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POINCARÉ TYPE INEQUALITY FOR DIRICHLET
SPACES AND APPLICATION TO THE

UNIQUENESS SET

KARIM KELLAY∗

Abstract
We give an extension of Poincaré’s type capacitary inequality for Dirichlet spaces and provide an
application to study the uniqueness sets on the unit circle for these spaces.

1. Introduction

Let D be the open unit disk in the complex plane and let T = ∂D be the unit
circle. For 0 < α ≤ 1, the Dirichlet space Dα consists of all analytic functions
f defined on D such that

Dα(f ) :=
∫

T

∫
T

|f (z) − f (w)|2
|z − w|1+α

|dz|
2π

|dw|
2π

< ∞.

The space Dα is endowed with the norm

‖f ‖2
α := |f (0)|2 + Dα(f ).

By [7], this norm is comparable to

∑
n≥0

|f̂ (n)|2(1 + n)α.

The classical Dirichlet space D1 is a subspace of the Sobolev space W1,2(D),
defined as the completion of C 1(D) under the norm

‖f ‖2 =
∣∣∣∣
∫

D
f (z)dA(z)

∣∣∣∣2

+
∫

D
|∇f (z)|2 dA(z),
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where dA(z) is a normalized Lebesgue measure. Note that the restriction of
this norm to D1, becomes

‖f ‖2 = |f (0)|2 +
∫

D
|f ′(z)|2 dA(z), f ∈ D1,

which is equivalent to the norm of D1.
Given f ∈ W1,2(D), we write Z(f ) = {z ∈ D: f (z) = 0}, the zero set

of f in D. The Poincaré capacitary inequality in W1,2(D) gives the precise
asymptotic behavior of the constant in Poincaré’s inequality [14], [19], [9], [1]
(see also the paper [12] by Maz’ya and the references there). More precisely
there exists a constant c > 0 such that

(1)

∫
D
|f (z)|2 dA(z) ≤ c

cap2(Z(f ))

∫
D
|∇f (z)|2 dA(z),

for all f ∈ W1,2(D), ‖∇f ‖2 
= 0, where

cap2(E) = inf

{∫
D
|∇ϕ|2: ϕ ∈ C∞

0 (D), ϕ ≥ 1 on E

}

and C∞
0 (D) is the set of all infinitely differentiable functions of compact support

in D. Our main result in this paper is to establish a Poincaré capacitary inequal-
ity for functions in the Dirichlet spaces with the zero set is contained in T (see
Theorem 2.2). We provide a sufficient condition for a set to be uniqueness set
for Dirichlet spaces (see Theorem 3.1).

Let X be some class of analytic functions in D and let E be a subset of T.
The set E is said to be a uniqueness set for X if, for each f ∈ X such that
f ∗(ζ ) := limr→1− f (rζ ) = 0 for all ζ ∈ E, we have f = 0.

It is clear that Dα is contained in the Hardy space H2. So each function
f ∈ Dα has non-tangential limits a.e on T. It is known that every set E ⊂ T of
positive Lebesgue measure is a uniqueness set for all functions of bounded type
in D (and therefore, for H2). Carleson [4] proved that a closed set of Lebesgue
measure zero E ⊂ T is a uniqueness set for the Lipschitz class if and only if
E is not a Carleson set (log dist(·, E) 
∈ L1(T)). He also proved in the same
paper that if E is not a Carleson set under capacitary condition (in particular E

has a positive Cs-capacity for some s > 0), then E is a uniqueness set for the
classical Dirichlet space. Khavin and Maz’ya [9] have proved that there exists a
set of uniqueness of Cs-capacity zero for any s > 0 for the classical Dirichlet
space. The proof of Khavin and Maz’ya is based on Poincaré’s inequality
in the Sobolev space (1). However, the Khavin-Maz’ya Theorem does not
allow to deduce the Carleson Theorem. Here, we give a generalization of
Khavin-Mazya’s result which works for Dα spaces, 0 < α ≤ 1, and from
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it we deduce Carleson’s result. Our proof is based on a local Poincaré type
capacitary inequality in Dirichlet spaces (see Theorem 2.2).

2. Poincaré’s capacitary inequality

2.1. Capacity

We begin with the definition of the classical capacity [5], [8]. We define the
kernel on T by

kα(ξ) =
{ |1 − ζ |−α, 0 < α < 1,

| log |1 − ζ ||, α = 0.

Given a probability measure μ on T, for 0 ≤ α < 1, we define its α-energy by

Iα(μ) =
∫∫

kα(ζ ξ) dμ(ξ) dμ(ζ ).

Given a Borel subset E of T, we denote by P(E) the set of all probability
measures supported on a compact subset of E. We define its Cα-capacity by

Cα(E) = 1/ inf{Iα(μ): μ ∈ P(E)}.
If α = 0, C0 is called the logarithmic capacity. Note that for a set E ⊂ T,
Cα(E) > 0 means that there exists a Borel positive finite measure μ supported
by E with finite energy ∑

n≥1

|μ̂(n)|2
n1−α

< ∞.

Now we define the L2-capacity introduced by Meyers [13] see also [1], [2].
For 0 < α ≤ 1, the harmonic Dirichlet space Dα(T) consists of all functions
f ∈ L2(T) such that

Dα(f ) < ∞
with the norm ‖f ‖2

Dα(T) = ‖f ‖2
L2(T) + Dα(f ).

This norm is comparable to∑
n≥0

|f̂ (n)|2(1 + |n|)α.

We have k̂1− α
2
(n) ∼ |n|− α

2 as n → ±∞ and so ‖k1− α
2
� f ‖α is comparable to

‖f ‖L2(T) for all f ∈ L2(T). Hence

Dα(T) = {
k1− α

2
� f : f ∈ L2(T)

}
.
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For any set E ⊂ T we define the Cα,2 capacity by

Cα,2(E) := inf
{‖f ‖2

L2(T): f ∈ L2(T), f ≥ 0, k1− α
2
� f ≥ 1 on E

}
.

This capacity is comparable to

inf
{‖f ‖2

Dα(T): f ∈ Dα(T), f ≥ 0, f ≥ 1 on E
}
.

Furthermore Cα,2(E) is comparable to the classical capacity C1−α, where the
implied constants depend only on α, see [13] Theorem 14, [1] Theorem 2.5.5.
We finally mention the results of Beurling [3] and Salem Zygmund [8], [5],
[4] about the boundary behavior for the functions of the Dirichlet spaces: if
f ∈ Dα, we write f ∗(ξ) = limr→1− f (rξ), then f ∗ exists C1−α-q.e on T, that
is

C1−α({ζ ∈ T: f ∗(ζ ) does not exist}) = 0.

Note that if E is a closed set such that C1−α(E) = 0, then there exists a function
f ∈ Dα with f ∗(ζ ) = 0 on E (see [4]).

2.2. Poincaré’s capacitary inequality for the Dirichlet spaces

Let I , J be two open arcs of T and f be a function. We set

DI,J,α(f ) =
∫

I

∫
J

|f (z) − f (w)|2
|z − w|1+α

|dz|
2π

|dw|
2π

,

and
DI,α(f ) = DI,I,α(f ).

We begin with a simple extension lemma.

Lemma 2.1. Let 0 < γ < 1 and let I = (e−iθ , eiθ ) with θ < γπ/2. Let
f ∈ Dα, then there exists a function f̃ coincide with f in I and such that

(2) DJ,α(f̃ ) ≤ cDI,α(f ),

where J = (e−2iθ/(1+γ ), e2iθ/(1+γ )) and c an absolute constant.

Proof. Let f̃ be such that

f̃ (eit ) =
⎧⎨
⎩

f (eit ) eit ∈ I ,

f (ei 3θ−t
2 ) eit ∈ L := (eiθ , e2iθ/(1+γ )),

f (e−i 3θ+t
2 ) eit ∈ R := (e−2iθ/(1+γ ), e−iθ ).

We write

DJ,α(f̃ ) = DI,α(f ) + DL,α(f̃ ) + DR,α(f̃ )

+ 2DI,L,α(f̃ ) + 2DI,R,α(f̃ ) + 2 DL,R,α(f̃ ).
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If u, v ∈ ( 1+3γ

2(1+γ )
θ, θ

)
, then π > |2u − 2v| ≥ |u − v|. By change of variable,

we get

DL,α(f̃ ) = 4
∫ θ

1+3γ

2(1+γ )
θ

∫ θ

1+3γ

2(1+γ )
θ

|f (eiu) − f (eiv)|2
|ei(3θ−2u) − ei(3θ−2v)|1+α

du

2π

dv

2π
≤ 4DI,α(f ).

The same inequality holds for DR,α(f̃ ).
If u ∈ ( 1+3γ

2(1+γ )
θ, θ

)
and t ∈ (−θ, θ), then π > 3θ − 2u − t ≥ |u − t | and

DI,L,α(f̃ ) = 2
∫ θ

−θ

∫ θ

1+3γ

2(1+γ )
θ

|f (eit ) − f (eiu)|2
|eit − ei(3θ−2u)|1+α

dv

2π

dt

2π
≤ 2DI,α(f ).

The same inequality holds also for DI,R,α(f̃ ).
If u ∈ ( 1+3γ

2(1+γ )
θ, θ

)
and v ∈ (−θ, − 1+3γ

2(1+γ )
θ
)
, then π > (3θ − 2u) + (3θ +

2v) ≥ u − v and

DL,R,α(f̃ ) = 4
∫ θ

1+3γ

2(1+γ )
θ

∫ − 1+3γ

2(1+γ )
θ

−θ

|f (eiu) − f (eiv)|2
|ei(2θ−2u) − e−i(2θ+2v)|1+α

dv

2π

du

2π

≤ 4DI,α(f ).

Hence (2) is proved.

Given E ⊂ T, we write |E| for the Lebesgue measure of E. We can now
state the main result of this section.

Theorem 2.2. Suppose that 0 < γ < 1. Let E ⊂ T and f ∈ Dα be
such that f ∗|E = 0. Then, for any open arc I ⊂ T with |I | ≤ γπ and any
0 < β ≤ α, [

1

|I |
∫

I

|f (ξ)||dξ |
]2

≤ c|I |α−β

Cβ,2(E ∩ I )
DI,α(f ),

where c is a constant depending only on β and γ .

Proof. For simplicity, we will assume that I = (e−iθ , eiθ ) with θ < γπ/2.
Let J = (e−2iθ/(1+γ ), e2iθ/(1+γ )), θγ = 3+γ

2(1+γ )
θ the midpoint of (θ, 2θ/(1+γ ))

and Iγ = (e−iθγ , eiθγ ). Let φ be a positive function on T such that supp φ = Iγ ,
φ = 1 on I and

|φ(z) − φ(w)| ≤ cγ

|J | |z − w|, z, w ∈ T.

where cγ is a constant depending only on γ .
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Now let f̃ be the function given in Lemma 2.1 and set

F(z) = φ(z)

∣∣∣∣1 − |f̃ (z)|
m

∣∣∣∣, z ∈ T,

with

m := 1

|J |
∫

J

|f̃ (ζ )||dζ |.

Hence F ≥ 0, F|E∩I = 1 C1−α-q.p and thus F|E∩I = 1 C1−β-q.p, since if
C1−α(A) = 0, we have C1−β(A) = 0. Therefore,

(3)
Cβ,2(E ∩ I ) � inf

{‖g‖2
Dβ (T): g ≥ 0, g ≥ 1 Cβ,2-q.p on E ∩ I

}
≤ cβ‖F‖2

Dβ (T),

where cβ is a constant depending only on β.
In order to conclude, we estimate ‖F‖2

Dβ (T)
. First,

(4)

‖F‖2
Dβ (T) =

∫
T
|F(z)|2 |dz|

2π
+

∫
T

∫
T

|F(z) − F(w)|2
|z − w|1+β

|dz|
2π

|dw|
2π

≤ 1

m2

∫
J

|m − |f̃ (z)||2 |dz|
2π

+
∫

J

∫
J

|F(z) − F(w)|2
|z − w|1+β

|dz|
2π

|dw|
2π

+ 2

m2

∫
z∈T\J

∫
w∈Iγ

|m − |f̃ (w)||2
|z − w|1+β

|dz|
2π

|dw|
2π

= A

2πm2
+ B

4π2
+ C

2π2m2
.

By (2),
(5)

A :=
∫

J

|m − |f̃ (z)||2|dz| = 1

|J |2
∫

J

∣∣∣ ∫
J

(|f̃ (ζ )| − |f̃ (z)|)|dζ |
∣∣∣2|dz|

≤ 1

|J |
∫

J

∫
J

|f̃ (ζ ) − f̃ (z)|2|dζ ||dz| ≤ c1

∫
J

∫
J

|f̃ (ζ ) − f̃ (z)|2
|ζ − z|1+β

|dζ ||dz|

≤ c1|J |α−βDJ,α(f̃ ) ≤ c2|I |α−βDI,α(f ),

for some constants c1, c2 independent of β and γ .
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If (z, w) ∈ J × J , then

|F(z) − F(w)|
=

∣∣∣∣φ(z)

(∣∣∣∣1 − |f̃ (z)|
m

∣∣∣∣ −
∣∣∣∣1 − |f̃ (w)|

m

∣∣∣∣
)

+ (φ(z) − φ(w))

∣∣∣∣1 − |f̃ (w)|
m

∣∣∣∣
∣∣∣∣

≤ 1

m
|f̃ (z) − f̃ (w)| + cγ

m

|z − w|
|J | |m − |f̃ (w)||

≤ 1

m
|f̃ (z) − f̃ (w)| + cγ

m

|z − w|
|J |2

∫
J

|f̃ (ζ ) − f̃ (w)||dζ |.

So, by (2) again,

(6)

B :=
∫

J

∫
J

|F(z) − F(w)|2
|z − w|1+β

|dz||dw|

≤ 2

m2

∫
J

∫
J

|f̃ (z) − f̃ (w)|2
|z − w|1+β

|dz||dw|

+ 2c2
γ

m2|J |4
∫

J

∫
J

(∫
J

|f̃ (ζ ) − f̃ (w)||dζ |
)2

|z − w|1−β |dw||dz|

≤ 2 + 2c2
γ

m2

∫
J

∫
J

|f̃ (ζ ) − f̃ (w)|2
|ζ − w|1+β

|dζ ||dw| ≤ c3

m2
|I |α−βDI,α(f ),

with c3 is a constant depending only on γ .
Finally,

(7)

C :=
∫

z∈T\J

∫
w∈Iγ

|m − |f̃ (w)||2
|z − w|1+β

|dz||dw|

≤ c4

|J |1+β

∫
Iγ

|m − |f̃ (w)||2|dw|

≤ c4

|J |2+β

∫
Iγ

∣∣∣∣
∫

J

|f̃ (ζ ) − f̃ (w)||dζ |
∣∣∣∣2

|dw|

≤ c4

|J |1+β

∫
Iγ

∫
J

|f̃ (ζ ) − f̃ (w)|2|dζ ||dw|

≤ c4

∫∫
J×J

|f̃ (ζ ) − f̃ (w)|2
|ζ − w|1+β

|dζ ||dw| ≤ c5|I |α−βDI,α(f ),

with c4, c5 independent of γ, β.
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By (5), (6) and (7), we see that

(8) ‖F‖2
Dβ (T) ≤ c6

m2
|I |α−βDI,α(f ),

with c6 depending only on γ . Since

m � 1

|I |
∫

I

|f (ξ)||dξ |,

combining (3) and (8), we get

Cβ,2(E ∩ I ) ≤ c

[
1

|I |
∫

I

|f (ξ)||dξ |
]−2

|I |α−βDI,α(f ),

where c depending only on β and γ , and the proof is complete.

3. Set of uniqueness for Dirichlet spaces

A special case of the theorem (β = 1 in Theorem 3.1) was obtained by Khavin
and Maz’ya [9] for the classical Dirichlet space (α = 1). Here we give the
generalization of their result in the Dirichlet spaces, including the classical
case.

Theorem 3.1. Let E be a Borel subset of T of Lebesgue measure zero. We
assume that there exists a family of pairwise disjoint open arcs (In) of T such
that E ⊂ ⋃

n In. Suppose that there exists 0 < β ≤ α such that

∑
n

|In| log
|In|1+α−β

C1−β(E ∩ In)
= −∞,

then E is a uniqueness set for Dα.

Proof. Since |E| = 0, we can assume that there is γ ∈ (0, 1) such that
supn |In| ≤ γπ . Let f ∈ Dα be such that f ∗|E = 0. We set I = ∑

n |In|.
Since (In) are disjoint, C1−β is comparable to Cβ,2 . Then Theorem 2.2 and
the Jensen inequality give

2
∫

⋃
In

log |f (ξ)|dξ |

≤
∑

n

|In| log

(
1

|In|
∫

In

|f (ξ)|dξ |
)2

≤
∑

n

|In| log

(
c|In|α−β

C1−β(E ∩ In)
DIn,α(f )

)
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=
∑

n

|In| log
|In|1+α−β

C1−β(E ∩ In)
+ I

∑
n

|In|
I

log(cDIn,α(f ))

≤
∑

n

|In| log
|In|1+α−β

C1−β(E ∩ In)
+ I log

(
c

I

∑
n

DIn,α(f )

)

≤
∑

n

|In| log
|In|1+α−β

C1−β(E ∩ In)
+ I log

(
c

I
‖f ‖2

α

)
= −∞.

By the Fatou Theorem we obtain f = 0, which finishes the proof.

The following result was obtained by Carleson [4] for the classical Dirichlet
space. A generalization of his Theorem was given by Preobrazhenskii in [16]
and by Pau and Pelaez in [15] for the Dirichlet spaces Dα with 0 < α < 1.
Here we give another proof of this generalization.

Corollary 3.2. Let E be a closed subset of T of Lebesgue measure zero.
Let 0 < β < α ≤ 1. Assume that there exists m > 0 such that for each interval
I ⊂ T centered at a point of E,

(9) C1−β(E ∩ I ) ≥ m|I |.
Then E is a uniqueness set for Dα if and only if

(10)
∑

n

|In| log |In| = −∞,

where (In)n are the complementary intervals of E.

Proof. Note that A 1(D) := Hol(D) ∩ C 1(D) ⊂ Dα. If E is a uniqueness
set for Dα, then E is a uniqueness set for A 1(D) and thus E is not a Carleson
set [4], i.e. E has Lebesgue measure zero and satisfies (10).

Conversely, we write T \ E = ⋃
k Ik with Ik = (eiθ2k , eiθ2k+1). Let J2k (resp.

J2k+1) be the open arc of length |Ik| with midpoint eiθ2k (resp. eiθ2k+1 ). By Vitali
covering lemma, there exists a sub-collection (Jk′)k′ of (Jk)k which is disjoint
and satisfies

⋃
k Jk ⊂ 3

⋃
k′ Jk′ . Hence,∑
k′

|Jk′ | log |Jk′ | = −∞.

Let F = E
⋂(⋃

k′ Jk′
)

be the subset of E contained in
⋃

k′ Jk′ . The set F is a
Borel set and, since F ∩ Jk′ = E ∩ Jk′ , by (9),

C1−β(F ∩ Jk′) ≥ m|Jk′ |.



112 karim kellay

Then for 0 < β < α ≤ 1, we obtain

∑
k′

|Jk′ | log
|Jk′ |1+α−β

C1−β(F ∩ Jk′)
≤ (α − β)

∑
k′

|Jk′ | log |Jk′ | − log m
∑
k′

|Jk′ |

= −∞.

By Theorem 3.1, the set F is a set of uniqueness for Dα and so does E, which
finishes the proof.

Remark 3.3. 1. A function ϕ ∈ Dα is called multiplier of Dα if ϕDα ⊂ Dα

and we denote the set of multipliers by MDα
. Richter and Sundberg in [17]

proved that a set E is a zero set of Dirichlet space D1 if and only if it is a
zero set of MD1 . On the other hand if ϕ ∈ MD1 , then by Stegenga’s result [18]
Theorem 2.7.c, we have DI,1(ϕ) = O(C0(I )), note that C0(I ) � | log I |−1.

2. Khavin and Maz’ya in [9] have constructed a set of uniqueness E for the
classical Dirichlet space such that C1−β(E) = 0 for every 0 < β < 1. On the
other hand, Carleson in [6] has constructed a zero set E which satisfies (10)
and E ∩ I has a positive logarithmic capacity for all arcs such that E ∩ I 
= ∅.
As in [9], we can construct a closed set E which is a set of uniqueness for
Dα and such that C1−β(E) = 0 for all 0 < β < α < 1. Let (ln)n≥0 be a
sequence in (0, 2π) and let C be the associated generalized Cantor set. Then
for 0 ≤ s < 1,

Cs(C ) = 0 ⇐⇒
∑

n

2−nl−s
n = +∞,

see for example [2], [5].

Choose ln = (2−nn)
1

1−β . Then C1−β(C ) = 0 and for 0 < β < α,

∑
n

2−nl−(1−α)
n =

∑
n

2−n
α−β

1−β n
− 1−α

1−β < ∞.

Therefore, C1−α(C ) > 0. Now, consider a family of pairwise disjoint open
arcs (In)n of T be such that∑

n

|In| log |In| = −∞.

A possible example, In = (ei(log(n+1))−1
, ei(log n)−1

), n ≥ 2. We reproduce the
generalized Cantor set C in each In, which will be denoted by Cn. Therefore,

C1−α(Cn ∩ In) � C1−α(C )|In|α.
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We set E = {1} ∪ ⋃
n Cn. It is clear that C1−β(E) = 0, for all 0 < β < α.

Now Theorem 3.1 with β = α gives

∑
n

|In| log
|In|

C1−α(E ∩ In)

� − log C1−α(C )
∑

n

|In| + (1 − α)
∑

n

|In| log |In| = −∞.

So E is a set of uniqueness for Dα with α < 1.
3. Malliavin in [11] gives a complete characterization of the sets of unique-

ness for the Dirichlet spaces involving a new notion of capacity, but it appears
difficult to apply his result to particular situations (see also [10]).

Acknowledgment. I would like to thank the referee for his helpful re-
marks, specially for those regarding the proof of Theorem 2.2.
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