∞ in Ȳ ,

cn → c∞ in Z̄, cn → z∞ in Ȳ .

Thus
dY (y∞, z∞) = lim

n→∞ dY (bn, cn) = lim
n→∞ dn(bn, cn)

= lim
n→∞ dZ(bn, cn) = dZ(b∞, c∞).
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To recap, to say that (X∞, A∞; a∞) ∈ Tanb(X, A) means that there are
sequences (an)

∞
1 in bd(A) and (τn)

∞
1 in �(X) such that (τ−1

n X; an) and
(τ−1

n A; an) have pointed Gromov-Hausdorff limits (X∞; a∞) and (A∞; a∞),
respectively, with a∞ ∈ A∞ ⊂ X∞; since A∞ is complete, it is a closed
subspace of X∞.

We close this subsection with two illustrative examples. It is not difficult,
for example by using the Arzela-Ascoli theorem (cf. [8, 2.3(iv), p. 35; 2.5.14,
p. 47] or [6, 1.23, p. 14; 3.10, p. 36]), to show that every pointed tangent space
of a c-quasiconvex proper metric space is also c-quasiconvex. However, some
care is required as indicated by the following. (An alternative argument could
use the facts that: every quasiconvex space is bilipschitz equivalent to a length
space, pointed tangents of length spaces are also length spaces, and bilipschitz
maps induce bilipschitz maps at the tangent level.)

Example 3.3. There is a quasiconvex open subspace U of R2 such that for
some (X∞, A∞; a∞) in Tan(R2, R2 \U), U∞ := X∞ \A∞ is not quasiconvex.

Proof. For each m, n ∈ N, let an := 0, τn := 2−2n,

Cm :=
{

k

m2m

∣∣∣∣ k ∈ [0, m2m] ∩ Z

}
, Bm := 2−mCm + 2−m,

and put An := τ−1
n A where

A := {(0, 0)} ∪
∞⋃

m=1

(Bm × {0}) ⊂ [0, 1] × {0} ⊂ R2.

It is easy to check that U := R2 \ A is quasiconvex. Also, for each R > 0,
An ∩ B̄(an; R) Hausdorff converges to [0, R] × {0} in R2, so (An; an) poin-
ted Gromov-Hausdorff converges to (A∞; a∞) := ([0, ∞) × {0}, 0). Clearly
U∞ := R2 \ A∞ fails to be quasiconvex.

Construction for Example E. We demonstrate that any non-empty
closed subset of Rn is a tangent subspace for some 1-bounded turning 1-linearly
locally connected open subset of Rn. This is based on two simple facts: First,
any set in Rn can be approximated, with respect to distGH ∗ , by a sequence of
compact totally disconnected sets. Second, the complement of a closed totally
disconnected set in Rn is 1-bounded turning and 1-linearly locally connected;
see [15, Proposition 4.1, Corollary 4.2].

Let C ⊂ Rn be closed and assume 0 ∈ C. For each k ∈ N, let

Bk := Ck ∩ kB̄n where Ck := {z ∈ Zn | dist(z, C) < 1/k}
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and put U := Rn \ A where A := ⋃∞
k=1(ak + Bk) and ak := (2k, 0, . . . , 0) ∈

Rn. Since A is closed and totally disconnected, U is 1-bounded turning and
1-linearly locally connected.

It is easy to see that Ck
H−→ C and that (Bk; 0)

GH∗−−→ (C; 0). Taking
Ak := A = Rn \U (and using the scalings τk = 1:-), it is not difficult to check
that (Ak; ak) Gromov-Hausdorff converges to (C; 0), so (C; 0) ∈ Tan(Rn\U).

4. Proofs of Main Results

Here we establish the results announced in the introduction. As mentioned
there, the various necessary conditions can be strengthened. We explicitly
indicate this for Proposition B (see Proposition 4.2) but only describe it in the
actual proofs for Theorems A and D.

We begin with Theorem D, proceed with Propositions B and C, and then
turn to Theorem A. Our arguments for the latter mimic Väisälä’s; see the proofs
of [27, Theorems 2.15, 3.4, 3.6]. For the reader’s convenience, we supply all
the details.

Everywhere in this section X is assumed to be (at least) a complete doubling
metric space. We remind the reader that such a space is proper, hence (by
the Hopf-Rinow theorem) also geodesic whenever it is a length space. These
properties are inherited by tangent spaces. Similar comments apply if we start
with a quasiconvex complete doubling space: it is bilipschitz equivalent to a
length (hence geodesic) space, so by Fact 3.2 its tangents also possess this
property and hence are quasiconvex too. See also the paragraph just before
Example 3.3.

Frequently, in our arguments, we are given a pointed tangent space (X∞,

a∞) in Tan(X) or (X∞, A∞; a∞) in Tanb(X, A). Recall from §3.2 that this
means that there are sequences (an)

∞
1 in X, or in bd(A), and (τn)

∞
1 in �(X)

such that with Xn := τ−1
n X := (X, dn), dn := τ−1

n |·|, and An := τ−1
n A ⊂ Xn

we have

(Xn; an)
GH∗−−→ (X∞; a∞) and (An; an)

GH∗−−→ (A∞; a∞) as n → ∞,

where a∞ ∈ A∞ ⊂ X∞ := ∂Y and Y :=
∞⊔

n=1

Xn ⊃
∞⊔

n=1

An.

Here Ȳ is equipped with a distance d∞ that satisfies d∞|Xn×Xn
= dn (i.e., for

all x, y ∈ Xn, d∞(x, y) = dn(x, y) = τ−1
n |x − y|), and (Ȳ , d∞) is a proper

metric space.
Conversely, if we start with sequences (an)

∞
1 in X, or in bd(A), and (τn)

∞
1

in �(X), then by Gromov’s Compactness Theorem in conjunction with the
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Embedding Theorem we may pass to a subsequence and obtain similar state-
ments.

We tacitly make use of these ideas and notations, but do not repeat the above
discussion.

4.1. Proof of Theorem D

We first demonstrate that annular quasiconvexity is inherited by tangents. We
assume X is a c-annular quasiconvex complete doubling space. Suppose we
are given a pointed tangent space (X∞; a∞) ∈ Tan(X). We show that X∞ is b-
annular quasiconvex at a∞ where b = 45c; in particular, a∞ is not a cut-point
of X∞.

According to Fact 2.2(a), X is quasiconvex. Hence so is X∞; see the dis-
cussion immediately above. In particular, X∞ is connected.

a∞

x∞

y∞

an

xn

yn

rn

3rn

γn

γ∞

Figure 2. Annular quasiconvexity in tangents

Fix r > 0 and points x∞, y∞ in A∞(a∞; r, 2r) ⊂ X∞. See Figure 2. Choose
sequences (an)

∞
1 , (xn)

∞
1 , (yn)

∞
1 in

⊔∞
1 Xn that converge in Ȳ to a∞, x∞, y∞

respectively. Assuming, e.g., that d∞(xn, x∞) ∧ d∞(yn, y∞) ∧ d∞(an, a∞) <

r/8 we find that xn, yn ∈ A(an; rn, 3rn) where rn := τn(3r/4).
Appealing to Fact 2.2(a,c) we obtain b-quasiconvex paths γn that join the

points xn, yn in A(an; rn/9c, 27crn). Let γn be parameterized by arclength.
Then they are 1-Lipschitz, so (γn)

∞
1 is an equicontinuous sequence of paths

in a compact subspace of Ȳ . Hence the Arzela-Ascoli theorem (cf. [8, 2.3(iv),
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p. 35; 2.5.14, p. 47] or [6, 1.23, p. 14; 3.10, p. 36]) provides a subsequence of
(γn)

∞
1 that converges uniformly to a rectifiable path γ∞ that joins x∞, y∞ in

X∞.
Now

	∞(γ∞) = lim
n→∞ 	∞(γn) ≤ b lim

n→∞ d∞(xn, yn) = bd∞(x∞, y∞)

so γ∞ is a b-quasiconvex path joining x∞, y∞. Moreover,

rn

9c
≤ |γn(t) − an| ≤ 27crn, so

r

12c
≤ d∞(γn(t), an) ≤ 21cr

and thus |γ∞| ⊂ A∞(a∞; r/12c, 21cr).
Conversely, suppose X is a non-annular quasiconvex complete doubling

length space. We exhibit a pointed tangent space (X∞, a∞) ∈ Tan(X) with
X∞ \ {a∞} non-connected. The assumption that X is not annular quasiconvex
means that for each n ∈ N we can select base-points an ∈ X, radii rn > 0 and
points xn, yn in A(an; rn, 2rn) such that

(4.1) xn, yn cannot be joined by an n-quasiconvex path in A(an; rn/n, 2nrn).

Using the scales τn := rn (so Xn := r−1
n X) we pass to a subsequence and

obtain a pointed tangent space (X∞; a∞) ∈ Tan(X). We claim that X∞ \{a∞}
is not connected; to prove this we assume otherwise and show that for large n

the condition (4.1) is violated.
So, assume X∞ \ {a∞} is connected; then it is piecewise-geodesically con-

nected. Since d∞(xn, an), d∞(yn, an) ∈ [1, 2], we may (pass to another sub-
sequence and) assume that (xn), (yn) converge in Ȳ , respectively, to points
x∞, y∞ that lie in A∞(a∞; 1, 2) ⊂ X∞\{a∞}. Select points z0 := x∞, z1, . . . ,

zm−1, zm := y∞ in X∞ \ {a∞} such that the piecewise geodesic path

γ∞ := [z0, z1] � [z1, z2] � · · · � [zm−1, zm]

joins x∞, y∞ in X∞ \ {a∞}. See Figure 3.
Set δ := dist∞(a∞, |γ∞|), d := d∞(x∞, y∞), λ := 	∞(γ∞) =∑m
i=1 d∞(zi, zi−1) and let C := (λ/d) ∨ (1/δ). Then (see (2.1))

λ ≤ C d and |γ∞| ⊂ B̄∞(a∞; 2(C + 1)) and |γ∞| ∩ B∞(a∞; 1/C) = ∅,

so γ∞ is a C-quasiconvex path joining x∞, y∞ in A∞(a∞; 1/C, 2(C + 1)).
Next, put t := (1/10)[d ∧ (1/d)∧δ∧ (1/δ)]. As [zi−1, zi] is a geodesic, we

may insert additional points without changing the value of δ or d or λ. Thus
we may assume that both

m ≥ 10 ∨ C and ∀ 1 ≤ i ≤ m, d∞(zi, zi−1) < t/10.
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1
2

a∞

x∞

y∞

xn

yn

an

γ∞

γn

Figure 3. Piecewise geodesics γ∞ and γn

Since (Xn; an)
GH∗−−→ (X∞; a∞) and (xn), (yn), (an) converge in Ȳ to x∞, y∞,

a∞ respectively, we can select n ∈ N sufficiently large so that

n > 2C, distGH ∗((Xn; an), (X∞, a∞)) < t/10m and

d∞(xn, x∞) ∨ d∞(yn, y∞) ∨ d∞(an, a∞) < t/10m.

Since λ + δ ≤ C d + δ ≤ (C + 1)/10t < 2m/10t , for each 0 ≤ i ≤ m,

d∞(zi, a∞) ≤ dist∞(a∞, |γ∞|) + 	∞(γ∞) = δ + λ < m/5t.

In particular, zi ∈ B∞(a∞; 10m/t), so for each 1 ≤ i < m there exist points
zni ∈ Xn with d∞(zni, zi) < t/10m. Put zn0 := xn, znm := yn and set

γn := [zn0, zn1] � [zn1, zn2] � · · · � [zn,m−1, znm].

See Figure 3. We claim that γn is a 2C-quasiconvex path that joins xn, yn in
A(an; rn/2C, 2(2C + 1)rn). Since n ≥ 2C + 1, this directly contradicts (4.1).

To corroborate this claim, we first note that

d∞(zni, zn,i−1) ≤ d∞(zni, zi) + d∞(zi, zi−1) + d∞(zi−1, zn,i−1)

≤ t

10m
+ t

10
+ t

10m
.

Thus for each 1 ≤ i ≤ m and all z ∈ [zni, zn,i−1]:

d∞(z, zi) ≤ d∞(z, zni)+d∞(zni, zi) ≤ d∞(zni, zn,i−1)+ t

10m
<

t

10
+ 3t

10m
,
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so

δ = dist∞(a∞, |γ∞|) ≤ d∞(a∞, zi) ≤ d∞(zi, z) + d∞(z, an) + d∞(an, a∞)

≤ t

10
+ 3t

10m
+ d∞(z, an) + t

10m
≤ t

5
+ d∞(z, an),

and therefore d∞(z, an) ≥ δ − t/5 ≥ 9δ/10. We conclude that

dist∞(an, |γn|) ≥ 9δ/10 ≥ δ/2.

Next, we estimate 	∞(γn). Observe that

|d − d∞(xn, yn)| = |d∞(x∞, y∞) − d∞(xn, yn)|
≤ d∞(xn, x∞) + d∞(yn, y∞) ≤ t/5m.

Thus d∞(xn, yn) ≥ d − t/5m ≥ 10t − t/5m ≥ 9t , so

t

5

(
1 + C

m

)
≤ 2t

5
< d∞(xn, yn)

and then

t

5
+ Cd ≤ t

5
+ C

(
d∞(xn, yn) + t

5m

)
= t

5

(
1 + C

m

)
+ Cd∞(xn, yn)

≤ (C + 1)d∞(xn, yn)

and therefore

	∞(γn) =
m∑

i=1

d∞(zni, zn,i−1) ≤
m∑

i=1

(
t

5m
+ d∞(zi, zi−1)

)

= t

5
+ 	∞(γ∞) = t

5
+ λ ≤ t

5
+ Cd ≤ (C + 1)d∞(xn, yn).

Finally, since dist∞(an, |γn|) ≥ δ/2, we deduce that

dist(an, |γn|) ≥ δ

2
rn ≥ rn

2C
.

We conclude that γn is a 2C-quasiconvex path in A(an; rn/2C, 2(2C + 1)rn)

that joins xn, yn.
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4.2. Proof of Proposition C

Assume U is a non-complete locally complete c-plump metric space and 3c-
proximate points in U can be joined by b-uniform paths. We demonstrate that
U is a-uniform with a := 6bc(3 ∨ 2b).

Fix x, y ∈ U . Put R := |x − y|, Rn := R/2n, and select xn ∈ B̄(x; Rn),
yn ∈ B̄(yn; Rn) as in Lemma 2.8. The hypotheses provide b-uniform paths αn,
βn, γ0 that join xn to xn+1, yn to yn+1, x0 to y0 respectively. See Figure 4.

x y

x0

x1

x2

y1

y0γ0

β0

α0 α1

Figure 4. Constructing a uniform path

Since xn → x and yn → y,

� := {x} ∪
∞⋃
0

|αn| ∪ |γ0| ∪
∞⋃
0

|βn| ∪ {y}

is the trajectory of a path γ in U that joins x and y. As

	(αn) ≤ b|xn − xn+1| ≤ 3bR/2n+1, 	(βn) ≤ 3bR/2n+1,

and 	(γ0) ≤ b|x0 − y0| ≤ 3bR, we find that

	(γ ) ≤ 3bR + 3bR

∞∑
0

1

2n
= 9bR = 9b|x − y|.

It remains to demonstrate that γ is a double a-cone path.
Let z ∈ |γ |. We examine the cases z ∈ |γ0| or z ∈ |αn| for some n, the

case z ∈ |βn| being similar to the latter of these. In each case: when z is close
to an endpoint, the double cone condition holds because the endpoints are far
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from the boundary, and when z is in the middle of the path, the double cone
condition holds because z is far from the endpoints.

Suppose z ∈ |γ0|. If |z − x0| ≤ R/2c, then

d(z) ≥ d(x0) − R

2c
≥ R

2c
= 9bR

18bc
≥ 	(γ )

18bc
.

A similar argument gives 18bc d(z) ≥ 	(γ ) when |z − y0| ≤ R/2c. Assume
that |z − x0| ∧ |z − y0| ≥ R/2c. Since γ0 is a double b-cone path,

bd(z) ≥ 	(γ0[z, x0]) ∧ 	(γ0[z, y0]) ≥ R

2c
= 9bR

18bc

≥ 1

18bc

[
	(γ [z, x]) ∧ 	(γ [z, y])

]
.

Suppose z ∈ |αn|. Note that

	(γ [z, x]) ≤
∞∑

k=n

	(αk) ≤ 3bR

∞∑
k=n

1

2k+1
= 3bR

2n
.

Recall that d(xk) ≥ Rk/c = R/(2kc). If |z − xn| ∧ |z − xn+1| ≤ Rn+1/2c, we
deduce that

d(z) ≥ Rn+1

2c
= R

2n+2c
= 3bR

12bc2n
≥ 	(γ [z, x])

12bc
.

Finally, assume |z − xn| ∧ |z − xn+1| ≥ Rn+1/2c. Since αn is a double b-cone
path,

bd(z) ≥ 	(αn[z, xn]) ∧ 	(αn[z, xn+1]) ≥ Rn+1

2c
= 3bR

12bc2n
≥ 	(γ [z, x])

12bc
.

The interested reader is invited to furnish a proof of the converse.

4.3. Proof of Proposition B

This is a direct consequence of the following more precise result. Note that
the sufficiency does not require a length space setting, however, the necessity
does. This result is similar to [11, Lemmas 9.15, 9.16].

Proposition 4.2. Let X be a complete doubling metric space, U ⊂ X

be an open subspace with bd(U) �= ∅, and put A := X \ U . Suppose that
for each (X∞, A∞; a∞) in Tanb(X, A), a∞ ∈ bd(A∞). Then U is plump
in X. Conversely, if X is a length space and U is c-plump, then for each
(X∞, A∞; a∞) in Tanb(X, A), a∞ ∈ bd(A∞) and moreover U∞ := X∞ \A∞
is also c-plump. Neither of the latter implications may hold if X is not a length
space.
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Proof of Sufficiency. Suppose U fails to be plump. Then, according
to Remark 2.7(c), for each n ∈ N we can find a point an ∈ bd(U) = bd(A)

and a τn ∈ (0, diam(bd(U))) such that for all x ∈ U ∩ B̄(an; τn), d(x) :=
dist(x, bd(U)) < τn/n. As discussed above, we obtain (by taking appropri-
ate subsequences as necessary) (X∞, A∞; a∞) ∈ Tanb(X, A) with (X∞; a∞)

and (A∞; a∞) the pointed Gromov-Hausdorff limits of (Xn; an) and (An; an)

respectively.
We claim that B∞(a∞; 1) ∩ X∞ ⊂ A∞, which of course means that a∞ ∈

int(A∞). To see this, let z∞ ∈ B∞(a∞; 1) ∩ X∞. Then there is a sequence
(zn)

∞
1 in Y with zn ∈ Xn for all n ∈ N and d∞(zn, z∞) → 0. If infinitely

many zn belong to A, then by Fact 3.1 we obtain z∞ ∈ A∞. Thus we assume
zn ∈ U for all n , and also that zn ∈ B̄n(an; 1) := B̄∞(an; 1) ∩ Xn. Then
1 ≥ dn(zn, an) = |zn − an|/τn, so zn ∈ B̄(an; τn). Therefore, by our choices
of an and τn, d(zn) = dist(zn bd(U)) ≤ τn/n.

Since bd(U) is closed and X is proper, there are points yn ∈ bd(U) ⊂ A

with |zn − yn| = d(zn) ≤ τn/n, so d∞(zn, yn) ≤ 1/n. Thus d∞(yn, z∞) → 0.
Again by Fact 3.1, it now follows that z∞ ∈ A∞.

Proof of Necessity. Suppose X is a complete doubling length metric
space and U is c-plump. (Then X is proper and hence geodesic, and so is
every X∞.) Note that in this setting, d(z) = dist(z, bd(U)) = dist(z, A).

Let (X∞, A∞; a∞) ∈ Tanb(X, A) be given. First we prove that a∞ ∈
bd(A∞). Note that each Un := Xn \ An is also c-plump. We may – and
do – assume that diam(Xn) → ∞. (This is clear if X is unbounded. Sup-
pose X is bounded. Then X, being proper, is compact, so by passing to sub-
sequences we may assume that an → a ∈ bd(A) and τn → τ ≥ 0. If τ = 0,
then diam(Xn) = diam(X)/τn → ∞; assume τ > 0. Then (X∞, A∞; a∞)

is isometric to (τ−1X, τ−1A; a) and since a ∈ bd(A) = bd(τ−1A), a∞ ∈
bd(A∞).)

We demonstrate that each open neighborhood of a∞ contains points of
U∞ := X∞ \ A∞. To this end, let ε > 0 be given. We may assume that for all
n ∈ N, r := ε/2 ∈ �(Xn). The plumpness hypothesis guarantees that there
exist points zn ∈ B̄n(an; r) := B̄∞(an; r) ∩ Xn with dist∞(zn, An) ≥ r/c.

Since d∞(an, a∞) → 0, the tail of the sequence (zn)
∞
1 lies in the compact

ball B̄∞(a∞; 2r) ⊂ Ȳ . (Indeed, for all sufficiently large n, d∞(zn, a∞) ≤
d∞(zn, an) + d∞(an, a∞) < 2r .) Thus (zn)

∞
1 subconverges to some point

z∞ ∈ Ȳ . According to Fact 3.1, z∞ ∈ X∞.
Since d∞(zn, an) ≤ r for all n, d∞(z∞, a∞) ≤ r , so z∞ ∈ B̄∞(a∞; r) ⊂

B∞(a∞; ε). Also, since dist∞(zn, An) ≥ r/c for all n, dist∞(z∞, A∞) ≥
r/c > 0, so z∞ /∈ A∞.

Now we verify that U∞ is c-plump. To this end, fix a point x∞ ∈ U∞ and
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let r ∈ (0, diam∞(U∞)). We may assume rn := τn r < diam(U). (To see this,
approximate points in U∞ that have distance larger than r .) Also, there is a
sequence (xn)

∞
1 ⊂ ⊔∞

1 Xn with d∞(xn, x∞) → 0 and we may assume that
for all n, xn ∈ U .

Since U is c-plump, there are zn ∈ U∩B̄(xn; rn) with d(zn) = dist(zn, A) ≥
rn/c. Since Ȳ is proper, by passing to a subsequence we may assume that
d∞(zn, z∞) → 0 for some z∞ ∈ Y ; by Fact 3.1, z∞ ∈ X∞. Then z∞ ∈
B̄∞(x∞; r) and, since dist∞(z∞, A∞) ≥ r/c, we also have z∞ ∈ U∞.

Finally, we illustrate why the length space hypothesis is needed in the above.
In both examples below we could arrange for X to be path connected; we leave
confirmation of this detail for the interested reader (but note that the ‘floating
pieces’ can be joined to the horizontal line y = 1 by using appropriate vertical
segments).

For our first example, note that U := ⋃∞
n=0(2

n, 2n+1)×{0} is a plump open
subspace of

X := (R × {0}) ∪
∞⋃

n=1

(
[2n − 1, 2n + 1] × {1/n2}) ⊂ R2;

here we use the restriction of Euclidean distance in R2. See Figure 5.

an := (2n, 0)

(2n−1, 1/n2) (2n+1, 1/n2)

Figure 5. U := ⋃∞
n=0(2

n, 2n+1) × {0} ⊂ X ⊂ R2

Taking base-points an := (2n, 0) and scaling with τ−1
n = n, we find that

(Xn; an) and (An; an) := (τ−1
n (X \ U); an) both have pointed Gromov-Haus-

dorff limit (R; 0), so the limit base-point 0 is an interior point and not a boundary
point.

For our second example (see Figure 6), we start with the point set

B := {0} ∪
{

1

k + 1
+ j

k2(k + 1)
: j ∈ [0, k) ∩ Z, k ∈ N

}
⊂ [0, 1/2]

that is formed by inserting k − 1 equally spaced points between 1/(k + 1) and
1/k thereby producing k equally spaced gaps in [1/(k + 1), 1/k]. It is readily
observed that R \ B is not plump. Next, for each n ∈ N set Bn := n−1B + 2n.
Again, consider U := ⋃∞

n=0(2
n, 2n+1) × {0} which is now a plump open
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0 1/4 1/3 1/2

10/36 11/36 5/12

Figure 6. The points
k2 + j

k2(k + 1)
in B for 0 ≤ j < k ∈ {1, 2, 3}

subspace of

X := (R × {0}) ∪
∞⋃

n=1

(
Bn × {1/n2}) ⊂ R2;

again we use the restriction of Euclidean distance. Taking base-points an :=
(2n, 0) and scaling with τ−1

n = n, we find that (Xn; an) and (An; an) :=
(τ−1

n (X \ U); an) have pointed Gromov-Hausdorff limits (R; 0) and (B; 0)

respectively, and so U∞ := X∞ \ A∞ = R \ B which is not plump.

4.4. Proof of Theorem A

Let X be a b-annular quasiconvex complete doubling metric space. According
to Fact 2.2(a), X is quasiconvex, so it is bilipschitz equivalent to a length space,
and therefore – since X is proper – it is bilipschitz equivalent to a geodesic
space. Employing Fact 3.2 to obtain bilipschitz maps at the tangent space level,
and noting that our hypotheses and conclusions are bilipschitz quasi-invariant,
it now follows that we may assume that X is a b-annular quasiconvex complete
doubling geodesic space.

Everywhere below, U is an open connected subspace of X with bd(U) �=
∅ and A := X \ U . As already mentioned, we obtain stronger necessary
conditions than those stated in the Introduction.

Proof of Necessity. We assume U is c-uniform; here we only require
that X be a complete doubling length space. According to Proposition C, U is
plump in X. Suppose we are given (X∞, A∞; a∞) ∈ Tanb(X, A). Since U is
plump, Proposition 4.2 tells us that a∞ ∈ bd(A∞). It remains to demonstrate
that U∞ := X∞ \ A∞ is connected. In fact we show that U∞ is c-uniform.

To this end, let x∞, y∞ ∈ U∞ and select sequences (xn)
∞
1 , (yn)

∞
1 ⊂ ⊔∞

1 Xn

that converge in Ȳ to x∞, y∞ respectively. We may assume that for all n both
xn, yn ∈ U . Since U is c-uniform, there is a c-uniform path γn in U joining
xn, yn. See Figure 2, but ignore the annulus!

TheArzela-Ascoli theorem provides a subsequence of (γn)
∞
1 that converges

uniformly to a rectifiable path γ∞ in X∞ joining x∞ to y∞. To check this, put
r := d∞(x∞, a∞) ∨ d∞(y∞, a∞) and R := (c + 1)(2r + 1). Then for all
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sufficiently large n ∈ N and all z ∈ |γn|,
d∞(z, x∞) ∨ d∞(z, y∞) ≤ c(2r + 1) so d∞(z, a∞) ≤ R ,

and therefore |γn| ⊂ B̄∞(a∞; R). Assuming each γn is parameterized with
respect to arclength, we have (γn)

∞
1 equicontinuous and thus uniformly sub-

convergent; e.g., see [8, 2.3(iv), p. 35; 2.5.14, p. 47] or [6, 1.23, p. 14; 3.10,
p. 36].

Now, after selecting a uniformly convergent subsequence, and relabeling,
we obtain

	∞(γ∞) = lim
n→∞ 	∞(γn) ≤ c lim

n→∞ d∞(xn, yn) = c d∞(x∞, y∞),

so γ∞ is a c-quasiconvex path joining x∞, y∞. Moreover,

∀ z∞ := γ∞(t) = lim
n→∞ γn(t) = lim

n→∞ zn (where zn := γn(t)),

d∞(z∞) = dist∞(z∞, A∞) = lim
n→∞ dist∞(zn, A∞) = lim

n→∞ d∞(zn)

≥ c−1 lim
n→∞[	∞(γn[xn, zn]) ∧ 	∞(γn[yn, zn])]

≥ c−1[	∞(γ∞[x∞, z∞]) ∧ 	∞(γ∞[y∞, z∞])].

Thus γ∞ is a double c-cone path in U∞.

Proof of Sufficiency. We establish the contrapositive. Thanks to Propos-
itions B and C, we may assume that U is a non-uniform plump subspace of X.
Our goal is to exhibit a tangent subspace triple (X∞, A∞; a∞) in Tanb(X, A)

with X∞ \ A∞ non-connected. The argument here is similar to, but more
technical than, the proof of Theorem D.

Fix c ≥ b so that U is c-plump. Since U is non-uniform, an appeal to
Proposition C provides, for each n ∈ N, 3c-proximate points xn, yn with the
property that

(4.3) xn and yn cannot be joined by an n-uniform path in U.

We assume that rn := d(xn) ≤ d(yn). According to Lemma 2.4, yn �∈ B̄(xn).
Since xn, yn are 3c-proximate,

(4c)−1 ≤ d(xn)/d(yn) ≤ 4c and rn < |xn − yn| ≤ 3c d(yn) ≤ 12c2rn.

Select points an ∈ bd(U) = bd(A) with |xn−an| = d(xn) = rn. Put Bn :=
A ∩ [36c2B̄(xn)]. If Bn ⊂ B̄(an; rn/2b), then we could employ Lemma 2.5 to
exhibit a 13c2-uniform path joining xn, yn in U and this would contradict
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xn

yn

an

bn

rn

12c2 rn

Figure 7. The points xn, yn, an, bn

(4.3) for large n. Thus we can – and do – assume that there exists a point
bn ∈ Bn \ B(an; rn/2b). See Figure 7.

We now have xn, yn ∈ U , an ∈ bd(A) and bn ∈ A with |xn−an| = d(xn) =
rn and

rn ≤ |xn − yn| ≤ 12c2rn and rn/2b ≤ τn := |an − bn| ≤ 37c2rn.

Using the base-points an and scales τ−1
n we construct a tangent subspace

triple (X∞, A∞, a∞) in Tanb(X, A). We note that X∞ is a complete doub-
ling geodesic space and A∞ is a closed subspace, so U∞ := X∞ \ A∞ is
open.

We verify that U∞ is not connected. To this end, we assume otherwise and
derive a contradiction to (4.3). Assume U∞ is connected. We construct paths
joining xn, yn that, for sufficiently large n, are n-uniform. Note that U∞, being
an open connected subspace of a geodesic space, is piecewise-geodesically
connected.

The sequences (xn)
∞
1 , (yn)

∞
1 ⊂ ⊔∞

1 Xn determine distinct points x∞, y∞ ∈
U∞. Indeed,

d∞(xn, an) = dn(xn, an) = τ−1
n |xn − an| = rn/τn ≤ 2b

which implies that
∀ large n, xn ∈ B∞(a∞; 3b)

and similarly for (yn)
∞
1 , so by passing to subsequences we may assume that

(xn), (yn) converge to points x∞, y∞ ∈ Y ; then by Fact 3.1, x∞, y∞ ∈ X∞.
Also,

dn(xn, yn) = τ−1
n |xn − yn| ≥ rn/τn ≥ 1/37c2 ⇒ d∞(x∞, y∞) > 0,
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and

dn(yn) ≥ dn(xn) = rn/τn ⇒ d∞(y∞) ≥ d∞(x∞) := dist∞(x∞, A∞) > 0,

so x∞, y∞ �∈ A∞. Thus x∞, y∞ ∈ U∞.
Since U∞ is piecewise-geodesically connected, there exist z0 := x∞, z1,

. . . , zm := y∞ in U∞ such that the piecewise geodesic path

γ∞ := [z0, z1] � [z1, z2] � . . . � [zm−1, zm]

joins x∞, y∞ in U∞. (See Figure 3, but ignore the annulus:-) Put

δ := dist∞(|γ∞|, A∞), λ := 	∞(γ∞), d := d∞(x∞, y∞),

C := λ

d ∧ δ
= λ

d
∨ λ

δ
and t := 1

10

(
δ ∧ d ∧ 1

d

)
.

Note that γ∞ is a C-uniform path.
If necessary, we may insert additional points zi (this does not change the

values of any of δ, λ, d) to ensure that both

m ≥ 10 ∨ C ∨ b and ∀ 1 ≤ i ≤ m , d∞(zi, zi−1) < t/10.

An easy calculation confirms that

(4.4) 2[(t/5) + C d + 2 b] + (t/10m) < 10m/t.

Fix n ∈ N sufficiently large so that n ≥ 2C and

d∞(xn, x∞) ∧ d∞(yn, y∞) ∧ d∞(an, a∞) < t/10m,

distGH ∗((Xn; an), (X∞; a∞)) < t/10m and

distGH ∗((An; an), (A∞; a∞)) < t/10m.

Since

d∞(zi, a∞) ≤ d∞(zi, x∞) + d∞(x∞, a∞) ≤ λ + 2b ≤ Cd + 2b < 10m/t,

there are points zni ∈ Xn with d∞(zni, zi) < t/10m. We take zn0 := xn, znm :=
yn. Note that

d∞(zni, zn,i−1) ≤ d∞(zni, zi) + d∞(zi, zi−1) + d∞(zi−1, zn,i−1)

≤ t

10m
+ t

10
+ t

10m
.
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We claim that for all 1 ≤ i ≤ m, [zni, zn,i−1] ⊂ U (when zin are viewed as
points in X) and thus

γn := [zn0, zn1] � [zn1, zn2] � · · · � [zn,m−1, znm]

is a path joining xn, yn in U . In fact, we claim that

(4.5) ∀ z ∈ |γn|, dn(z) := distn(z, An) ≥ 9δ/10.

To check this claim, we first compute

(4.6)

	n(γn) =
m∑

i=1

dn(zni, zn,i−1) ≤
m∑

i=1

(
t

5m
+ d∞(zi, zi−1)

)

= t

5
+ λ ≤ t

5
+ Cd.

Next, fix a point z ∈ [zin, zi−1,n]. Then

d∞(zin, z) ≤ d∞(zin, zi−1,n) ≤ t

10
+ t

5m
.

Now pick w ∈ An with dn(z, w) = distn(z, An) (so |z − w| = d(z) and
possibly w = z). Then

d∞(w, a∞) ≤ d∞(w, z) + d∞(z, a∞) ≤ 2d∞(z, an) + d∞(an, a∞)

≤ 2[d∞(z, xn) + d∞(xn, an)] + d∞(an, a∞)

≤ 2[	n(γn) + 2b] + t

10m

≤ 2

(
t

5
+ Cd + 2b

)
+ t

10m
≤ 10m

t
;

here the last inequality follows from (4.4). Thus there is a point w∞ ∈ A∞
such that d∞(w, w∞) < t/10m. Since w∞ ∈ A∞ and zi ∈ |γ∞|,

δ = dist∞(|γ∞|, A∞) ≤ d∞(zi, w∞)

≤ d∞(zi, zni) + d∞(zni, z) + d∞(z, w) + d∞(w, w∞)

≤ t

10m
+

(
t

10
+ t

5m

)
+ d∞(z, w) + t

10m

= m + 4

10m
t + d∞(z, w) ≤ t

5
+ d∞(z, w),

and therefore dn(z) = d∞(z, w) ≥ δ − t/5 ≥ 9δ/10 establishing (4.5).
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Finally, we demonstrate that γn is a 2C-uniform path joining xn, yn in U .
Since n ≥ 2C, this directly contradicts (4.3). We begin by noting that

|d − d∞(xn, yn)| = |d∞(x∞, y∞) − d∞(xn, yn)|
≤ d∞(x∞, xn) + d∞(y∞, yn) ≤ t

5m
,

so d∞(xn, yn) ≥ d − t/5m ≥ 10t − t/5m ≥ 9t and also

t

5

(
1 + C

m

)
≤ 2t

5
< d∞(xn, yn).

Thus from (4.6) we obtain

	n(γn) ≤ t

5
+ λ ≤ t

5
+ C d ≤ t

5
+ C

(
d∞(xn, yn) + t

5m

)

= t

5

(
1 + C

m

)
+ Cd∞(xn, yn) ≤ (C + 1)d∞(xn, yn)

and we see that γn is a 2C-quasiconvex path. Recalling (4.5), and using (4.6)
again, for each z ∈ |γn| we have

	n(γn[xn, z]) ∧ 	n(γn[yn, z]) ≤ 	n(γn) ≤ t

5
+ λ ≤ t

5
+ Cδ

≤ (C + 1/50)δ ≤ 2Cdn(z)

and therefore γn is a double 2C-cone path.
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