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LITTLEWOOD-PALEY SPACES

KWOK-PUN HO

Abstract
We introduce the Littlewood-Paley spaces in which the Lebesgue spaces, the Hardy spaces, the
Orlicz spaces, the Lorentz-Karamata spaces, the r.-i. quasi-Banach function spaces and the Morrey
spaces reside. The Littlewood-Paley spaces provide a unified framework for the study of some
important function spaces arising in analysis.

1. Introduction and Preliminaries

In this paper, we further develop the Littlewood-Paley characterization of
function spaces by introducing a new class of function spaces, namely, the
Littlewood-Paley spaces (see Definition 2.1). This extends a line of research
which includes the Triebel-Lizorkin spaces [23], [24], [56], the Lorentz-
Karamata spaces [16], [44], [45], the Orlicz spaces [49] and their general-
izations, the rearrangement-invariant (r.-i.) quasi-Banach function spaces [5],
[42], [46], the variable Lebesgue spaces [14], [15] and the Morrey type spaces
[12], [32], [39], [52], [53].

The general theory for the Littlewood-Paley spaces is given in Sections 2
and 3. The applications of the general theory to some well-known function
spaces are presented in Sections 4 and 5. We find that the notions of the UMD
property and the p-convexification are involved in the study of the Littlewood-
Paley spaces.

Let M(Rn) be the set of Lebesgue measurable functions on Rn. Let M0(Rn)
be the class of functions in M(Rn) that are finite almost everywhere. Let S (Rn)
and S ′(Rn) be the classes of tempered functions and Schwartz distributions,
respectively. Let S0(Rn) = {

ϕ ∈ S (Rn) :
∫
xγ ϕ(x) dx = 0, γ ∈ Nn

}
. Let P

be the class of polynomials on Rn and C be the class of constant functions.

Definition 1.1. Let μ be the Lebesgue measure on Rn or the counting
measure on Z. Let M(μ) be the set of μ-measurable functions. A mapping
‖·‖ : M(μ) → [0,∞] is called a regular quasi-norm if for all f, g ∈ M(μ)

and {fn}n∈N ⊂ M(μ), ‖·‖ satisfies:

(1) ‖·‖ is a complete quasi-norm;
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(2) |g| ≤ |f |, μ-almost everywhere implies ‖g‖ ≤ ‖f ‖ and ‖f ‖ = 0 iff
f = 0 a.e.;

(3) if E is a μ-measurable bounded set, then ‖χE‖ < ∞; and

(4) 0 ≤ fn ↑ f μ-a.e. and supn ‖fn‖ < ∞ imply ‖fn‖ ↑ ‖f ‖.

Definition 1.2. We call a quasi-Banach space Bf ⊆ M(Rn) a regular
function space if ‖·‖Bf

is a regular quasi-norm, Bf = {f ∈ M(Rn) : ‖f ‖Bf
<

∞} and (1 + |x|)−κ ∈ Bf for some κ > 0.

According to Definition 1.2, χE ∈ Bf when E is a bounded Lebesgue
measurable set. Hence, condition (2) of Definition 1.1 assures that Bf ⊂
M0(Rn). We need the condition, (1 + |x|)−κ ∈ Bf for some κ > 0, to show
that S0(Rn) is a subset of our Littlewood-Paley spaces (see Proposition 2.2).

There are a lot of examples of regular function spaces. In fact, any Banach
function space on Rn (see [5], Chapter 1, Definitions 1.1 and 1.3) satisfying
the property: ‖f (·)‖Bf

= ‖f (· + a)‖Bf
, for any a ∈ Rn, f ∈ Bf , is a regular

function space. In Theorem 4.8, we prove that any r.-i. quasi-Banach function
space on Rn is a regular function space.

Definition 1.3. We call a quasi-Banach space Bs ⊆ {{ai}i∈Z : ai ∈ C}
a regular sequence space if ‖·‖Bs

is a regular quasi-norm, Bs = {{ai}i∈Z :
‖{ai}i∈Z‖Bs

< ∞} and

(1) for any l ∈ Z and {ai}i∈Z ∈ Bs , we have {ai+l}i∈Z ∈ Bs with ‖{ai+l}i∈Z‖Bs

= ‖{ai}i∈Z‖Bs
;

(2) ‖{fi}i∈Z‖Bs
∈ M(Rn) if {fi}i∈Z ⊂ M(Rn).

A regular quasi-norm is a lattice quasi-norm (see [46], p. 20). Thus, regular
function spaces and regular sequence spaces are quasi-Banach lattices.

If Bs is a Banach sequence space (Banach function space on Z with count-
ing measure) with separable associate space (for the definition of associ-
ate space, see [5], Chapter 1, Definition 2.3), then the Lorentz-Luxemburg
theorem (see [5], Chapter 1, Theorem 2.7) asserts that ‖{fi(x)}i∈Z‖Bs

=
sup{bi }i∈Z∈D

∑
i∈Z fi(x)bi , {fi}i∈Z ⊂ M(Rn) where D is a countable dense

subset of the unit ball of the associate space. Therefore, Bs satisfies item (2)
of Definition 1.3. In particular, any r.-i. reflexive Banach sequence space is a
regular sequence space.

Item (1) in Definition 1.3 is used in the proofs of Proposition 2.2 and The-
orem 3.1. Item (2) guarantees that the vector space B in the subsequent defin-
ition is well-defined.

Definition 1.4. Let Bs be a regular sequence space and Bf be a regular
function space. We define the vector space B as

B = {{fi}i∈Z : fi ∈ M0(R
n), {fi}i∈Z ∈ Bs a.e. and ‖{fi}i∈Z‖Bs

∈ Bf

}
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and equip B with the quasi-norm ‖f ‖B = ‖‖{fi}i∈Z‖Bs
‖Bf

. We endow B

with the following partial ordering: f ≤ g, if and only if fi ≤ gi a.e., i ∈ Z,
f = {fi}i∈Z, g = {gi}i∈Z ∈ B.

For any sequence of locally integrable functions f = {fi}i∈Z, define |f | =
{|fi |}i∈Z. If Bs is a regular sequence space and Bf is a regular function space,
then ‖·‖B is a quasi-norm satisfying

(1.1) |f | ≤ |g| and g ∈ B ⇒ f ∈ B and ‖f ‖B ≤ ‖g‖B ,

where f = {fi}i∈Z and g = {gi}i∈Z.

Definition 1.5. Let 0 < p < ∞. Let Bs be a regular sequence space and
Bf be a regular function space. We define the quasi-Banach spaces B

p
s and

B
p

f by the 1/p-th powers (p-convexifications) of Bs and Bf , respectively.
That is,

Bp
s = {{ai}i∈Z : ai ∈ C, {|ai |p}i∈Z ∈ Bs}

and
B
p

f = {f ∈ M0 : |f |p ∈ Bf };

and ‖{ai}i∈Z‖B
p
s

= ‖{|ai |p}i∈Z‖1/p
Bs

and ‖f ‖B
p

f
= ‖|f |p‖1/p

Bf
.

For the basic properties of B
p
s and B

p

f , the reader is referred to [46], Sec-
tion 2.2. In addition, B

p
s and B

p

f are a regular sequence space and a regular
function space, respectively.

Lemma 1.6. If Bs is a regular sequence space and Bf is a regular function
space, then there exists a ρ > 0 such that for any {Fi}i∈N ⊂ B,

∑
i∈N ‖Fi‖ρB <

∞ ⇒ ∑
i∈N Fi ∈ B.

Proof. As ‖·‖Bs
is a quasi-norm, the Aoki-Rolewicz theorem ([30], The-

orem 1.3) provides a p > 0 such that ‖·‖pBs
satisfies the triangle inequality.

Since ‖·‖B
1/p
f

is a quasi-norm, using the Aoki-Rolewicz theorem again, we

have a 0 < ρ < p and C > 0 such that, for any {Fi}i∈N ⊂ B and for any
finite subset I ⊂ N,

∥∥(∑
i∈I ‖Fi‖pBs

)1/p∥∥
Bf

≤ C
(∑

i∈I ‖Fi‖ρB
)1/ρ

(see [42],
Lemma 6).

As ‖·‖Bf
is a regular quasi-norm, item (4) of Definition 1.1 and the in-

equality
∑

i∈N ‖Fi‖ρB < ∞ imply that
(∑

i∈N ‖Fi‖pBs

)1/p
is well defined in

Bf . Since Bf ⊆ M0(Rn), we have
∑∞

i=0 ‖Fi(x)‖pBs
< ∞ almost every-

where. Similarly, in view of the fact that Bs is a regular sequence space and
‖·‖pBs

is sub-additive, F(x) = ∑∞
i=0 Fi(x) is well defined a.e. and satisfies

‖F‖ρB ≤ ∥∥(∑∞
i=0 ‖Fi‖pBs

)1/p∥∥ρ
Bf

≤ Cρ
∑∞

i=0 ‖Fi‖ρB < ∞.
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Theorem 1.7. If Bs is a regular sequence space and Bf is a regular function
space, then B is a quasi-Banach lattice.

Proof. Let ρ be the constant given by Lemma 1.6. Suppose that Gi =
{gi,j }j∈Z, i ∈ N, is a Cauchy sequence in B. There exists a subsequence ofGi ,
namely Gi with G−1 = 0, such that

∑∞
i=0(‖Gi − Gi−1‖B)

ρ < ∞,
Applying Lemma 1.6, we assert that

∑∞
i=0(Gi − Gi−1) ∈ B. Due to the

fact that Bf ⊆ M0(Rn), the limit function limi→∞ Gi = G exists a.e. and
satisfies |G| ≤ ∑∞

j=1 |Gi − Gi−1| ∈ B. As B satisfies (1.1), we have G ∈ B

and liml→0 ‖G− Gl‖B ≤ C liml→0
( ∑∞

i=l+1 ‖Gi − Gi−1‖ρB
)1/ρ = 0.

Let 0 < a < ∞, Bs be a regular sequence space and Bf be a regular
function space. Define the quasi-Banach lattice B1/a as

B1/a={{fi}i∈Z : fi ∈ M0(R
n), {fi}i∈Z ∈ B1/a

s a.e. and ‖{fi}i∈Z‖B
1/a
s

∈ B
1/a
f

}

and the quasi-norm of B1/a is given by ‖f ‖B1/a = ‖‖{fi}i∈Z‖B
1/a
s

‖B
1/a
f

, f =
{fi}i∈Z. For any family of locally integrable functions f = {fi}i∈Z, write
|f |a = {|fi |a}i∈Z. We have ‖|f |a‖B1/a = ‖f ‖aB .

Let M denote the Hardy-Littlewood maximal operator. For any sequence
of locally integrable functions f = {fi}i∈Z, let M(f ) = {M(fi)}i∈Z. We are
ready to introduce the admissibility condition for which we can use the pair
(Bf ,Bs) to define and study the Littlewood-Paley spaces.

Definition 1.8. Let 0 < a ≤ 1, Bs be a regular sequence space and Bf

be a regular function space. The pair (Bs ,Bf ) is called an a-admissible pair
if there exists a constant C > 0 such that

(1.2) ‖M(f )‖B1/a ≤ C‖f ‖B1/a

for any f = {fi}i∈Z ∈ B1/a . We call (Bs ,Bf ) an admissible pair if it is
1-admissible.

The admissibility condition (1.2) can be viewed as the Fefferman-Stein
vector-valued maximal inequality on the pair of quasi-Banach spaces (B1/a

s ,

B
1/a
f ).

Definition 1.9. For 0 < a ≤ 1 and any locally integrable function g,
define the operator Ma as Ma(g) = [

M(|g|a))]1/a
. Furthermore, for any family

of locally integrable functions, f = {fi}i∈Z, the operator Ma is defined as
Ma(f ) = {Ma(fi)}i∈Z.

The following theorem is a straightforward consequence of the definition
of Ma .



littlewood-paley spaces 81

Theorem 1.10. Let 0 < a ≤ 1, Bs be a regular sequence space and Bf be
a regular function space. The pair B = (Bs ,Bf ) is a-admissible if and only
if Ma is bounded on B.

2. Littlewood-Paley Spaces

In this section, we define and study the Littlewood-Paley spaces. Let f̂ denote
the Fourier transform of f ∈ S ′(Rn).

Definition 2.1. Let α ∈ R, Bs be a regular sequence space and Bf be a
regular function space. The Littlewood-Paley space Ḟ αBs ,Bf

consists of those
f ∈ S ′(Rn)/P satisfying

(2.1) ‖f ‖Ḟ αBs ,Bf = ∥∥{2jα|f ∗ ϕj |}j∈Z

∥∥
B
< ∞,

where ϕj (x) = 2jnϕ(2j x) and ϕ ∈ S (Rn) satisfies

(2.2) supp ϕ̂ ⊆ {x ∈ Rn : 1/2 ≤ |x| ≤ 2} and |ϕ̂(ξ)| ≥ C,

3/5 ≤ |x| ≤ 5/3 for some C > 0.

The inhomogeneous Littlewood-Paley space FαBs ,Bf
is defined by some

standard modifications of the above definition. The results for FαBs ,Bf
follow

from the corresponding results for Ḟ αBs ,Bf
with some obvious amendments.

Thus, in what follows, we present and prove the results for Ḟ αBs ,Bf
only.

Proposition 2.2. Let α ∈ R, Bs be a regular sequence space and Bf be a
regular function space. We have the continuous embedding S0(Rn) ↪→ Ḟ αBs ,Bf

.

Proof. Let ϕ ∈ S (Rn) satisfy (2.2). For any g ∈ S0(Rn) and θ > 0, by
Lemma B.1 of [23], there exists a constant C > 0 depending on a semi-norm
of g on S (Rn) such that when j ≥ 0, we have |(ϕj ∗ g)(x)| ≤ C2−(θ+α)j (1 +
|x|)−κ , and |(ϕj ∗g)(x)| ≤ C2(θ+α+κ)j (1+2j |x|)−κ ≤ C2−(θ+α)|j |(1+|x|)−κ
when j < 0 where κ is given in Definition 1.2. As (1+|x|)−κ ∈ Bf , it remains
to show that for any β > 0, {2−β|j |}j∈Z ∈ Bs . Using the Aoki-Rolewicz
theorem on the quasi-norm ‖·‖Bs

([30], Theorem 1.3), we have a ρ > 0
such that ‖{2−β|j ||}j∈Z‖ρBs

≤ ∑
j∈Z 2−β|j |ρ‖{δij }i∈Z‖ρBs

, where δij = 1 when
i = j and δij = 0 when i �= j . Condition (1) in Definition 1.3 assures that
‖{δij }i∈Z‖Bs

is independent of j ∈ Z. Hence, g ∈ Ḟ αBs ,Bf
.

Let Q = {Qi,k : i ∈ Z, k ∈ Zn} denote the set of dyadic cubes, where
Qi,k = {(x1, . . . , xn) ∈ Rn : kj ≤ 2ixj < kj + 1, j = 1, . . . , n} and k =
(k1, . . . , kn). We denote the Lebesgue measure of Q ∈ Q by |Q| and the side
length of Q by l(Q).
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Definition 2.3. Let α ∈ R, Bs be a regular sequence space and Bf be
a regular function space. The sequence space ḟ αBs ,Bf

is the collection of all
complex-valued sequences s = {sQ}Q∈Q such that

‖s‖ḟ αBs ,Bf =
∥∥∥∥
{ ∑

|Q|=2−jn
(|Q|−α/n|sQ|χ̃Q)

}
j∈Z

∥∥∥∥
B

< ∞,

where χ̃Q = |Q|−1/2χQ.

We define the notion of absolutely continuous quasi-norm (see [5], Chap-
ter 1, Section 3). The absolutely continuity plays a decisive role in the denseness
of S0(Rn) in Ḟ αBs ,Bf

.

Definition 2.4. We say that a quasi-Banach space B ⊂ M(μ) has ab-
solutely continuous quasi-norm if limi→∞ ‖fi‖B = 0 for every sequence
{fi}i∈N ⊂ B satisfying fi ↓ 0 μ-almost everywhere.

With the preceding preparations, we show that ḟ αBs ,Bf
is a quasi-Banach

lattice and the set of finite sequence is a dense subset of ḟ αBs ,Bf
provided that

Bs and Bf have absolutely continuous quasi-norms.

Theorem 2.5. Let α ∈ R, Bs be a regular sequence space and Bf be a
regular function space. The sequence space ḟ αBs ,Bf

is a quasi-Banach lattice.
If Bs and Bf have absolutely continuous quasi-norms, then the set F = {s =
{sQ}Q∈Q : only a finitely number of sQ �= 0} is dense in ḟ αBs ,Bf

.

Proof. We first prove the completeness of ḟ αBs ,Bf
. Let ρ be the constant

given by Lemma 1.6. For any Cauchy sequence ci = {ci,Q}Q∈Q, i ∈ N, in
ḟ αBs ,Bf

, we can assume that si = ci − ci−1 ∈ ḟ αBs ,Bf
with c−1 = 0 and

si = {si,Q}Q∈Q, i ∈ N, satisfy
∑∞

i=0 ‖si‖ρḟ αBs ,Bf < ∞. Therefore, Si(x) ={∑
|Q|=2−jn (|Q|−α/n|si,Q|χ̃Q)

}
j∈Z

, i ∈ N, satisfy
∑∞

i=0 ‖Si‖ρB = ∑∞
i=0 ‖si‖ρḟ αBs ,Bf

< ∞. Lemma 1.6 assures that S∞ = ∑∞
i=0 Si exists in B. As Q1,Q2 ∈ Q

with |Q1| = |Q2| are either disjoint or identical, we find that

S∞ =
{ ∞∑
i=0

∑
|Q|=2−jn

(|Q|−α/n|si,Q|χ̃Q)
}
j∈Z

=
{ ∑

|Q|=2−jn
(|Q|−α/n

( ∞∑
i=0

|si,Q|
)
χ̃Q)

}
j∈Z

.

Since Bf ⊆ M0(Rn), for any j ∈ Z, the function∑
|Q|=2−jn

(|Q|−α/n(∑∞
i=0 |si,Q|)χ̃Q)

is Lebesgue measurable and finite almost
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everywhere. Therefore, for any Q ∈ Q,
∑∞

i=0 |si,Q| < ∞. That is,
∑∞

i=0 si,Q
is well defined and the limit of ci exists. Let c = limi→∞ ci = {∑∞

i=0 si,Q
}
Q∈Q

.

We have ‖c − cl‖ḟ αBs ,Bf = ∥∥S∞ − ∑l
0 Sl

∥∥
B

≤ C
(∑∞

i=l ‖Si‖ρB
)1/ρ

= C
(∑∞

i=l ‖si‖ρḟ αBs ,Bf
)1/ρ → 0 as l → ∞.

Next, we prove that F is dense in ḟ αBs ,Bf
. First of all, by Definition 1.2,

χQ ∈ Bf for any Q ∈ Q. Moreover, Definition 1.3 guarantees that the set
of finite sequences is a subset of Bs . If t = {tQ}Q∈Q ∈ F , then there exist a
constant C > 0, a collection of dyadic cubes {Ql}2n

l=1 ⊂ Q and a finite subset
J ⊂ Z such that

∑
|Q|=2−jn |Q|−α/n|tQ|χ̃Q(x) ≤ C

∑2n

l=1 χQl
when j ∈ J and∑

|Q|=2−jn |Q|−α/n|tQ|χ̃Q(x) = 0 when j ∈ Z \ J . By Definitions 1.1, 1.2 and
1.3, we conclude that t ∈ ḟ αBs ,Bf

and, hence, F ⊂ ḟ αBs ,Bf
.

Let s = {sQ}Q∈Q ∈ ḟ αBs ,Bf
. For any N ∈ N, consider sN = {

sNQ
}
Q∈Q

∈ F

where sNQ = sQ if |xQ| ≤ N and 2−N ≤ |Q| ≤ 2N ; and sNQ = 0 otherwise.
Write SN(x) = {∑

|Q|=2−jn (|Q|−α/n|sNQ |χ̃Q)
}
j∈Z

and S(x) ={∑
|Q|=2−jn (|Q|−α/n|sQ|χ̃Q)

}
j∈Z

. We have 0 ≤ S − SN+1 ≤ S − SN and
(S − SN) ↓ 0 in Bs . As Bs is a quasi-Banach lattice and has absolutely con-
tinuous quasi-norm, we have ‖S − SN‖Bs

↓ 0 in Bf . Similarly, we find that
‖‖S−SN‖Bs

‖Bf
↓ 0 because Bf has absolutely continuous quasi-norm. Thus,

limN→∞ ‖s−sN‖ḟ αBs ,Bf = limN→∞ ‖S−SN‖B = limN→∞ ‖‖S−SN‖Bs
‖Bf

=
0.

3. The Frazier-Jawerth theory for Ḟ α
Bs ,Bf

In this section, we show that theϕ-ψ transforms [21], [22], [23], [24] provide an
association between Ḟ αBs ,Bf

and ḟ αBs ,Bf
. With this connection, we can transfer

some results, for instance, the completeness, from ḟ αBs ,Bf
to Ḟ αBs ,Bf

.
Although we follow the ideas from [23], some results in our setting cannot

be directly recalled from [23] because there are some techniques in [23], for
example, the duality of the Triebel-Lizorkin spaces, which are unavailable in
our setting. However, we can derive all of our results by using the admissibility
condition (1.2) only.

The ϕ–ψ transforms consist of two operators Sϕ and Tψ generated by a pair

of functions ϕ,ψ ∈ S (Rn) satisfying (2.2) and
∑
j∈Z ϕ̂(2

−j ξ)ψ̂(2−j ξ) = 1,
ξ �= 0 (see [23], p. 45 (2.1)–(2.4)). We set ϕν(x) = 2νnϕ(2νx), ψν(x) =
2νnψ(2νx) and ϕQ(x) = |Q|−1/2ϕ(2νx − k), ψQ(x) = |Q|−1/2ψ(2νx − k),
ν ∈ Z, k ∈ Zn and Q = Qν,k .

For anyf ∈ S ′(Rn)/P and for any complex-valued sequence s = {sQ}Q∈Q,
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we define Sϕ(f ) = {(Sϕ f )Q}Q∈Q = {〈f, ϕQ〉}Q∈Q and Tψ(s) = ∑
Q sQψQ.

It is well known that Tψ ◦ Sϕ = id in S ′(Rn)/P (see [28], Theorem 6.1).
The following result is the main theorem of this section:

Theorem 3.1. Let α ∈ R, 0 < a ≤ 1 and (Bs ,Bf ) be an a-admissible
pair. The Littlewood-Paley space Ḟ αBs ,Bf

is independent of the function ϕ in

Definition 2.1. The linear operators Sϕ : Ḟ αBs ,Bf
→ ḟ αBs ,Bf

and Tψ : ḟ αBs ,Bf
→

Ḟ αBs ,Bf
are bounded. Moreover, we have constants C1 > C2 > 0 such that for

any f ∈ Ḟ αBs ,Bf
,

(3.1) C2‖f ‖Ḟ αBs ,Bf ≤ ‖ Sϕ(f )‖ḟ αBs ,Bf ≤ C1‖f ‖Ḟ αBs ,Bf .

Proof. We only sketch the proof for the boundedness of Sϕ . With some
simple modifications of Peetre’s lemma (see [56] Sections 1.4.1 and 1.4.2),
the definitions of Sϕ and Ma yield

∑
|Q|=2−jn |Q|−1/2−α/n|(Sϕ f )Q|χQ(x) ≤

CMa(2jα(ϕ̃j ∗ f ))(x) where ϕ̃(x) = ϕ(−x). Therefore,

∥∥{(Sϕ f )Q}Q
∥∥
ḟ αBs ,Bf

=
∥∥∥∥
{ ∑
Q=2−jn

(|Q|−α/n−1/2|(Sϕ f )Q|χQ(x))
}
j∈Z

∥∥∥∥
B

≤ C
∥∥{Ma(2

jα|ϕ̃j ∗ f |)}j∈Z

∥∥
B
.

The boundedness of Ma asserts the boundedness of Sϕ . The rest of the proof
is similar to the proof of [23], Theorem 2.2, therefore, for simplicity, we omit
the details.

With the boundedness of the ϕ–ψ transforms, we show that Ḟ αBs ,Bf
is a

quasi-Banach space and Ḟ αBs ,Bf
has S0(Rn) as a dense subset.

Theorem 3.2. Let α ∈ R, 0 < a ≤ 1 and (Bs ,Bf ) be an a-admissible
pair. The Littlewood-Paley space Ḟ αBs ,Bf

is a quasi-Banach space. If Bs and

Bf have absolutely continuous quasi-norms, then S0(Rn) is dense in Ḟ αBs ,Bf
.

Proof. Let Fi , i ∈ N, be a Cauchy sequence in Ḟ αBs ,Bf
. By Theorem 3.1,

{(Sϕ Fi)Q}Q∈Q is a Cauchy sequence in ḟ αBs ,Bf
. Hence, {(Sϕ Fi)Q}Q∈Q con-

verges to s = {sQ}Q∈Q in ḟ αBs ,Bf
. Define F = Tψ s. Thus, by Theorem 3.1,

F ∈ Ḟ αBs ,Bf
and ‖F − Fi‖Ḟ αBs ,Bf = ‖ Tψ s − (Tψ ◦ Sϕ)(Fi)‖Ḟ αBs ,Bf ≤ ‖s −

Sϕ Fi‖ḟ αBs ,Bf → 0, as i → ∞. Hence, F is the limit of the Cauchy sequence

Fi , i ∈ N, in Ḟ αBs ,Bf
. Moreover, S0(Rn) is dense in Ḟ αBs ,Bf

because of Propos-
ition 2.2, Theorem 2.5, Theorem 3.1 and the fact that ψQ ∈ S0(Rn) for any
Q ∈ Q.
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We find that for any ϕ ∈ S (Rn) satisfying (2.2), the inverse Fourier trans-
form of the functions |ξ |2ϕ̂(ξ) and |ξ |−2ϕ̂(ξ) also satisfy (2.2), therefore,
Theorem 3.1 yields the following result.

Theorem 3.3. Let α ∈ R, 0 < a ≤ 1 and (Bs ,Bf ) be an a-admissible pair.
The Laplacian � is a linear topological isomorphism from Ḟ αBs ,Bf

to Ḟ α−2
Bs ,Bf

.

The Littlewood-Paley spaces possess smooth atomic decompositions and
smooth molecular decompositions (for the corresponding results for Triebel-
Lizorkin spaces, see [23], Theorems 3.5, 3.7 and 4.1).

Smooth atomic and molecular decompositions for the Littlewood-Paley
spaces can be obtained by following the corresponding arguments for the
Triebel-Lizorkin spaces as given in [23], Theorems 3.5, 3.7 and 4.1. We
state a lemma used to establish the smooth molecular decompositions for the
Littlewood-Paley spaces.

Lemma 3.4. Let 0 < a ≤ 1 and (Bs ,Bf ) be an a-admissible pair. For any
ε > 0, the linear operators

T1({ai}i∈Z) =
{∑
j≤i

2(j−i)εaj
}
i∈Z

and T2({ai}i∈Z) =
{∑
j>i

2(i−j)εaj
}
i∈Z

are bounded on B
1/a
s .

The above lemma can be proved by using the Aoki-Rolewicz theorem ([30],
Theorem 1.3) and Definition 1.3, item (1).

The proof of the smooth molecular decompositions relies on the bounded-
ness of the almost diagonal operators. We now recall the definition of almost
diagonal operators from [23] p. 53, (3.1).

Definition 3.5. Let 0 ≤ a ≤ 1, α ∈ R and (Bs ,Bf ) be an a-admissible
pair. Let J = max(n, n/a). The matrixA = {aQP }P,Q∈Q is an almost diagonal
operator for ḟ αBs ,Bf

if there exists ε > 0 such that

sup
Q,P

|aQP |/ωQP (ε) < ∞,

where

ωQP (ε) =
(
l(Q)

l(P )

)α (
1 + |xQ − xP |

max(l(P ), l(Q))

)−J−ε

min

[(
l(Q)

l(P )

)(n+ε)/2
,

(
l(P )

l(Q)

)(n+ε)/2+J−n]
.
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The proof of the following theorem is based on the method from The-
orem 3.3 of [23] but some ideas in [23] can no longer be used in this paper.
Even though we lack of those special techniques in [23], we manage to obtain
our results by solely using the admissibility condition (1.2). This is the reason
why we only assign (1.2) as the admissibility condition for our study.

Theorem 3.6. Let 0 < a ≤ 1, α ∈ R and (Bs ,Bf ) be an a-admissible
pair. An almost diagonal operator for ḟ αBs ,Bf

is a bounded linear operator on

ḟ αBs ,Bf
.

Proof. LetA = {aQP }P,Q∈Q be an almost diagonal operator for ḟ αBs ,Bf
. Let

(A0s)Q = ∑
l(Q)≤l(P ) aQP sP and (A1s)Q = ∑

l(Q)>l(P ) aQP sP , for {sQ}Q∈Q ∈
ḟ αBs ,Bf

. Let l(Q) = 2−i . By [23] Lemma A.2 and Remark A.3, we have

∑
l(Q)=2−i

|Q|−α/n|(A1s)Q|χ̃Q(x)
≤ C

∑
j>i

2(i−j)ε/2 Ma

( ∑
l(P )=2−j

|P |−α/n|sP |χ̃P
)
(x).

Hence,

‖A1s‖ḟ αBs ,Bf ≤ C

∥∥∥∥
{∑
j>i

2(i−j)aε/2
(

Ma

( ∑
|P |=2−jn

|P |−α/n|sP |χ̃P
))a}

i∈Z

∥∥∥∥
1/a

B1/a

by the definition of B1/a . As T2 is bounded, we deduce that

‖A1s‖ḟ αBs ,Bf ≤ C

∥∥∥∥
{(

Ma

( ∑
|P |=2−jn

|P |−α/n|sP |χ̃P
))a}

j∈Z

∥∥∥∥
1/a

B1/a

.

Moreover, as (Bs ,Bf ) is a-admissible and (Ma(f ))
a = M(|f |a), we obtain

‖A1s‖ḟ αBs ,Bf ≤ C‖s‖ḟ αBs ,Bf . We apply the same method to estimate A0. Hence,

A = A0 + A1 is bounded on ḟ αBs ,Bf
.

Smooth molecular decompositions for Ḟ αBs ,Bf
can be established provided

that (Bs ,Bf ) is an a-admissible pair for some 0 < a ≤ 1. For brevity, we skip
the proof and the reader is referred to [23], Theorems 3.5 and 3.7 for details.
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4. Rearrangement-invariant quasi-Banach function spaces

In the rest of this paper, we apply our general theory to some important func-
tion spaces. We begin with the r.-i. quasi-Banach function space X. The r.-i.
quasi-Banach function spaces include a significant number of function spaces
appeared in analysis, for instance, the Lorentz spaces and the Orlicz spaces.
The main results of this section are Theorem 4.8 which offers the conditions
onX for the admissibility of the pair (Bs , X) and Theorem 4.10 which shows
the Littlewood-Paley characterization of X. With the Littlewood-Paley char-
acterization ofX, we can determine the condition for which r.-i. quasi-Banach
function spaces belong to the Littlewood-Paley spaces.

For any f ∈ M(Rn), let f ∗ denote the decreasing rearrangement of f .

Definition 4.1. A quasi-Banach space X ⊂ M(Rn) is called a r.-i. quasi-
Banach function space if there exists a regular quasi-norm ρX : M([0,∞)) →
[0,∞] so that ‖f ‖X = ρX(f

∗), f ∈ X, where M([0,∞)) is the set of Le-
besgue measurable functions on [0,∞). That is, the r.-i. quasi-Banach function
space X has the Luxemburg type representation (see [5], Chapter 2, The-
orem 4.10).

If X is a r.-i. Banach function space, the Luxemburg representation of X
arises from an integral formula related to the associated space ofX. On the other
hand, a r.-i. quasi-Banach function space does not necessarily have non-trivial
associate space. Hence, we cannot rewrite the norm ‖·‖X as the supremum of
some appropriate integrals (see [36], Volume II, p. 146–147 or [5], Chapter 3,
proof of Theorem 5.15). Therefore, the Luxemburg type representation gives
us an access to express the norm of f in term of f ∗. In Theorem 4.4, we
demonstrate the use of the Luxemburg type representation in the proof of the
boundedness of quasi-linear operators of joint weak type.

For any s ≥ 0 and f ∈ M(Rn), define (Dsf )(x) = f (sx), x ∈ Rn. Let
‖Ds‖X→X be the operator norm ofDs onX. We recall the definition of Boyd’s
indices for r.-i. quasi-Banach function spaces from [42].

Definition 4.2. LetX be a r.-i. quasi-Banach function space on Rn. Define
the lower Boyd index of X, pX, and the upper Boyd index of X, qX, by

pX = sup{p : ∃C > 0 such that ∀ 0 ≤ s < 1, ‖Ds‖X→X ≤ Cs−n/p}
and

qX = inf{q : ∃C > 0 such that ∀ 1 ≤ s, ‖Ds‖X→X ≤ Cs−n/q},
respectively.
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We have 0 ≤ pX ≤ qX ≤ ∞. For example, the Boyd indices of the Le-
besgue spacesLp, 0<p≤ ∞, with the quasi-norm ‖f ‖Lp=

(∫ |f (x)|p dx)1/p

are pLp = qLp = p.
We now establish the Fefferman-Stein type vector-valued maximal inequal-

ities on X. We need some notations and preliminary results.
LetX be a r.-i. quasi-Banach function space. Recall that for anyp ∈ (0,∞),

Xp is the 1/p-th power of X. Obviously, Xp is a r.-i. quasi-Banach function
space. According to Definition 4.2, we find that for any p ∈ (0,∞), pXp =
ppX and qXp = pqX.

Next, we state the definition of the B-valued quasi-Banach function spaces
where B is a separable Banach space. Let M0(Rn, B) = {f : Rn → B :
L(f ) ∈ M0(Rn), ∀L ∈ B∗} where B∗ is the dual space of B. Let ‖f ‖∗

B(t)

be the decreasing rearrangement of ‖f (x)‖B . Given a quasi-Banach function
space on Rn, X, and a separable Banach space B, let

XB = {f : Rn → B : L(f ) ∈ M(Rn),∀L ∈ B∗ and ‖f ‖B ∈ X}.
The vector space XB is endowed with the quasi-norm ‖·‖XB = ‖‖·‖B‖X =
ρX(‖·‖∗

B). It is evident that XB is a quasi-Banach space (see Theorem 1.7).
LetB0 andB1 be separable Banach spaces. A mappingT :E→ M0(Rn, B1),

where E is a subspace of M0(Rn, B0), is a quasi-linear operator if there exists
k ≥ 1 such that for any f, g ∈ E,

‖T (f + g)‖B1 ≤ k(‖Tf ‖B1 + ‖T g‖B1) and ‖T (λf )‖B1 = |λ|‖Tf ‖B1 ,

λ ∈ C.

Definition 4.3. Let 1 ≤ p, q ≤ ∞ and B0, B1 be separable Banach
spaces. Write σ = (p, q, B0, B1). A quasi-linear operator T is of joint weak
type σ if there is a constant C > 0 such that ‖T (f )‖∗

B1
(t) ≤ CSσ (‖f ‖∗

B0
)(t),

t > 0, where Sσ is the Calderón operator given by

(Sσ g)(t) = t−1/p
∫ t

0
s1/pg(s)

ds

s
+ t−1/q

∫ ∞

t

s1/qg(s)
ds

s
, t > 0.

If T is a bounded quasi-linear operator from L
p

B0
to LpB1

and from L
q

B0
to

L
q

B1
, then T is of joint weak type (p, q, B0, B1). The reader may consult [5],

pp. 141–154 and pp. 222–226, for the proof of the above assertion and some
other basic results for the operators of joint weak type when B0 = B1 = C.
The proof of the above assertion for B-valued function spaces relies on the
ideas given in [55], Sections 1.18.6 and 1.18.7. We study the boundedness of
quasi-linear operators of joint weak type on XB .
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Theorem 4.4. Suppose that 1 ≤ p < q ≤ ∞. Let B0 and B1 be separable
Banach spaces andX be a r.-i. quasi-Banach function space on Rn. If the Boyd
indices of X satisfy p < pX ≤ qX < q, then every quasi-linear operator of
joint weak type (p, q, B0, B1) is bounded from XB0 to XB1 .

Proof. Let T be a quasi-linear operator of joint weak type (p, q, B0, B1).
By using the substitution s = ut , we have

‖T (f )‖∗
B1
(t) ≤ C

(∫ 1

0
u1/p−1‖f ‖∗

B0
(ut) du+

∫ ∞

1
u1/q−1‖f ‖∗

B0
(ut) du

)

≤ C

( 0∑
k=−∞

2nk/p‖f ‖∗
B0
(2nkt)+

∞∑
k=0

2nk/q‖f ‖∗
B0
(2nkt)

)
.

Let κ be the index given by the Aoki-Rolewicz theorem for the quasi-norm ρX
([30], Theorem 1.3) so that ρκX is sub-additive. We find that

‖T (f )‖κXB1

≤ C

( 0∑
k=−∞

2nkκ/p[ρX(‖f ‖∗
B0
(2nkt))]κ +

∞∑
k=0

2nkκ/q[ρX(‖f ‖∗
B0
(2nkt))]κ

)

= C

( 0∑
k=−∞

2nkκ/p[‖D2k‖f ‖B0‖X]κ +
∞∑
k=0

2nkκ/q[‖D2k‖f ‖B0‖X]κ
)
.

In view of the Luxemburg type representation of ‖·‖X, we establish the first in-
equality. We have the last identity because (D2k (f ))

∗ = D2nk (f
∗). According

to Definition 4.2, there exist p < p0 < pX and qX < q0 < q such that

‖T (f )‖κXB1
≤ C

( 0∑
k=−∞

2nkκ(1/p−1/p0)‖f ‖κXB0
+

∞∑
k=0

2nkκ(1/q−1/q0)‖f ‖κXB0

)

≤ C‖f ‖κXB0
.

Our promised result follows obviously from the above inequalities.

We recall the definition of the UMD property.

Definition 4.5. A Banach spaceB is said to have the UMD property if, for
1 < p < ∞, the martingale difference sequences d = {di}i∈N in LpB([0, 1])
are unconditional; that is,

(∫ 1

0

∥∥∥∥
∑
i∈N

εidi(x)

∥∥∥∥
p

B

dx

)1/p

≤ Cp,B

(∫ 1

0

∥∥∥∥
∑
i∈N

di(x)

∥∥∥∥
p

B

dx

)1/p

,
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whenever εi ∈ {1,−1} and i ∈ N.

Next is one of the important properties for Banach spaces having the UMD
property. The proof of the following result is given in [9], Section 2 and [50],
Theorem 3.

Theorem 4.6. Let 1 < p < ∞ and B be a Banach lattice of measurable
functions in a σ -finite measure space. If B has the UMD property, then the
quasi-linear operator M : LpB → L

p

B is bounded.

Thus, the quasi-linear operator M is of joint weak type (p, q, B,B), 1 <
p, q < ∞, when B has the UMD property. Another important feature of the
UMD property is given below. For the proof, the reader is referred to [50],
Theorem 4.

Theorem 4.7. Let B be a Banach lattice having the UMD property. There
exists a εB > 0 such that Bq has the UMD property when 1

1+εB < q < ∞.

We obtain one of the main results of this section.

Theorem 4.8. Let 0 < p ≤ 1 andX be a r.-i. quasi-Banach function space
on Rn with 0 < pX ≤ qX < ∞. Suppose that B is a regular Banach sequence
space having the UMD property. The pair (Bp,X) is a-admissible provided
that a satisfies 0 < a < min(pX, p(1 + εB)).

Proof. Let ρ be the constant such that ‖·‖ρX is sub-additive ([30], The-
orem 1.3). We see that ‖(1+|x|)−κ‖ρX ≤ ∑∞

k∈N k
n(1+|k|)−κρ‖χ[0,1)n‖ρX < ∞

when κ > n+1
ρ

. Thus, X is a regular function space. We consider X1/a and

Bp/a . We have 1 < pX
a

= pX1/a ≤ qX1/a = qX
a
< ∞. Using Theorem 4.7, Bp/a

has the UMD property. Theorem 4.4 yields

(4.1) ‖Mg‖
X

1/a

Bp/a
≤ C‖g‖

X
1/a

Bp/a
, ∀g ∈ X1/a

Bp/a
.

As (Bp)1/a = Bp/a (see [46], Lemma 2.20(i)), the a-admissibility of (Bp,X)
follows from (4.1).

We establish the Littlewood-Paley characterization of r.-i. quasi-Banach
function spaces. We first present a lemma to overcome the obstacles appear-
ing in the use of the Littlewood-Paley analysis. More precisely, for any f ∈
S ′(Rn), we have the Littlewood-Paley representation f = ∑

ν∈Z f ∗ϕν ∗ψν in
S ′(Rn)/P (see [29]), for some ϕ,ψ ∈ S0(Rn). Therefore, in order to use the
Littlewood-Paley representation for f ∈ X, we have to show the belonging
X ⊂ S ′(Rn)/P and the uniqueness of the Littlewood-Paley representation of
f ∈ X.
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Lemma 4.9. Let X be a r.-i. quasi-Banach function space on Rn. If the
upper Boyd index of X satisfies qX < ∞, then X ∩ P = {0}. Moreover, if
1 < pX ≤ qX < ∞, then X ⊂ S ′(Rn)/P .

Proof. Obviously, we have X ∩ P = X ∩ C . Therefore, it suffices to
show that the constant function F ≡ 1 does not belong to X. Definition 4.2
offers two constants C > 0 and s0 > 1 such that for any s0 < s, ‖χ(0,1)n‖X ≤
‖Ds‖X→X‖χ(0,s)n‖X ≤ Cs

− n
2qX ‖χ(0,s)n‖X. Therefore, s

n
2qX ‖χ(0,1)n‖X ≤

C‖χ(0,s)n‖X ≤ C‖F‖X for any sufficiently large s and, hence, F does not
belong to X.

By Theorem 4.8 with B = R and a = 1 (or Theorem 5 of [42]), the Hardy-
Littlewood maximal operator is well-defined in X. For any fixed f ∈ X,
without loss of generality, we assume that (M f )(0) is well defined. Hence,
for any ϕ ∈ S (Rn), we have a semi-norm ‖·‖N in S (Rn) and a constantC > 0
so that∣∣∣∣

∫
Rn
f (x)ϕ(x) dx

∣∣∣∣ ≤ ‖ϕ‖N
∑
k∈N

kn

(1 + k)n+2

1

kn

∫
k≤|x|<k+1

|f (x)| dx

≤ C‖ϕ‖N(M f )(0).

Thus, f ∈ S ′(Rn)/P . This completes the proof.

The following result extends the Littlewood-Paley characterization to r.-i.
quasi-Banach function spaces.

Theorem 4.10. Let X be a r.-i. quasi-Banach function space on Rn. If the
Boyd indices ofX satisfy 1 < pX ≤ qX < ∞, then we have the quasi-Banach
space isomorphism: Ḟ 0

l2,X
= X.

Proof. Letϕ ∈ S0(Rn)be a function that satisfies (2.2). Define the operator
Gϕ as Gϕ(f )(x) = {(f ∗ϕj )(x)}j∈Z. According to [25], ChapterV, Theorem 5.3,
Gϕ is a bounded operator from Lp to Lp

l2
when 1 < p < ∞. Since 1 < pX ≤

qX < ∞, there exist 1 < p0, q0 < ∞ such that p0 < pX ≤ qX < q0. Thus,
Gϕ is of joint weak type (p0, q0, C, l2). As X ⊂ S ′(Rn)/P , f ∗ ϕj , j ∈ Z,
and Gϕ(f ) are well defined for f ∈ X, we are allowed to apply Theorem 4.4

and obtain a constant C > 0 so that ‖f ‖Ḟ 0
l2 ,X

= ∥∥( ∑
j∈Z |f ∗ ϕj |2

)1/2∥∥
X

=
‖Gϕ(f )‖Xl2 ≤ C‖f ‖X.

Next, we prove the other direction. Since ϕ satisfies (2.2), we have a ψ ∈
S0(Rn) also satisfying (2.2) such that (see [23], (4.13))

∑
j∈Z ϕ̂(2

−j ξ)ψ̂(2−j ξ)
= 1, ξ �= 0. The adjoint operator of Gψ , G∗

ψ , is given by G∗
ψ({fj }j∈Z) =∑

j∈Z ψj ∗ fj . As (Lp
l2
)∗ = L

p′
l2

, 1 < p < ∞, where p′ is the conjugate of p,
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G∗
ψ is a bounded linear operator from L

p

l2
to Lp, 1 < p < ∞. Therefore, G∗

ψ is
of joint weak type (p0, q0, l

2, C), 1 < p0, q0 < ∞, and, hence, it is bounded
fromXl2 toX. For any f ∈ Ḟ 0

l2,X
, let fi = f ∗ϕi , i ∈ Z. There exists a constant

C > 0 independent of f such that ‖ ∑
i∈Z ψi ∗ ϕi ∗ f ‖X = ‖G∗

ψ({fi}i∈Z)‖X ≤
C‖{ϕi ∗ f }i∈Z‖Xl2 = C‖f ‖Ḟ 0

l2 ,X
. The Littlewood-Paley analysis yields the

identity f = ∑
i∈Z ψi ∗ ϕi ∗ f in S ′(Rn)/P . Therefore, our promised result

follows from the condition 1 < pX ≤ qX < ∞ and Lemma 4.9.

We investigate some important r.-i. quasi-Banach function spaces, namely,
the Lorentz-Karamata spaces [16], [44], [45] and the Orlicz spaces [49].

Let 0 < p, q < ∞, 0 < r, u ≤ ∞ and b be a slowly varying function
(see [16], Definition 3.4.32). Let lq,u and Lp,r;b denote the Lorentz sequence
spaces (see [55] Section 1.18.3) and the Lorentz-Karamata spaces (see [16],
Definition 3.4.38), respectively. When 0 < r < 1 and 1 < p < ∞, Lp,r;b are
examples of r.-i. quasi-Banach function spaces with Boyd’s indices located
strictly in between one and infinity. Next, we show that (Lp,r;b, lq,u) is an
a-admissible pair if 0 < a < min(p, q, r, u).

Proposition 4.11. Let 0 < p, q, u < ∞ and 0 < r ≤ ∞. The pair
(lq,u, Lp,r;b) is a-admissible when 0 < a < min(p, q, r, u, 1).

Proof. As lq,u, 1 < q, u < ∞, are reflexive r.-i. Banach sequence spaces
and (lq,u)1/a = lq/a,u/a , the discussions after Definitions 1.3 and 1.5 conclude
that lq,u, 0 < q, u < ∞, are regular sequence spaces. Furthermore, lq,u,
1 < q, u < ∞, are interpolation spaces of lp, 1 < p < ∞. Proposition 1
of [50] guarantees that lq,u, 1 < q, u < ∞, possess the UMD property. In
addition, the Boyd indices of lq,u equal to q and the Boyd indices of (Lp,r;b)1/a
equal to p/a. So, Theorem 4.8 shows that (lq,u, Lp,r;b) is a-admissible.

Define the Triebel-Lizorkin-Lorentz spaces Ḟ α,q,up,r to be the Littlewood-
Paley spaces Ḟ αlq,u,Lp,r . The Triebel-Lizorkin-Lorentz spaces include some of the

interpolation spaces of theTriebel-Lizorkin spaces. For instance, (Ḟ α,qp0 , Ḟ
α,q
p1 )θ,r

= Ḟ
α,q,q
p,r , p0 �= p1, 1 ≤ r ≤ ∞ and (Ḟ α,q0

p0 , Ḟ
α,q1
p1 )θ,p = Ḟ

α,q,p
p,p , q0 �= q1,

where 1/p = (1 − θ)/p0 + θ/p1 and 1/q = (1 − θ)/q0 + θ/q1 (see [56],
Section 2.4.2). Moreover, the Triebel-Lizorkin-Lorentz spaces also include
the Hardy-Lorentz spaces [17], weak-H 1 [19] and weak-Hp [35] as special
cases. By Theorem 4.10, Lp,r;b has the Littlewood-Paley characterization and,
hence, Lp,r;b is a special case of Ḟ αBs ,Bf

when 1 < p < ∞. The Lorentz-
Karamata spaces include the Lorentz-Zygmund spaces [4] and the generalized
Lorentz-Zygmund spaces (see [16] p. 113).

Next, we turn to Orlicz spaces. Let L� be the Orlicz space associated
with the convex function, �. As the Orlicz space L� is reflexive if and only
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if 1 < pL� ≤ qL� < ∞ (see [36], Volume II, Proposition 2.b.5 and [49]
Chapter IV, Corollary 12), we have the Littlewood-Paley characterization of
the reflexive Orlicz spaces Ḟ 0

l2,L�
= L�.

We now generalize the Triebel-Lizorkin spaces by replacingLp(Rn) and lq ,
1 < p, q < ∞, by the Orlicz function spaces and the Orlicz sequence spaces,
respectively.

Proposition 4.12. If l� and L� are reflexive Orlicz sequence space and
reflexive Orlicz function space, respectively, then the pair (l�, L�) is admiss-
ible.

Proof. We are going to show that (l�, L�) satisfies (1.2) with a = 1. As
l� is a reflexive Orlicz sequence space (see [36], Volume I, Propositions 4.a.4
and 4.b.1), it is a regular sequence space and, moreover, l� has the UMD
property (see [20], [26], [27]). We have ‖‖Mf ‖l�‖L� ≤ C‖f ‖l�‖L� because
1 < pL� ≤ qL� < ∞. Finally, as the Boyd indices of l� satisfy 1 < pl� ≤
ql� < ∞ when l� is reflexive, Theorem 4.8 concludes that the pair (l�, L�)
is admissible.

From the previous result, for any α ∈ R and�,� satisfying the above con-
ditions, the Triebel-Lizorkin-Orlicz spaces Ḟ α�,� are defined as Ḟ α�,� = Ḟ α

l�,L�
.

The Triebel-Lizorkin-Orlicz spaces are extensions of the Triebel-Lizorkin
spaces Ḟ α,qp and the Orlicz spaces L�.

5. Morrey type spaces

The results in Section 4 may give a wrong impression to the reader that the
sequence space component and the function space component of an admissible
pair are restricted to the sequence spaces having the UMD property and r.-i.
quasi-Banach function spaces on Rn with Lebesgue measure, respectively. In
fact, the admissible pair (l∞, L∞) provides a counter example on the sequence
spaces and the admissible pairs (lq, Lp(ω)) and (lq, Lp(x)), 1 < p, q < ∞,
where ω is a Muckenhoupt Ap weight and Lp(x) is a variable Lebesgue space
(the exponent function p(x) must satisfy certain conditions, see [14]) provide
counter examples on the function spaces. The reader is referred to [1] and
[14] for the admissibility of (lq, Lp(ω)) and (lq, Lp(x)), respectively. We offer
another important example of non r.-i. function space that satisfies the admiss-
ibility condition, namely, the class of Morrey spaces [12], [32], [39], [52],
[53].

Definition 5.1. Let X be a quasi-Banach function space on Rn, B be a
separable quasi-Banach lattice and ω(x, r) : Rn × (0,∞) → (0,∞) be a
Lebesgue measurable function. A B-valued function f ∈ M0(Rn, B) belongs
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to the Morrey-type space associated with XB if it satisfies

‖f ‖MX
ω (B)

= sup
x0∈Rn, r>0

1

ω(x0, r)
‖χB(x0,r)f ‖XB < ∞

where B(x0, r) = {x ∈ Rn : |x − x0| < r}.
For brevity, whenB = R, we write MX

ω (R) and ‖·‖MX
ω (R) by MX

ω and ‖·‖MX
ω

,

respectively. Let 1 < u ≤ p < ∞. If X = Lu(Rn) and ω(x, r) = r
n
u
− n
p ,

then MX
ω is the “classical” Morrey space in [12], [48]. When ω satisfies the

conditions in Theorem 5.8 and B = R, then MX
ω is the generalized Morrey

space studied in [43]. When X is a general r.-i. quasi-Banach function space
and ω = 1, then MX

ω = X. Let X′ denote the associated space of the r.-i.
Banach function space X (see [5] Chapter 1, Section 2).

If X is a Banach function space, it is evident that XB is a Banach space
and, hence, MX

ω (B) is also a Banach space. The proof for the completeness of
MX
ω (B) follows from the corresponding proof for the classical Morrey spaces,

see [33] Section 4.4.

Theorem 5.2. LetX be a r.-i. Banach function space on Rn with 1 < pX ≤
qX < ∞ andB be a regular Banach sequence space having the UMD property.
If there exists a constant C > 0 such that for any x ∈ Rn and r > 0, ω fulfills

(5.1)
∞∑
j=0

2−jnr−nφX′(2(j+1)nrn)φX(r
n)ω(x, 2j+1r) < Cω(x, r),

where φX and φX′ are the fundamental functions of X and X′, respectively
(see [5], Chapter 2, Definition 5.1), then there exists C > 0 such that for any
f = {fi}i∈Z ∈ MX

ω (B),

(5.2) ‖M(f )‖MX
ω (B)

≤ C‖f ‖MX
ω (B)

.

Proof. For any z ∈ Rn and r > 0, write fi(x) = f 0
i (x) + ∑∞

j=1 f
j

i (x),

where f 0
i = χB(z,2r)fi and f ji = χB(z,2j+1r)\B(z,2j r)fi , j ∈ N\{0}. Applying

Theorem 4.8 to f 0 = {f 0
i }i∈Z, we obtain ‖‖M(f 0)‖B‖X ≤ C‖‖f 0‖B ||X. We

have

1

ω(z, r)
‖χB(z,r)‖M(f 0)‖B‖X ≤ C

1

ω(z, 2r)
‖χB(z,2r)‖f ‖B ||X

≤ C sup
y∈Rn

r>0

1

ω(y, r)
‖χB(y,r)‖f ‖B‖X
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because inequality (5.1) and [5], Chapter 2, Theorem 5.2 yield ω(z, 2r) <
Cω(z, r) for some C > 0 independent of z ∈ Rn and r > 0.

Since we have a constant C > 0 so that for any j ≥ 1 and i ∈ Z,

χB(z,r)(x)(M f
j

i )(x) ≤ C2−jnr−nχB(z,r)(x)

∫
B(z,2j+1r)

|fi(y)| dy

and B is a Banach lattice, applying Theorem 3.29 of [51], we find that

χB(z,r)(x)‖{(M f
j

i )(x)}i∈Z‖B
≤ C2−jnr−nχB(z,r)(x)

∫
B(z,2j+1r)

‖{fi(y)}i∈Z‖B dy.

Let �(x) = χB(z,r)(x)‖{(M f
j

i )(x)}i∈Z‖B . The Hölder inequality on X (see
[5], Chapter 1, Theorem 2.4) yields

�(x) ≤ CχB(z,r)(x)2
−jnr−n‖χB(z,2j+1r)‖X′ ‖χB(z,2j+1r)(y)‖{fi(y)}i∈Z‖B‖X.

By the definition of fundamental function, we assert that

�(x) ≤ C2−jnr−nχB(z,r)(x)φX′(2(j+1)nrn)‖χB(z,2j+1r)(y)‖{fi(y)}i∈Z‖B‖X.
Applying the norm ‖·‖X on both sides of the above inequality, we deduce that

‖�‖X ≤ C2−jnr−nφX′(2(j+1)nrn)φX(r
n)‖χB(z,2j+1r)(y)‖{fi(y)}i∈Z‖B‖X.

Thus,

‖�‖X ≤ C2−jnr−nφX′(2(j+1)nrn)φX(r
n)ω(z, 2j+1r)

sup
y∈Rn

R>0

1

ω(y,R)
‖χB(y,R)‖f ‖B‖X.

Using inequality (5.1), we obtain

1

ω(z, r)
‖χB(z,r)‖Mf ‖B‖X ≤ 1

ω(z, r)

∞∑
j=0

‖χB(z,r)‖Mf j‖B‖X

≤ C sup
y∈Rn

R>0

1

ω(y,R)
‖χB(y,R)‖f ‖B‖X

where the constant C > 0 is independent of r and z. Hence, this finishes the
proof of (5.2).
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The following corollary considers a special case of condition (5.1), that
special case is a well-known condition on the study of Morrey spaces.

Corollary 5.3. Let X be a r.-i. Banach function space on Rn with 1 <
pX ≤ qX < ∞. If 0 ≤ λ < n

qX
and ω(x, r) satisfies

(5.3) ω(x, 2j r) ≤ C2jλω(x, r), for any x ∈ Rn, j ∈ N and r > 0

for some C > 0, then inequality (5.1) holds.

Proof. Using Definition 4.2, we find that for any σ > 0, there exists a
constant Cσ > 0 such that φX′(2(j+1)nrn) ≤ Cσ2n(j+1)( 1

p
X′ +σ)φX′(rn). By [5],

Chapter 2, Theorem 5.2, we assert that φX′(2(j+1)nrn)φX(r
n) ≤

Cσ2n(j+1)( 1
p
X′ +σ)rn. Thus, condition (5.3) yields

∑
j∈N

2−jnr−nφX′(2(j+1)nrn)φX(r
n)ω(x, 2j+1r)

≤ Cσ
∑
j∈N

2
−jn

(
1− 1

p
X′ −σ

)
+(j+1)λ

ω(x, r).

Since λ < n
qX

= n
(
1− 1

pX′

)
, we can chose a σ > 0 so that σ < 1

qX
− λ

n
. Hence,

ω satisfies (5.1).

Definition 5.4. Let X be a r.-i. quasi-Banach function space on Rn with
qX < ∞. The function ω belongs to the set WX if it satisfies (5.3) with 0 ≤
λ < n

qX
and there exist constants C1, C2 > 0 such that for any x ∈ Rn,

ω(x, r) ≥ C1, ∀r ≥ 1 and

(5.4) C−1
2 ≤ ω(x, t)/ω(x, r) ≤ C2, 0 < r ≤ t ≤ 2r.

We now show the first main result of this section, the admissibility of MX
ω .

Theorem 5.5. Let 0 < p, q ≤ 1 and X be a r.-i. Banach function space on
Rn with 1 ≤ pX ≤ qX < ∞. LetB be a regular Banach sequence space having
the UMD property. If ω ∈ WXp , then for any 0 < a < min(p, q(1 + εB)),
(Bq,MXp

ω ) is an a-admissible pair.

Proof. We first show that MXp

ω is a regular function space. As demonstrated
in the proof of Theorem 4.8, it suffices to prove that there exists a constantC >
0 so that ‖χE‖MXp

ω
< C for any χE ∈ M(Rn) with |E| = 1. Let S0 = B(0, 1).

Using (5.3) and the definition of Boyd’s indices, for any S = B(x, 2−k) with
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k ∈ N, we have a 0 < ε < 1
pqX

− λ
n

and constants C1, C2 > 0 such that

‖χS∩E‖Xp
ω(x, 2−k)

≤ ‖χS‖Xp
ω(x, 2−k)

≤ C12
−kn

(
1

pqX
−ε

) ‖χS0‖Xp
ω(x, 2−k)

≤ C12
kλ−kn

(
1

pqX
−ε

) ‖χS0‖Xp
ω(x, 1)

< C2.

As ω ∈ WXp , for any S = B(x, 2k), k ∈ N, 1
ω(x,2k)‖χS∩E‖Xp < C. Thus,

condition (5.4) ensures that MXp

ω is a regular function space. Sinceωa ∈ WXp/a

and (MXp

ω )1/a = MXp/a

ωa , Theorem 5.2 shows the admissibility of (Bq,MXp

ω ).

Let 1 < u ≤ v < ∞. When 0 < p, q < ∞, Bs = lq , Bf = Lu(Rn)

and ω(x, r) = r
n
pu

− n
pv , then Ḟ αBs ,Bf

and its Besov space counterparts are the
Triebel-Lizorkin-Morrey spaces and Besov-Morrey spaces; and Morrey type
Besov-Triebel spaces in [39], [52] and [53], respectively.

The following is the second main result of this section, the Littlewood-Paley
characterization of MX

ω . It includes the Littlewood-Paley characterization of
the Morrey spaces associated with Lebesgue spaces (see Proposition 4.1 of
[40]) and Theorem 4.10 (whenX is a Banach function space) as special cases.

Theorem 5.6. Suppose that X is a r.-i. Banach function space on Rn with
1 < pX ≤ qX < ∞. If ω ∈ WX, then we have the Banach space isomorphism
Ḟ 0
l2,MX

ω
= MX

ω .

To prove the Littlewood-Paley characterization of MX
ω , we have to surmount

the same difficulties we encountered in Lemma 4.9 for r.-i. quasi-Banach func-
tion spaces.

Proposition 5.7. LetX be a r.-i. Banach function space on Rn with qX < ∞
and ω satisfy (5.3) with 0 ≤ λ < n

qX
. We have MX

ω ∩ P = {0}. Moreover, if

1 < pX ≤ qX < ∞, then MX
ω ⊂ S ′(Rn)/P .

Proof. It only needs to show that F ≡ 1 does not belong to MX
ω . We prove

by contradiction. If F ∈ MX
ω , then for any k ∈ N, χ(0,2k)n ∈ MX

ω . Therefore,
for any ε > 0, Definition 4.2 indicates that there exist C1, C2 > 0 so that

2kn(
1
qX

−ε)‖χ(0,1)n‖X ≤ C2‖χ(0,2k)n‖X, ∀k > C1, k ∈ N. Hence,

2
kn

(
1
qX

−ε
) ‖χ(0,1)n‖X
ω(0, 2k)

≤ C2
‖χ(0,2k)n‖X
ω(0, 2k)

≤ C2‖χ(0,2k)n‖MX
ω
< C2‖F‖MX

ω
< ∞.

Thus, condition (5.3) produces the inequality 2
kn

(
1
qX

−ε
)

≤ C2kλ for some
C > 0. As ε > 0 and k ∈ N are arbitrary, we have n

qX
≤ λ which contradicts
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to the assumption 0 ≤ λ < n
qX

. We obtain the inclusion MX
ω ⊂ S ′(Rn)/P by

using Theorem 5.5 and the arguments in Theorem 4.10.

We now derive a boundedness result for the singular integral operators on
MX
ω (B). It is a well-known result if B = R and X = Lp, 1 < p < ∞ (see

[43], Theorem 2).
Let B1 and B2 be Banach lattices. We call a linear operator T : XB1 →

XB2 a singular integral operator if there exists K(x, y) : B1 → B2 such
that (Tf )(x) = ∫

K(x, y)f (y)dy, x ∈ Rn\ supp f , and K(x, y) satisfies
‖K(x, y)‖B1→B2 ≤ C|x − y|−n, ∀(x, y) ∈ R2n\{(x, x) : x ∈ Rn}, for some
C > 0 independent of x and y, where ‖·‖B1→B2 is the operator norm of linear
operators from B1 to B2.

Theorem 5.8. Let X be a r.-i. Banach function space on Rn with qX < ∞,
B1 and B2 be separable Banach lattices. Assume that there exists a constant
C > 0 such that for any r > 0 and x0 ∈ Rn, ω satisfies (5.4) and

(5.5)
∫ ∞

r

ω(x0, t)

tn+1
dt ≤ C

ω(x0, r)

rn
.

If T is a singular integral operator which is bounded from XB1 toXB2 , then T
is also bounded from MX

ω (B1) to MX
ω (B2).

Note that if ω satisfies (5.3) and (5.4), then ω satisfies (5.5). Theorem 5.8
generalizes the corresponding results for the Morrey spaces associated with
Lebesgue spaces in [43], [47], [54]. We state a supporting lemma for The-
orem 5.8. For brevity, the proof of Lemma 5.9 is omitted. The proof for the
case where X = Lp and B = R is given in [43], Lemma 1.

Lemma 5.9. Let 0 < δ ≤ 1. Let X be a r.-i. Banach function space on
Rnwith qX < ∞ and B be a separable Banach lattice. If ω satisfies (5.4) and

(5.6)
∫ ∞

r

ω(x0, t)

tnδ+1
dt ≤ C

ω(x0, r)

rnδ
,

then there exists a constant C > 0 such that for any x0 ∈ Rn and r > 0,
‖f (MχB(x0,r))

δ‖XB ≤ Cω(x0, r)‖f ‖MX
ω (B)

.

With the above lemma, we are ready to prove Theorem 5.8 and, then, The-
orem 5.6.

Proof of Theorem 5.8. Let f ∈ MX
ω (B1). For any x0 ∈ Rn and r > 0,

write f1 = f χB(x0,2r) and f2 = f −f1. Since f1 ∈ XB1 andB2 is a Banach lat-
tice, the boundedness of T fromXB1 toXB2 ensures that ‖(χB(x0,r))Tf1‖XB2

≤
‖T ‖ω(x0, 2r)‖f ‖MX

ω (B1) where ‖T ‖ is the operator norm of T from XB1 to
XB2 .



littlewood-paley spaces 99

For f2 and x ∈ B(x0, r), we use the representation (Tf )(x) = ∫
Rn K(x,

y)f (y) dy and the definition of MχB(x0,r)(y), ∀y ∈ Rn\B(x0, 2r), to conclude
that

‖Tf2(x)‖B2 ≤ C

∫
Rn

‖f2(y)‖B1

|x − y|n dy ≤ C
1

rn

∫
Rn

‖f (y)‖B1 MχB(x0,r)(y) dy.

For any 0 < δ ≤ 1, the Hölder inequality onX assures that for anyx ∈ B(x0, r),

‖Tf2(x)‖B2 ≤ Cr−n
∫

Rn
‖f (y)‖B1 MχB(x0,r)(y) dy

≤ Cr−n‖f (MχB(x0,r))
δ‖XB1

‖(MχB(x0,r))
1−δ‖X′ .

By Lemma 2 of [43] (with ε = n − nδ in that lemma), we find that ω satis-
fies (5.6). Lemma 5.9 leads to ‖χB(x0,r)Tf2‖XB2

≤ Cr−nω(x0, r)‖f ‖MX
ω (B1) ·

‖(MχB(x0,r))
1−δ‖X′ ‖χB(x0,r)‖X. Finally, we estimate ‖(MχB(x0,r))

1−δ‖X′ . As
MχB(x0,r) ≤ 1 and MχB(x0,r) ≤ C2−kn on Dk where Dk = B(x0, 2k+1r) \
B(x0, 2kr), k ≥ 1, and D0 = B(x0, 2r), we assert that

‖(MχB(x0,r))
1−δ‖X′ ≤

∞∑
k=0

‖χDk (MχB(x0,r))
1−δ‖X′

≤ C

∞∑
k=0

2−kn(1−δ)‖χB(x0,2k+1r)‖X′ .

By Definition 4.2, for any σ > 0, there exists a constant Cσ > 0 such that

‖(MχB(x0,r))
1−δ‖X′ ≤ Cσ

∞∑
k=0

2
−kn(1−δ)+(k+1)n

(
1
p
X′ +σ

)
‖χB(x0,r)‖X′ .

Let δ and σ satisfy δ+σ < 1
qX

= 1 − 1
pX′ . Using [5], Chapter 2, Theorem 5.2,

we have our desired result.

Proof of Theorem 5.6. Let ϕ,ψ ∈ S (Rn) satisfy (2.2) and∑
j∈Z ϕ̂(2

−j ξ)ψ̂(2−j ξ) = 1, ξ �= 0. The operator Gϕ(f ) = {ϕj ∗ f }j∈Z is
a singular integral operator because the kernel K(x, y) = {ϕj (x − y)}j∈Z

satisfies
(∑
j∈Z

|ϕj (x − y)|2
)1/2

≤
(∑
j∈Z

22jn

(1 + 2j |x − y|)2n+2

)1/2

≤ C|x − y|−n, x, y ∈ Rn, x �= y
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for someC > 0 independent of x and y. Therefore, Theorem 5.8 concludes that
‖f ‖Ḟ 0

l2 ,MX
ω

= ‖{ϕj ∗ f }j∈Z‖MX
ω (l

2) = ‖Gϕ(f )‖MX
ω (l

2) ≤ C‖f ‖MX
ω

, ∀f ∈ MX
ω

and, hence, the embedding MX
ω ↪→ Ḟ 0

l2,MX
ω

is valid.

Similarly, for the reserve direction Ḟ 0
l2,MX

ω
↪→ MX

ω , we consider the operator

G∗
ψ({fi}i∈Z) = ∑

j∈Z ψj ∗ fj . Theorem 4.10 ensures that G∗
ψ is bounded from

L
p

l2
to Lp, 1 < p < ∞. Therefore, Proposition 5.7 and Theorem 5.8 yield our

promised result.
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