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LATTICE GAUGE FIELD THEORY
AND PRISMATIC SETS

B. AKYAR and J. L. DUPONT

Abstract
We study prismatic sets analogously to simplicial sets except that realization involves prisms, i.e.,
products of simplices rather than just simplices. Particular examples are the prismatic subdivision
of a simplicial set S and the prismatic star of S. Both have the same homotopy type as S and in
particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus
for a Lie group G and a set of parallel transport functions defining the transition over faces of
the simplices, we define a classifying map from the prismatic star to a prismatic version of the
classifying space of G. In turn this defines a G-bundle over the prismatic star.

1. Introduction

In the study of global properties of locally trivial fibre bundles it is a funda-
mental difficulty that the usual combinatorial methods of algebraic topology
depends on the use of simplicial complexes which structure behaves badly with
respect to local trivializations. By a theorem of Johnson [11], the base and total
space of a locally trivial smooth fibre bundle with projection π : E → B can
be triangulated in such a way that π is a simplicial map. But obviously even
in this case a general fibre is not a simplicial complex in any natural way.
However such a fibre has a natural decomposition into prisms, i.e., products
of simplices, and the whole triangulated bundle gives the basic example of a
prismatic set, analogous to the notion of a simplicial set derived from a sim-
plicial complex. Prismatic sets were introduced and used by the second author
and R. Ljungmann in [7] (see also Ljungmann’s thesis [12]) in order to con-
struct an explicit fibre integration map in smooth Deligne cohomology, see
also Dupont-Kamber [6]. But the important special case of the prismatic sub-
division of a simplicial set was used in Akyar [1] in connection with “Lattice
Gauge Theory” in the sense of Phillips-Stone [19], [21]. Similar constructions
have been used in other connections, see e.g. McClure-Smith [16] or Brasselet-
Teissier [2]. One can see Lüscher [13] for further information about Lattice
Gauge Fields.

In this paper we shall give a more systematic treatment of prismatic sets and
their properties but we shall concentrate on the applications to lattice gauge
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theory extending the work of Phillips and Stone to arbitrary simplicial sets
and all dimensions. For an arbitrary simplicial set S and a given Lie group G

together with a set of parallel transport functions in their sense, we construct a
prismatic set P̄.S of the same homotopy type as S and a classifying map from
P̄.S to a prismatic version of the standard model for BG, for a reference see
Segal [22]. This is one of our main results (Theorem 8.1). Geometrically, for
S a simplicial complex, P̄.S is closely related to the nerve of the covering by
stars of vertices (Theorem 5.1). In turn this gives a principal G-bundle with a
connection and thus in principle gives rise via the usual Chern-Weil and Chern-
Simons Theory to explicit formulas for characteristic classes (Corollary 8.2).
We shall return to this elsewhere. One can see Cheeger-Simons [3], Chern-
Simons [4], Dupont [5], Freed [9], Witten [23] for further information about
Chern-Simons Theory.

The paper is organized as follows:
In Chapter 2, prismatic sets are defined and their various realizations are

studied.
The third chapter introduces the prismatic triangulation of a simplicial map

and in particular of a simplicial set. Furthermore, we comment on the calcu-
lation of the homology of the geometric realization of a prismatic set.

In Chapter 4 we study prismatic sets associated to stars of simplicial com-
plexes. It turns out that the prismatic set P̄.S given in this chapter in the case
of a simplicial complex is the nerve of the covering by stars of vertices.

In the fifth chapter, we compare the two star simplicial sets and prove that
there is a natural surjective map p̄ : P̄.S → P. St S.. It turns out that this map
is an isomorphism for S = Ks , where K is a simplicial complex.

In Chapter 6, we introduce a prismatic version of the classifying space.
This is done by replacing the Lie group G by the singular simplicial set of
continuous maps Map(�q, G).

In Chapter 7, we introduce the notion of “compatible transition functions”
similar to the “parallel transport functions” of Phillips-Stone [19] for a simpli-
cial complex K . We show how a given bundle on the realization of a simplicial
set and so-called “admissible trivializations” give rise to a set of compatible
transition functions and vice versa. We end the chapter with a remark on the re-
lation between the compatible transition functions and parallel transport along
a piecewise linear path.

Finally in the last chapter we construct the classifying map for a given set
of compatible transition functions. For this we construct a prismatic map from
P̄.S to the prismatic model for the classifying space constructed in Chapter 6.

Acknowledgements. We would like to thank Marcel Bökstedt for his
interests and comments during the preparation of this paper. Also we would



28 b. akyar and j. l. dupont

like to thank the referee on an earlier version for a meticulous report and many
useful comments. We would like to thank Lars Madsen for the nice pictures.

2. Prismatic Sets

Prismatic sets are similar to simplicial sets but they are realized by using prisms
instead of only simplices.

Let �p = {
(t0, . . . , tp) ∈ Rp+1

∣∣ ∑
i ti = 1, ti ≤ 1

}
be a standard p-

simplex given with barycentric coordinates. A prism is a product of simplices,
that is, a set of the form �q0...qp = �q0 × · · · × �qp .

The motivating example is triangulated fibre bundles:

Example 2.1. Given a smooth fibre bundle π : Y → Z with dim Y =
m+n, dim Z = m and compact fibres possibly with boundary. By a theorem of
Johnson [11], there are smooth triangulations K and L of Y and Z, respectively
and a simplicial map π ′ : K → L in the following commutative diagram

|K| ≈−−−−−−−→ Y

↓
|π ′|

↓
π

|L| ≈−−−−−−−→ Z,

and the horizontal maps are homeomorphisms which are smooth on each sim-
plex. Let K be an ordered simplicial complex as in Dwyer-Henn [8, Section 3]
and let |K| = ⊔

τ∈Kk
�k × τ/∼, k = 0, . . . , dim K , be the geometric realiza-

tion.

ai z ak

π

Z

bi
j0 bk

j0

bi
j1

bk
j1

Y

A simplex τ in K has vertices τ = (b0
0, . . . , b

0
q0

| . . . |bp

0 , . . . , b
p
qp

) with σ =
(a0, . . . , ap) in L such that π ′(bi

j ) = ai . So geometrically, for an open simplex
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σ̊ in L, we have

π−1(|σ̊ |) ≈ |σ̊ | ×
⊔

τ∈π−1(σ )

�q0...qp × τ.

We collect all these decompositions in the formal definition below using
simplicial sets. For these we recall the notation but refer otherwise to Mac
Lane [14], May [15].

Definition 2.2. A simplicial set S = {Sq} is a sequence of sets with
face operators di : Sq → Sq−1 and degeneracy operators si : Sq → Sq+1,
i = 0, . . . , q, satisfying the simplicial identities:

didj =
{

dj−1di : i < j

djdi+1 : i ≥ j ,
, sisj =

{
sj+1si : i ≤ j

sj si−1 : i > j ,

and

disj =
⎧⎨
⎩

sj−1di : i < j

id : i = j , i = j + 1

sj di−1 : i > j + 1.

Example 2.3. A simplicial complex K gives a simplicial set where

Kp =
{
(ai0 , . . . , aip )

∣∣∣∣ some non-decreasing sequences
for a given partial ordering of K0

}

is the set of p-simplices.

Example 2.4. Given an open cover U = {Ui} of a smooth manifold Z we
have the nerve NU = {NU(p)} of the covering, where

NU(p) =
⊔

i0,...,ip

Ui0 ∩ · · · ∩ Uip ,

and (i0, . . . , ip) is non-decreasing for a given partial order of the index set.
Let us denote Ui0 ∩· · ·∩Uip by Ui0,...,ip . Then NU is a simplicial manifold,

where the face and degeneracy maps come from the inclusions

dj : Ui0,...,ip → Ui0,...,îj ,...,ip

sj : Ui0,...,ip → Ui0,...,ij ,ij ,...,ip .

That is, NU(p) is a smooth manifold for each p and the face and degener-
acy maps are smooth. There is also a corresponding simplicial set NdU =
{NdU(p)} called the discrete nerve of the covering. Here NdU(p) is simply
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the set consisting of an element for each non-empty intersection of p +1 open
sets from U. So there is a natural forgetful map NU → NdU.

Note. If S has only face operators, then it is called a �-set.

Definition 2.5. Given p ≥ 0, a (p + 1)-multi-simplicial set S is a se-
quence {Sq0,...,qp

} which is a simplicial set in each variable qi , i = 0, . . . , p

and such that the face and degeneracy operators

dk
i : Sq0,...,qp

→ Sq0,...,qk−1,...,qp

sk
i : Sq0,...,qp

→ Sq0,...,qk+1,...,qp

commute with dl
j , sl

j for k �= l and k, l = 0, . . . , p.

Definition 2.6. i) A prismatic set P is a sequence {Pp} = {Pp,q0,...,qp
} of

(p + 1)-multi-simplicial sets together with face operators

dk : Pp,q0,...,qp
→ Pp−1,q0,...,q̂k ,...,qp

commuting with dl
j and sl

j (interpreting dk
j = sk

j = id on the right) such that
{Pp} is a �-set.

ii) A prismatic set is called a strong prismatic set if similarly there are given
degeneracy operators

sk : Pp,q0,...,qp
→ Pp+1,q0,...,qk,qk,...,qp

making {Pp} a simplicial set.

Remark 1. We can also give another definition of a prismatic set in terms
of functors of categories as follows:

Let � be the simplicial category with objects [n] = (0, . . . , n) and non-
decreasing functions as morphisms. Furthermore let �in ⊆ � denote the sub-
category allowing only strictly increasing functions as morphisms. In the cat-
egory of small categories Cat consider for each p = 0, 1, 2, . . ., the (p + 1)-
multi-simplicial category

�(p) = � × · · · × � (p + 1 factors).

Now define a functor �op : �op → Cat the category of small categories
by �op([p]) = �(p)op. This gives a simplicial category with the k-th face
map dk : �op(p) → �op(p − 1), k = 0, . . . , p, given by deleting the k-
th factor, and similarly the k-th degeneracy map given by a repetition. The
Grothendieck construction for the lax functor �

op
in = �op|�op

in (cf. Goerss-
Jardine [10, Chap. IX.3]) provides a small category L(�

op
in ) together with a
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projection π : L(�
op
in ) → �

op
in . In fact objects of L(�

op
in ) are just pairs (p, J )

with p ∈ � and J ∈ �(p).
A prismatic set (respectively strong prismatic set) is now a functor: L(�

op
in )

→ Sets (respectively L(�op) → Sets).

Example 2.1 continued. Recall from [8] that an ordered simplicial com-
plex K gives rise to a simplicial set Ks with the same realization. Here sim-
plices are just non-decreasing tuples. That is,

Ks
n =

{
(ai0 , . . . , ain )

∣∣∣∣ (ai0 , . . . , ain ) a simplex of K

(with repetitions) i0 ≤ · · · ≤ in.

}

Similarly the situation in Example 2.1 gives a prismatic set as follows:
Pp(K/L)q0...qp

consists of pairs (σ, τ ), where σ is a (p + 1)-tuple σ =
(a0, . . . , ap) ∈ Ls

p and τ = (b0
0, . . . , b

0
q0

| . . . |bp

0 , . . . , b
p
qp

) is a (p+q+1)-tuple
satisfying the following:

1) The set of distinct vertices gives a simplex in K

2) Each group |bi
0, . . . , b

i
qi
| is non-decreasing.

Then we have face and degeneracy operators di
j , s

i
j deleting and repeating

respectively each element in the groupings, whereas dk, sk deletes and repeates
each grouping, respectively. It is now straight forward to check that this is a
(strong) prismatic set.

Example 2.7. For a given simplicial set S, consider the (p + 1)-multi-
simplicial set EpS = S × · · · × S, (p + 1)-times. di : EpS → Ep−1S

is the projection which deletes the i-th factor. Similarly, the diagonal map
si : EpS → Ep+1S repeats the i-th factor. This is a strong prismatic set.

Prismatic sets have various realizations.

Definition 2.8. First, we have for each p the thin (geometric) realization

(2.9) |Pp| =
⊔

q0,...,qp

�q0...qp × Pp,q0,...,qp
/∼

with equivalence relation “∼” generated by the face and degeneracy maps

εi
j : �q0...qi ...qp → �q0...qi+1...qp and

ηi
j : �q0...qi ...qp → �q0...qi−1...qp ,

respectively. Now {|Pp|} is a �-space hence it gives a fat realization

(2.10) ‖|P.|‖ =
⊔
p≥0

�p × |Pp|/∼
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Here the face operators are πi × di : �q0...qp ×Pp → �q0...q̂i ...qp ×Pp−1 where
πi is the projection πi : �q0...qp → �q0...q̂i ...qp deleting the i-th factor. The
further equivalence relation on ‖|P.|‖ given in (2.10) is thus generated by

(εi t, s, σ ) ∼ (t, πis, diσ ), t ∈ �p−1, s ∈ �q0...qp , σ ∈ Pp,q0,...,qp
.

Remark 2. For strong prismatic sets, the degeneracy operators si are de-
termined by the diagonal map �i : �q0...qp → �q0...qiqi ...qp repeating the i-th
factor. Hence for a strong prismatic set we have a thin realization

|P.| = ||P.||/∼
given by the above and the further relation

(ηi t, s, σ ) ∼ (t, �is, siσ ), t ∈ �p+1, s ∈ �q0,...,qp , σ ∈ Pp,q0,...,qp
.

Example 2.11. For a given simplicial set S and EpS as in Example 2.7 we
have ‖|E.S.|‖ as the fat realization of the simplicial space whose p-th term is
|S.| × · · · × |S.|, (p + 1)-times. This is a contractible space. In fact it is well-
known that in general for any space X the simplicial space EpX = X×· · ·×X,
(p + 1)-times, has a contractible fat realization.

3. Prismatic Triangulation

Let us return to the case of a triangulated fibre bundle |K| → |L|. In this case
the natural map

Pp(K/L)q0,...,qp
→ Kq0+···+qp+p

induces a homeomorphism

|P.(K/L)| ≈−−−−−−−→ |K|

↓
|π ′|

↓
π

|L| −−−−−−−→= |L|
The top horizontal map in this diagram we shall call the prismatic triangulation
homeomorphism

λ : |P.(K/L)| ≈−→ |K|.
It is induced by

(3.1) λ(t, s0, . . . , sp, (σ, τ )) = (t0s
0, . . . , tpsp, τ ) ∈ �p+q × Kp+q,

where (t, s, σ, τ ) ∈ �p × �q0...qp × Pp(K/L)q0...qp
and q = q0 + · · · + qp.
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Note. If σ̊ is an open p-simplex in L then λ provides a natural trivialization
of |K|σ = π−1(|σ̊ |), that is, a homeomorphism

λ : |σ̊ | × |Pp(K/σ)| ≈−→ |K|σ .

We can generalize this construction to any simplicial map:

Example 3.2 (Prismatic triangulation of a simplicial map). Let f : S → S̄

be a simplicial map of simplicial sets and define P.(f ) by

Pp(f )q0,...,qp
= {(σ̄ , σ ) ∈ S̄p × Sq0+···+qp+p | f (σ) = μq0,...,qp

(σ̄ )}
where the corresponding map

μq0,...,qp : �q0+···+qp+p → �p

is given by

{0, . . . , q0| . . . |q0 + . . . + qp−1 + p, . . . , q0 + · · · + qp + p} → {0, . . . , p}.
Explicitly

μq0,...,qp
= ŝq+p ◦ s(q0+...+qp+p−1)...(q0+···+qp−1+p) ◦ · · · ◦ ŝq0 ◦ s(q0−1)...(0),

where the ŝi are left out and

s(q0+...+qi+i−1)...(q0+···+qi−1+i) = sq0+···+qi+i−1 ◦ · · · ◦ sq0+···+qi−1+i ,

i = 0, . . . , p. The boundary maps in the fibre direction

di
j : Pp(f )q0,...,qp

→ Pp(f )q0,...,qi−1,...,qp

are inherited from the face operators defined on Sq+p. Thus

di
j (σ̄ , σ ) = (σ̄ , dq0+···+qi−1+i+j σ ).

Similarly the degeneracy maps si
j on Pp(f )q0,...,qp

si
j : Pp(f )q0,...,qp

→ Pp(f )q0,...,qi+1,...,qp

are inherited from the ones on Sq+p. That is,

si
j (σ̄ , σ ) = (σ̄ , sq0+···+qi−1+i+j σ ).

The boundary maps

di : Pp(f )q0,...,qp
→ Pp−1(f )q0,...,q̂i ,...,qp
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are determined by the boundary maps defined on both Sq+p and S̄p. Thus

di(σ̄ , σ ) = (di σ̄ , dq0+···+qi−1+i ◦ · · · ◦ dq0+···+qi+iσ ),

here the composition of the face operators can be shortly written as

d(q0+···+qi−1+i)...(q0+···+qi+i) = dq0+···+qi−1+i ◦ · · · ◦ dq0+···+qi+i .

Note. P.(f ) is a prismatic set, but in general not a strong one as we shall
see in Remark 4 below.

Theorem 3.3. There is a pullback diagram

‖|P.(f )|‖ λ−−−−−−−→ |S.|

↓
‖f ‖

↓
|f |

‖S̄.‖ ≈−−−−−−−→ |S̄.|
In particular λ is a homotopy equivalence.

Proof. The map λ : �p × �q0...qp × Pp(f )q0...qp
→ �q+p × Sq+p is given

by λ(t, s, σ̄ , σ ) = (t0s
0, . . . , tpsp, σ ). For t ∈ �̊p, u ∈ �̊q+p is uniquely

of the form u = (t0s
0, . . . , tpsp), that is, (u, σ ) = λ(t, s, σ̄ , σ ). In fact λ :

�̊p × �̊q0...qp → �̊p+q is a diffeomorphism exhibiting �̊p+q as the (p + 1)-st
join

λ : �̊q0 ∗ · · · ∗ �̊qp
≈−→ �̊p+q .

(Here the join is made using only the open interval (0,1).) The commutativity
of the diagram follows from the definition of P.(f ) hence λ factors over the
pullback ‖S̄.‖ ×|S̄.| |S.| in the diagram

‖|P.(f )|‖ 	−−−−−−−→ ‖S̄.‖ ×|S̄.| |S.| pr2−−−−−−−−→ |S.|

↓
‖f ‖

↓
pr1

↓
|f |

‖S̄.‖ id−−−−−−−→ ‖S̄.‖ −−−−−−→ |S̄.|
and we want to show that 	 is a homeomorphism.

Elements in the pullback ‖S̄.‖ ×|S̄.| |S.| are represented by pairs ((t, σ̄ ),

(u, σ )) such that f (σ) = μq0,...,qp
(σ̄ ) and t = μq0,...,qp (u), where σ ∈ Sq+p,

σ̄ ∈ S̄q . It follows from the above that over each open p-simplex ‖ ˚̄σ‖ in |S̄.|,
	 provides a homeomorphism onto its image

	 : ‖f ‖−1(‖ ˚̄σ‖) ≈−→ (pr1)
−1(‖ ˚̄σ‖).
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Now 	 is shown to be a homeomorphism by induction over the skeleton of
‖S̄.‖.

Remark 3. For the case of a simplicial complex, notice the similarity of
the above theorem with Example 2.1 cf. the note following (3.1).

Example 3.4 (Prismatic triangulation of a simplicial set). Let S be a sim-
plicial set and S̄ = ∗ the simplicial set with one element in each degree.
Here Pp(f ) = PpS is called the p-th prismatic subdivision of S and for each
t ∈ �̊p the map λp(t, −) : |PpS.| → |S.| is a homeomorphism. In this case,

Theorem 3.3 gives a homeomorphism 	 : ‖|P.S.|‖ ≈−→ ‖∗‖ × |S.|, where
‖∗‖ = ⊔

n �n/∂�n. In particular λ : ‖|P.S.|‖ → |S.| is a homotopy equival-
ence. We shall call P.S the prismatic triangulation of S.

For later use, let us give the explicit construction of the p + 1-prismatic set
P.S and its realization:

PpSq0,...,qp
= Sq0+···+qp+p.

The face operators

di
j : PpSq0,...,qi ,...,qp

= Sq+p → PpSq0,...,qi−1,...,qp
= Sq+p−1

are defined by
di
j := dq0+···+qi−1+i+j ,

j = 0, . . . , qi . Similarly, the degeneracy operators

si
j : PpSq0,...,qi ,...,qp

= Sq+p → PpSq0,...,qi+1,...,qi
= Sq+p+1

can be defined by
si
j := sq0+···+qi−1+i+j ,

j = 0, . . . , qi . The face maps

d(i) : PpSq0,...,qp
→ Pp−1Sq0,...,q̂i ,...,qp

are the operators corresponding to the inclusions

�q0+···+q̂i+···+qp+p−1 → �q0+···+···+qp+p

deleting the qi + 1 basis vectors with indices q0 + · · · + qi−1 + i, . . . , q0 +
· · · + qi + i.

Remark 4. In terms of category theory, the prismatic triangulation can be
considered as induced by the functor P : L(�

op
in ) → �op defined by

P(p, ([q0] × · · · × [qp])) = (0, . . . , q0|q0 + 1, . . . ,

q0 + q1 + 1| . . . |q0 + · · · + q0 + · · · + qp−1 + p, . . . , q + p),
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that is, it takes the product of ordinals to an ordinal in the simplicial category
�. Note that P.S is not a strong prismatic set since the morphism repeating
one of the [qi]’s above would not map to a non-decreasing sequence by the
functor defined above.

Now we turn to the realizations. For the sequences of spaces {|P.S.|}, we
obtain the fat realization:

‖|P.S.|‖ =
⊔
p≥0

�p × |PpS.|/∼,

where |PpS.| =
⊔

�q0...qp × Sq0+···+qp+p/∼
and the face operators |di | : |PpS.| → |Pp−1S.| are given by |di | = πi × di

with πi : �q0...qp → �q0...q̂i ...qp beeing the natural projection.
Note that λp : �p × |PpS.| → |S.| satisfies

λp ◦ (εi × id) = λp−1 ◦ (id ×di).

Thus λp induces the map λ on the fat realization.

Let ‖|P.S.|‖p respectively ‖|S.|‖p denote the sub-complexes generated by
�p × |PpS.| respectively �p × |S.|. Then the restriction of 	 to ‖|P.S.|‖p is
given by

	p(t, s, σ ) = (t, λp(t, s, σ )).

Example 3.5. For S = �2 via the map λp : ‖|P.S.|‖p → |S.|, the image
of the p-th prismatic subdivision {t} × |PpS.| is shown in the figures:

(0) (1) (0) (1)

(2) (2)

p = 1 For p > 1

Here the “division points”: 1 ≥ x1 ≥ · · · ≥ xp ≥ 0 are given by the interior
coordinates

x1 = 1 − t0, x2 = 1 − t0 − t1, . . . , xp−1 = 1 − t0 − · · · tp−1, xp = tp
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for a point with barycentric coordinates t = (t0, . . . , tp).
For p = 1 and S = �3 the image is

(0)

(1)

(2)

(3)

Corollary 3.6. The map 	p induce a homeomorphism

	 : ‖|P.S.|‖ → ‖|S.|‖ ≈ ‖∗‖ × |S.|.

Corollary 3.7. The composite map proj2 ◦	 = λ

‖|P.S.|‖ → ‖|S.|‖ → |S.|
is a homotopy equivalence.

Remark 5. We can calculate the homology of the geometric realization of
a prismatic set as follows:

A prismatic set P has a double complex (Cp,n(P ), ∂V , ∂H ). Here

Cp,n(P ) =
⊕

q0+···+qp=n

Cp,q0,...,qp
(P )

is the associated chain complex Cp(P ) generated by Pp,q0,...,qp
. The vertical

boundary map is defined by using boundary maps in the fibre direction

∂i
F : Cp,q0,...,qp

(P ) → Cp,q0,...,qi−1,...,qp
(P )

given by ∂i
F = ∑

(−1)j di
j , where, if qi = 0 then ∂i

F = 0. The total vertical
boundary map is then

∂V = ∂0
F + (−1)q0+1∂1

F + · · · + (−1)q0+···+qp−1+p∂p
F .

There is also a horizontal boundary map

∂H = ∂0 + (−1)q0+1∂1 + · · · + (−1)q0+···+qp−1+p∂p,
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where
∂k =

{
0 : if qk > 0

dk : if qk = 0,

so that ∂ = ∂V + ∂H is a boundary map in the total complex C∗(P ) which is
the cellular chain complex for the geometric realization. Hence it calculates
the homology. In the case of P.(f ) for f : S → S̄ a simplicial map, the double
complex gives rise to a spectral sequence which for a triangulated fibre bundle
is the usual Leray-Serre spectral sequence.

Remark 6. For each p and each t ∈ �̊p, λp(t)−1 : |S.| → {t} × |PpS.|
induces a map of cellular chain complexes

aw : C∗(S) → Cp,∗(P )

given by

aw(x) =
∑

q0+···+qp=n

sq0+···+qp−1+p−1 ◦ · · · ◦ sq0(x)(q0,...,qp),

where x ∈ Sn. This is related to the Alexander-Whitney map C∗(S) →
C∗(S)⊗(p+1).

4. Prismatic Sets and Stars of Simplicial Complexes

For a simplicial set S and the prismatic triangulation P.S there is another closely
related prismatic set P̄.S which, as we shall see for a simplicial complex, is
the nerve of the covering by stars of vertices considered as a prismatic set.

Definition 4.1. For S a simplicial set let P̄.S be the prismatic set given
by

P̄pSq0,...,qp
:= Sq0+···+qp+2p+1,

where face and degeneracy operators on P̄pSq0,...,qp
are inherited from the ones

of Sq+2p+1 as follows:
Let q = q0 + · · · + qp, the face operators

di
j : Sq+2p+1 = P̄pSq0,...,qp

→ Sq+2p = P̄pSq0,...,qi−1,...,qp

are defined by

di
j := dq0+···+qi−1+2i+j , j = 0, . . . , qi but j �= qi + 1, i = 0, . . . , p.

So P̄pSq0,...,qp
has only q + p + 1 face operators, i.e., we skip the following

p + 1 face operators

{dq0+1, dq0+q1+3, . . . , dq+2p+1}.
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Similarly the degeneracy operators

si
j : Sq+2p+1 → Sq+2p+2

can be defined by

si
j := sq0+...+qi−1+2i+j , j = 0, . . . , qi, but j �= qi + 1, i = 0, . . . , p.

Furthermore the face operators

d(i) : Sq+2p+1 = P̄pSq0,...,qp
→ Sq+2p−qi−1 = P̄p−1Sq0,...,q̂i ,...,qp

corresponds to the inclusions

�q+2p−qi−1 → �q+2p+1

deleting the qi + 2 basis vectors with indices q0 + · · · + qi−1 + 2i, . . . , q0 +
· · · + qi + 2i + 1. That is,

d(i) = dq0+···+qi−1+2i ◦ · · · ◦ dq0+···+qi+2i+1, i = 0, . . . , p.

Remark. As P.S, P̄.S is a prismatic set but in general not a strong prismatic
set.

Realization of P̄.S. The equivalence relation on

‖|P̄.S.|‖ =
⊔
p≥0

�p × �q0...qp × P̄pSq0,...,qp
/∼

is given as described for (2.10).

The relations of P̄.S to S and P.S are as follows:

Proposition 4.2. Let i : ‖S.‖ ↪→ ‖|P̄.S.|‖ be an inclusion defined for
(t, x) ∈ �p × Sp by

i(t, x) = (t, 1, s0 ◦ · · · ◦ spx) ∈ �p × (�0)p+1 × S2p+1 ⊆ �p × |P̄pS.|,
and let r : ‖|P̄.S.|‖ → ‖S.‖ be the retraction defined for (t, s, y) ∈ �p ×
�q0...qp × Sq+2p+1

r(t, s, y) = (t, d(0)...(q0) ◦ d̂q0+1 ◦ · · · ◦ d(q0+···+qp−1+2p)...(q+2p) ◦ d̂q+2p+1y),

where the d̂i are left out and d(q0+···+qi−1+2i)...(q0+···+qi+2i) = dq0+···+qi−1+2i ◦
· · · ◦ dq0+···+qi+2i , i = 0, . . . , p.

(1) i is a deformation retract with the retraction r .
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(2) There is a commutative diagram of homotopy equivalences

‖S.‖ i ‖|P̄.S.|‖

‖|

‖|

P.S.|‖

|‖

f

	

S.

where f : �p × �q0...qp × Sq+2p+1 → �p × �q0...qp × Sq+p takes
(t, s0, . . . , sp, x) to (t, s0, . . . , sp, dq0+1 ◦ dq0+q1+3 ◦ · · · ◦ dq+2p+1x),
x ∈ Sq+2p+1.

Here 	 is a homeomorphism by Corollary 3.6 and 	 ◦ f ◦ i : ‖S.‖ →
‖|S.|‖ ≈ ‖∗‖ × |S.| is given by

	 ◦ f ◦ i(t, x) = 	 ◦ f (t, 1, s0 ◦ · · · ◦ spx)

= 	(t, 1, d1 ◦ d3 ◦ · · · ◦ d2p+1 ◦ s0 ◦ · · · ◦ spx)

= (t, λ(t, 1, d1 ◦ d3 ◦ · · · ◦ d2p+1 ◦ s0 ◦ · · · ◦ spx))

= (t, t, d1 ◦ d3 ◦ · · · ◦ d2p+1 ◦ s0 ◦ · · · ◦ spx)

= (t, t, x)

which is clearly a homotopy equivalence. See [1] for further details of the
proof.

For an ordered simplicial complex K , there is another prismatic complex
defined using the stars of simplices. Classically, the open star St(σ )of a simplex
σ in the realization |K| is the union of all open simplices whose face is σ . The
star complex is the union of closures⋃

σ simplex

|σ | × St(σ ) =
⋃
(σ,τ )

|σ | × |τ | ⊆ |K| × |K|,

where (σ, τ ) runs through pairs of simplices which are both faces of another
simplex of K . This is a sub-complex of |K| × |K|.

We describe the associated simplicial subset St(Ks) ⊆ (Ks × Ks). as
follows:

Let (σ, τ ) ∈ K ×K , where σ = (ai0 , . . . , aip ), τ = (bj0 , . . . , bjr
) such that

there is another simplex σ ′ = σ ∪ τ = (ck0 , . . . , ckn
). By allowing repetitions
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and taking σ ′ ∈ Ks , we can assume n = p + r + 1 so that either cks
= ait or

cks
= bju

, where t = 0, . . . , p, u = 0, . . . , r . Also we can assume ckn
= aip ,

and if ait = bju
then bju

comes before ait . In other words (σ, τ ) is of the form

σ = d(ν1)...(νr+1)σ
′, τ = d(ξ1)...(ξp+1)σ

′,

where 0 ≤ ν1 < · · · < νr+1 < n and 0 ≤ ξ1 < · · · < ξp+1 ≤ n and ξk �= νl ,
∀k, l. Therefore replacing (σ, τ ) by (s(νr+1)...(ν1) ◦ d(ν1)...(νr+1)σ

′, s(ξp+1)...(ξ1) ◦
d(ξ1)...(ξp+1)σ

′) in the product simplicial set (Ks×Ks)., we arrive at the following
definition for a general simplicial set S.

Definition 4.3. Let (S × S). denote the product simplicial set with di-
agonal face and degeneracy operators. Let St(S) be the simplicial subset of
(S × S). containing all simplices in degree n = p + r + 1 = deg(σ ′) of the
form

(s(νr+1)...(ν1) ◦ d(ν1)...(νr+1)σ
′, s(ξp+1)...(ξ1) ◦ d(ξ1)...(ξp+1)σ

′),

where 0 ≤ ν1 < · · · < νr+1 < n and 0 ≤ ξ1 < · · · < ξp+1 ≤ n with ξk �= νl ,
∀k, l as above. Here s(νr+1)...(ν1) = sνr+1 ◦ · · · ◦ sν1 , d(ν1)...(νr+1) = dν1 ◦ · · · ◦ dνr+1 ,
s(ξp+1)...(ξ1) = sξp+1 ◦ · · · ◦ sξ1 and d(ξ1)...(ξp+1) = dξ1 ◦ · · · ◦ dξp+1 .

Remark 7. The projection on the first factor π1 : S × S → S gives a
simplicial map π1 : St(S). → S. Hence, we obtain a prismatic set P. St(S). =
P.(π1) as in Example 3.2. Here for r = q0 +· · ·+qp +p and σ = s(νr+1)...(ν1) ◦
d(ν1)...(νr+1)σ

′ = μq0,...,qp
σ̄ , τ = s(ξp+1)...(ξ1) ◦ d(ξ1)...(ξp+1)σ

′, we have

Pp St(S)q0,...,qp
= {(σ̄ , σ, τ ) ∈ Sp × St(S)q+p

⊂ Sp × (S × S)q+p | σ, τ given above}.
That is, π1(σ, τ ) = μq0,...,qp

(σ̄ ), where σ̄ = d(ν1)...(νr+1)σ
′ ∈ Sp. So the ele-

ments in Pp St(S)q0,...,qp
are of the form (σ̄ , μq0,...,qp

σ̄ , τ ), where τ ∈ Sq+p.
Explicitly

μq0,...,qp
= ŝq+p ◦ s(q+p−1)...(q0+···+qp−1+p)

. . . ŝq0+q1+1s(q0+q1)...(q0+1)ŝq0s(q0−1)...(0).

5. Comparison of the two Star Prismatic Sets

We shall now prove that this is closely related to the prismatic set P̄.S defined
in the previous section.

Theorem 5.1. (1) There is a natural (surjective) map

p̄ : P̄.S → P. St(S).
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(2) If S = Ks , where K is a simplicial complex, then p̄ is an isomorphism.

Proof. (1) Take an element γ ∈ P̄pSq0,...,qp
= Sq0+···+qp+2p+1. Then γ

and q0, . . . , qp determine an element p̄(γ ) in Pp St(S)q0,...,qp
together with a

(p+1, q+p+1)-partition (ξ1, . . . , ξp, ξp+1, ν1, . . . , νq+p+1) of n = p+r+1,
where r = q0 + . . . + qp + p. Here

ξ1 = q0 + 1

ξ2 = q0 + q1 + 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξp = q0 + · · · + qp−1 + 2p − 1

ξp+1 = r + p + 1

and the ν’s correspond to the complement, that is, ν1, . . . , νq0+1, νq0+2, . . . ,

νq0+q1+2, . . . , νq0+···+qp−1+p+1, . . . , νr+1, are 0, . . . , q0, q0 + 2, . . . , q0 + q1 +
2, q0 + q1 + 4, . . . , q0 + . . .+ qp−2 + 2p − 2, . . . , q0 + · · ·+ qp−1 + 2p, q0 +
· · · + qp−1 + 2p, . . . , r + p, respectively. Then, in terms of Remark 7 at the
end of Section 4, we define

p̄(γ ) = (σ̄ , σ, τ ) ∈ Pp St(S)q0,...,qp
⊆ Sp × Sq+p × Sq+p

where

σ̄ = d(0)...(q0) ◦ d̂q0+1 ◦ · · · ◦ d(q0+···+qp−1+2p)...(q0+···+qp+2p) ◦ d̂q+2p+1(γ )

= d(ν1)...(νq+p+1)(γ ) = d(ν1)...(νr+1)(γ )

τ = dq0+1 ◦ dq0+q1+3 ◦ · · · ◦ dq0+···+qp+2p+1(γ ) = d(ξ1)...(ξp+1)(γ )

σ = ŝq0+···+qp+p ◦ s(q0+···+qp+p−1)...(q0+···+qp−1+p) ◦ ŝq0+···+qp−1+p−1 ◦
· · · ◦ ŝq0+q1+1 ◦ s(q0+q1)...(q0+1) ◦ ŝq0 ◦ s(q0−1)...(0)(σ̄ )

= s(q+p−1)...(q+p−qp) ◦ · · · ◦ s(q0+q1)...(q0+1) ◦ s(q0−1)...(0)(σ̄ )

= μq0,...,qp
(σ̄ ).

Using the above expression for σ̄ in terms of d’s and γ , we get

σ = s(q+p−1)...(q+p−qp) ◦ · · · ◦ s(q0+q1)...(q0+1) ◦ s(q0−1)...(0) ◦ d(ν1)...(νq+p+1)(γ ).

Now by using Definition 4.3 and Remark 7 we can choose γ as σ ′. It follows
that (σ, τ ) ∈ St(S)q+p and hence p̄(σ ′) = (σ̄ , σ, τ ) ∈ Pp St(S)q0,...,qp

.
Now p̄ is a surjective map: Suppose (σ̄ , σ, τ ) ∈ Pp St(S)q0,...,qp

and we
shall find γ ∈ P̄pSq0,...,qp

such that p̄(γ ) = (σ̄ , σ, τ ). Here (σ̄ , σ, τ ) ∈
Pp St(S)q0,...,qp

⊂ Sp × (S × S)q+p is such that

π1(σ, τ ) ∈ Im{μq0,...,qp
: Sp → Sq+p}
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where σ̄ ∈ Sp. Again use the partition (p + 1, q + p + 1) as above and again
put γ = σ ′ as in Remark 7. Hence for every (σ̄ , σ, τ ) ∈ Pp St(S)q0,...,qp

, there
exist γ such that p̄(γ ) = (σ̄ , σ, τ ) ∈ Pp St(S)q0,...,qp

.
(2) If S = Ks , K simplicial complex then

Pp St(Ks)q0,...,qp
= {

(σ̄ , σ, τ ) ∈ Ks
p × St(Ks)q+p ⊂ Ks

p × (Ks × Ks)q+p

| π1(σ, τ ) ∈ Im{μq0,...,qp
: Ks

p → Ks
q+p}}.

The map

μq0,...,qp
: Ks

p → Ks
q+p takes (i0, . . . , ip) to (i0, . . . , i0︸ ︷︷ ︸

(q0+1)-times

, . . . , ip, . . . , ip︸ ︷︷ ︸
(qp+1)-times

).

Then
σ = (ai0 , . . . , ai0 , . . . , aip , . . . , aip ) ∈ Ks

q+p,

τ = (bj0 , . . . , bjq0
, . . . , bjq0+···+qp−1+p

, . . . , bjq+p
) ∈ Ks

q+p.

By the definition P̄p(Ks)q0,...,qp
= Pp(Ks)q0+1,...,qp+1. Then γ ∈ Ks

q+2p+1 is
uniquely determined by σ and τ .

Explicitly the inverse map p̄−1 : Pp St(Ks)q0,...,qp
→ P̄pKs

q0,...,qp
is defined

by p̄−1(σ̄ , σ, τ ) = γ , where

σ̄ = (ai0 , . . . , aip ),

τ = (bj0 , . . . , bjq+p
) and

γ = (ck0 , . . . , ckq0+1 | . . . |ckq0+···+qp−1+2p
, . . . , ckq+2p+1)

such that for 0 ≤ s ≤ q + 2p + 1

cks
=

⎧⎨
⎩

ail−1 : bjs
≤ ail−1

bjs
: ail−1 < bjs

< ail

ail : ail ≤ bjs
,

l = 1, . . . , p. Hence γ ∈ P̄pKs
q0,...,qp

exists and is uniquely determined by
(σ, τ ) ∈ St(Ks)q+p.

Therefore p̄ : P̄.K
s → P. St(Ks). is an isomorphism.

Remark. Note that the above proof of injectivity does not work for general
simplicial sets since in general σ ′ in Definition 4.3 is not uniquely defined by
the two components in (S × S).

Remark. Notice that PKs is different from the one given in Example 2.1
continued. It is not a strong prismatic set.
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6. The Classifying Space and Lattice Gauge Theory

For the definition of a classifying map we need a prismatic version of the
standard construction of the classifying space. We recall from Segal [22] the
usual model of this.

Let G be a Lie group or more generally a topological group with 1 as
the non-degenerate base point such that it has the same homotopy type as
a CW complex and let NG be the nerve of G. Let Ḡ be the category with
Ob(Ḡ) = G and Mor(Ḡ) = G × G, source(g0, g1) = g1, target(g0, g1) = g0

and the composition (g0, g1) ◦ (g1, g2) = (g0, g2) and let NḠ be the nerve
of the category Ḡ. Furthermore, the map γ : NḠ → NG is the nerve of the
functor γ : Ḡ → G given by γ (g0, g1) = g0g1

−1.
These two nerves are two simplicial spaces given by

NG(p) = G × · · · × G (p-times)

NḠ(p) = G × · · · × G (p + 1-times).

By using the face and degeneracy operators on these simplicial spaces one has
their realizations. The usual classifying space BG = EG/G is constructed as
a simplicial space EGp = G × · · · × G, (p + 1)-times and BGp = (G ×
· · · × G)/G. We can identify EG = ‖NḠ‖ = ⊔

p≥0 �p × Gp+1/∼ and
BG = ‖NG‖.

In order to make this simplicial space discrete we can replace G by the
singular simplicial set of continuous maps SqG = Map(�q, G) and E.S.G

as in Example 2.7 is a prismatic set. However we shall need another model
constructed as follows:

Definition 6.1. A continuous map a ∈ Map(�p×�q0...qp , Gp+1) is called
restricted if it has the form

a(t, s0, . . . , sp) = (a0(t, s
0), a1(t, s

0, s1), . . . , ap(t, s0, . . . , sp)),

where (t, s0, . . . , sp) ∈ �p × �q0...qp and if aj (ε
i t, s0, . . . , sj ) is independent

of si for all i < j . Now we define

PpEGq0,...,qp
= {a : �p × �q0...qp → Gp+1|a is restricted}.

S.G acts on this prismatic set diagonally (on the right). By the definition
P.BG = P.EG/S.G, that is,

PpBGq0,...,qp
= PpEGq0,...,qp

/SpG.
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Proposition 6.2. The evaluation maps give horizontal homotopy equival-
ences in the diagram

‖|P.EG.|‖ ev−−−−−−−→ EG

↓
‖|γ |‖

↓
γ

‖|P.BG.|‖ ev−−−−−−−→ EG/G

Furthermore the top map is equivariant with respect to the homomorphism
ev : |S.G| → G.

Proof. First notice that the evaluation map ev : |S.G| → G is a homotopy
equivalence. Also the equivariance is obvious by the commutative diagram

‖|P.EG.|‖ × |S.G| ev × ev−−−−−−−−−−→ EG × G

↓
.

↓
.

‖|P.EG.|‖ ev × ev−−−−−−−−−−→ EG

where the vertical maps are given by quotients and the actions of |S.G| and
G are free. Since ‖|P.EG.|‖ and EG are both contractible, the evaluation map
induces a homotopy equivalence on the quotient. (See May [15, Chapter 3].)

7. Lattice Gauge Theory, Parallel Transport Function

In lattice gauge theory in the sense of Phillips and Stone [19] they construct for
a given Lie group G and a simplicial complex K a G-bundle with connection
on |K| associated to a set of G-valued continuous functions defined over the
faces of a simplex. These they call “parallel transport functions” since they
are determined by parallel transport for the connection. In this section we
shall introduce similar “compatible transition functions” for K replaced by a
simplicial set S and in the following section we shall use these to construct
a classifying map on the star complex P̄.S. First we consider G-bundles over
simplicial sets.

Definition 7.1. A bundle over |S.| is a sequence of bundles over �p × σ

for all p, where σ ∈ Sp and with commutative diagrams;

Fdj σ
ε̄j−−−−−−−→ Fσ

↓ ↓
�p−1 × djσ

εj−−−−−−−→ �p × σ
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and
Fsj σ

η̄j−−−−−−−→ Fσ

↓ ↓
�p+1 × sjσ

ηj−−−−−−−→ �p × σ

with the compatibility conditions:

ε̄j ε̄i =
{

ε̄i ε̄j−1 : i < j

ε̄i+1ε̄j : i ≥ j ,
η̄j η̄i =

{
η̄i η̄j+1 : i ≤ j

η̄i−1η̄j : i > j ,

and

η̄j ε̄i =

⎧⎪⎨
⎪⎩

ε̄i η̄j−1 : i < j

1 : i = j , i = j + 1

ε̄i−1η̄j : i > j + 1.

Given a G-bundle F → |S.|, G a Lie group, we can choose a trivialization
ϕσ : Fσ → �p × σ × G for each non-degenerate σ ∈ Sp since �p is
contractible. If σ is degenerate, that is, there exists τ such that σ = siτ , then
the trivialization of σ is defined as pullback of the trivialization of τ , that is,
ϕσ = ηi∗(ϕτ ).

Definition 7.2. A set of trivializations is called admissible, in case ϕσ for
σ = siτ is given by ϕσ = ηi∗(ϕτ ).

Lemma 7.3. Admissible trivializations always exist.

Now, let us define the transition functions for a simplex σ ∈ Sp:

Definition 7.4. Given a bundle F → |S.| and a set of trivializations,
we get for each face τ of say dim τ = q < p in σ , a transition function
vσ,τ : �q → G as follows: The bundle map � given by the diagram

�q × (d(ip)...(i0)σ ) × G �−−−−−−−→ �p × (σ ) × G

↓ ↓
�q × d(ip)...(i0)σ

εi0 ...ip−−−−−−−−−→ �p × σ

where d(ip)...(i0)σ = τ , � = ϕσ ◦ ε̄i0...ip ◦ ϕ−1
d(ip)...(i0)σ

, ε̄i0...ip = ε̄i0 ◦ · · · ◦ ε̄ip and

εi0...ip = εi0 ◦ · · · ◦ εip , determines vσ,τ by the formula

�(t, g) = (εi0 ◦ · · · ◦ εip (t), vσ,τ (t)g), t ∈ �q, g ∈ G.
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This defines the set of transition functions {vσ,τ | σ ∈ Sp and τ is a face of σ }
for the bundle over |S.|.

Remark. The transition functions are generalized lattice gauge fields. Clas-
sically lattice gauge fields are defined only on 1-skeletons but one can extend
them to p − 1 simplices for all p which gives rise to transition functions on
�p, as above.

We now list a number of propositions stating their properties. The proofs
are straight forward. For details see Akyar [1].

Proposition 7.5. Given a bundle on a simplicial set and admissible trivi-
alizations, the transition function vσ,τ , where τ is a face of σ , satisfies;

(i) σ is non-degenerate: if γ = djσ and τ = diγ then

vσ,τ = (vσ,γ ◦ εi).vγ,τ .

This is called the cocycle condition.

(ii) σ is degenerate: if σ = sjσ
′ and τ = diσ then when i < j for τ = sj−1τ

′
one gets τ ′ = diσ

′ and when i > j +1 for τ = sj τ
′ one gets τ ′ = di−1σ

′.
For the other cases, i = j or i = j + 1, τ = σ ′. Then the transition
functions satisfy:

vσ,τ =

⎧⎪⎨
⎪⎩

vσ ′,τ ′ ◦ ηj−1 : i < j

1 : i = j , i = j + 1

vσ ′,τ ′ ◦ ηj : i > j + 1.

(iii) If τ is a composition of face operators of σ , e.g., τ = d̃p−(i−1)σ , i =
1, . . . , p, where d̃p−(i−1) = di ◦ · · · ◦ dp then

vσ,τ = (vσ,d̃1σ ◦ (εi)p−i ).(vd̃1σ,d̃2σ ◦ (εi)p−i−1)

. . . (vd̃p−(i+1)σ,d̃p−i σ ◦ εi).vd̃p−i σ,τ .

Proposition 7.6. Assume that we have a bundle over |S.|. Then

(1) There exist admissible trivializations such that the transition functions
are given by

vσ,diσ = 1 if i < p.

(2) For τ = d̃p−(i−1)σ , i = 1, . . . , p, we get vσ,τ as product of some
transition functions:

vσ,τ = (vσ ◦ (εi)p−i ).(vd̃1σ ◦ (εi)p−i−1).(vd̃2σ ◦ (εi)p−i−2)

. . . (vd̃p−(i+1)σ ◦ (εi)1).(vd̃p−i σ ).
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(3) The transition functions vσ,τ satisfy the compatibility conditions:

vσ ◦ εi =
{

vdiσ : i < p − 1

vdp−1σ .v−1
dpσ : i = p − 1

(4) For a degenerate σ , we have

vsj σ =
⎧⎨
⎩

1 : i < j

1 : i = j , i = j + 1

vσ ◦ ηj : i > j + 1.

Proposition 7.7. Given a bundle, one can find admissible trivializations
such that the transition functions are determined by functions vσ : �p−1 → G

for σ ∈ Sp non-degenerate.

Proposition 7.8. Suppose given a set of transition functions

vσ : �p−1 → G

for σ ∈ Sp for all p, satisfying the compatibility conditions

vσ ◦ εi =
{

vdiσ : i < p − 1

vdp−1σ .v−1
dpσ : i = p − 1

and
vsj σ = vσ ◦ ηj .

Then one can define for each σ ∈ Sp and each lower dimensional face τ of σ ,
a function vσ,τ such that (i) and (ii) in Proposition 7.5 hold and such that

vσ,τ =
{

vσ : i = p

1 : i < p.

Proposition 7.9. Given a set of transition functions vσ,τ satisfying (i) and
(ii) in Proposition 7.5, there is a bundle F over |S.| and trivializations with
transition functions vσ,τ .

Corollary 7.10. Given a set of functions vσ satisfying the compatibility
conditions in Proposition 7.6, one can construct a bundle F over |S.| and the
trivializations with the transition functions vσ,dpσ = vσ and vσ,diσ = 1 when
i < p and vsiσ = vσ ◦ ηi for a degenerate σ .

Definition 7.11. A set of functions {vσ }σ∈S as in Proposition 7.8 are
called a set of “compatible transition functions”.
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We end this section by comparing these compatible transition functions with
the “parallel transport functions” (p.t.f.) of Phillips and Stone [19]. For S = Ks

a set of such functions consist of a set of maps, Vσ : cσ → G for each r-simplex
σ of K , r ≥ 1, cσ is the (r −1)-cube given by 0 ≤ sa1 ≤ 1, . . . , 0 ≤ sar−1 ≤ 1,
where σ = 〈a0, . . . , ar〉 ∈ K with the compatibility conditions

1. Cocycle condition

Vσ (sa1 , . . . , sap
= 1, . . . , sar−1)

= V〈a0,...,ap〉(sa1 , . . . , sap−1).V〈ap,...,ar 〉(sap+1 , . . . , sar−1).

2. Compatibility condition

Vσ (sa1 , . . . , sap
= 0, . . . , sar−1)

= V〈a0,...,âp,...,ar−1〉(sa1 , . . . , ŝap
, . . . , sar−1).

Now, suppose we have compatible transition functions {vσ } for a principal
G-bundle E → |K| with triangulated base. Then for σ = 〈a0, . . . , ar〉, the
p.t.f. Vσ : cσ → G is given by the parallel transport Ea0 → Ear

along paths
determined as follows:

Let σ = 〈a0, . . . , ar〉 ∈ Ks and s = (sa0 , . . . , sar−1) ∈ cσ .
We pick r − 1 points as P1, . . . , Pr−1 so that P1 is on the line segment from

a0 to a1, that is,

P1 = (1 − sa1)a0 + sa1a1 = ((1 − sa1 , sa1), 〈a0, a1〉) ∈ |K|.

Similarly, P2 is on the line segment from P1 to a2, P2 = (1 − sa2)P1 + sa2a2.
Then

P2 = ((1 − sa2)(1 − sa1), (1 − sa2)sa1 , sa2 , 〈a0, a1, a2〉).

By continuing in the same way, we get

Pr−1 = (1 − sar−1)Pr−2 + sar−1ar−1.

Let α be the piecewise linear path from a0 through P1, . . . , Pr−1 to ar . In
other words, α is determined uniquely up to parametrization by r −1 numbers
sa1 , . . . , sar−1 . For Pr−1 = (t, drσ ) ∈ �r−1 × Kr−1, drσ = 〈a0, . . . , ar−1〉, the
element

Vσ (s1, . . . , sr−1) = vσ (t) ∈ G

is to be interpreted as the parallel transport along α.
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a0 ar−2

ar−1

ar

Pr−1

α

8. The Classifying Map

The construction of the Classifying Map. For a given set of compatible
transition functions (c.t.f.) {vσ } satisfying Proposition 7.8 we have seen in
Proposition 7.9 that there is an associated G-bundle F over |S.|. Recall that the
composite map λ ◦ f : ‖|P̄.S.|‖ → ‖|S.|‖ → |S.| is a homotopy equivalence.
In this section, we construct a classifying map for the bundle (λ ◦ f )∗F over
‖|P̄.S.|‖.

Theorem 8.1.
(1) For given c.t.f.’s {vσ }, there is a canonical prismatic map m : P̄.S →

P.BG.

(2) The induced map of geometric realizations

ev ◦‖|m|‖ = m̄ : ‖|P̄.S.|‖ ‖|m|‖−−−−→ ‖|P.BG.|‖ ev−−→ BG

is a classifying map for the G-bundle (λ ◦ f )∗F over ‖|P̄.S.|‖.

Proof. (1) The map m : P̄.S → P.BG is defined as

m(σ) = [(a0, a1, . . . , ap)]

where σ ∈ P̄pSq0...qp
= Sq+2p+1, q = q0 +· · ·+qp and ai : �p ×�q0...qi → G

are given in (8.2) below. First some notation. In the following, we use for
convenience the interior coordinates (x1, . . . , xp) of the standard simplex with
barycentric coordinates (t0, . . . , tp) as defined in Example 3.5. Similarly the
interior coordinates of �qi are si = (si

1, . . . , s
i
qi
). In these the map 	 from

Section 3 is induced by the maps λp : �p × �q0+1...qp+1 → �q+2p+1 given by

λp(x, s0, 0, . . . , 0, sp, 0)

= (
s0

1 (1 − x1) + x1, . . . , s
0
q0

(1 − x1) + x1, x1, x1, s
1
1(x1 − x2) + x2,

. . . , s1
q1

(x1 − x2) + x2, x2, x2, . . . , s
p−1
1 (xp−1 − xp) + xp,

. . . , sp−1
qp−1

(xp−1 − xp) + xp, xp, xp, s
p

1 xp, . . . , sp
qp

xp, 0
)
.



lattice gauge field theory 51

For convenience, we drop p in λp(x, s) and write λ(x, s). Next, let ρ(i) :
�q+2p+1 → �q0+···+qi−1+2i−1 be the degeneracy map for i = 1, . . . , p defined
by

ρ(i) := ηq0+···+qi−1+2i−1 ◦ · · · ◦ ηq+2p

deleting the last qi + · · · + qp + 2(p − i + 1) coordinates. For example,

ρ(p)λ(x, s)

= (
s0

1 (1 − x1) + x1, . . . , s
0
q0

(1 − x1) + x1, x1, x1, s
1
1(x1 − x2) + x2,

. . . , s1
q1

(x1 − x2) + x2, x2, x2, . . . , s
p−1
1 (xp−1 − xp) + xp,

. . . , sp−1
qp−1

(xp−1 − xp) + xp, xp

)
,

where ρ(p) := ηq−qp+2p−1 ◦ · · · ◦ ηq+2p is deleting the last qp + 2 coordinates.
With this notation, the maps ai : �p × �q0...qi → G defining the classifying
map m(σ) are given by

(8.2)

ap(x, s0, 0, . . . , sp, 0) = 1

ap−1(x, s0, 0, . . . , sp−1, 0) = vσ,d(p)σ (ρ(p)(λ(x, s)))−1,

ap−2(x, s0, 0, . . . , sp−2, 0) = vσ,d(p−1)(p)σ (ρ(p−1)(λ(x, s)))−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1(x, s0, 0, s1, 0) = vσ,d(2)...(p)σ (ρ(2)(λ(x, s)))−1

a0(x, s0, 0) = vσ,d(1)...(p)σ (ρ(1)(λ(x, s)))−1.

Then m(σ) satisfy Definition 6.1 and it is straight forward that m is a prismatic
map.

(2) For given c.t.f.’s vσ , we now have the map of realizations ‖|m|‖ :
‖|P̄.S.|‖ → ‖|P.BG.|‖ given by

‖|m|‖(x, s, σ ) = (x, s, [(a0, . . . , ap)]).

The classifying map m̄ = ev ◦‖|m|‖ and the associated bundle map are
given as follows:

We have a bundle F on |S.| by Proposition 7.9 and for each p we have that
λp : �p × |P̄pS.| → |S.| is an epimorphism. Hence by pulling back we get
bundles F̄p → �p × |P̄pS.| inducing a bundle map

F̄ −−−−−−→ F

↓ ↓
‖|P̄.S.|‖ −−−−−−→ |S.|
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The transition functions are now used to define m̃ similarly to m̄ = ev ◦‖|m|‖
in the commutative diagram

(8.3) ‖|P̄.S.|‖

F̄ m̃ EG

γ

m̄ BG

‖|m|‖ ev

‖| .|‖P.BG

For the construction of m̃ take (x, s, σ ), x ∈ �p, s ∈ �q0...qp , σ ∈ Sq+2p+1.
Here ev denotes the evaluation map as in Proposition 6.2. Then the fibre of F̄

over (x, s, σ ) ∈ �p × |P̄pS.| is the fibre of F at (λ(x, s0, 0, . . . , sp, 0), σ ).
Using the trivialization ϕσ : Fσ → �q+2p+1 × (σ ) × G and the projection on
the last factor, we get an isomorphism Fσ → G. Let ϕ̄σ : F̄(x,s,σ ) → G be
defined by

ϕ̄σ (f̃(x,s,σ )) = proj2 ◦ϕσ (f(λ(x,s0,0,...,sp,0),σ )),

where f̃(x,s,σ ) = ((x, s, σ ), f(λ(x,s0,0,...,sp,0),σ )) ∈ F̄(x,s,σ ), f(λ(x,s0,0,...,sp,0),σ ) ∈
Fσ . On the other hand

ϕd(p)σ : Fd(p)σ → �q+2p−qp−1 × (d(p)σ ) × G

gives us
ϕ̄d(p)σ : Fd(p)σ → G.

By the definition,

ϕ̄σ (d̄(p)f̃ ) := vσ,d(p)σ (ρ(p)λ(x, s0, 0, . . . , sp, 0)).ϕ̄d(p)σ (f̃ ),

where the transition function is

vσ,d(p)σ : �q+2p−qp−1 → G.

The (p + 1)-G-valued components of m̃(f̃(x,s,σ )) ∈ �p × Gp+1 are defined
via the trivialization ϕσ (f̃ ) as follows: The (p+1)-st component is just ϕ̄σ (f̃ )

and by using the transition function vσ,d(p)σ we find the p-th component as

vσ,d(p)σ (ρ(p)λ(x, s0, 0, . . . , sp, 0))−1.ϕ̄σ (f̃ ).
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We can apply the same method several times to get the other coordinates in
m̃(f̃(x,s,σ )) as well and using the formula (8.2) we get the commutative diagram
(8.3) above of G-equivariant maps. It follows that F̄ is the pull-back of the
bundle γ : EG → BG, hence m̄ is the classifying map for F̄ → ‖|P̄.S.|‖.

In particular for a simplicial complex K we get the following (cf. [19]).

Corollary 8.4 (Phillips-Stone).
(1) A set of compatible transition functions {vσ } for K a simplicial complex

there is a natural prismatic map

P. St(Ks). → P.BG

(2) The induced map on geometric realization gives a classifying map for
the bundle F pulled back to | St(K)| ⊆ |K| × |K|.

Proof. In the second part of Theorem 5.1, we have showed that p̄ :
P̄.K

s → P. St(Ks). is an isomorphism. On the other hand in the previous
proposition, we have defined the classifying map m. This is also valid when
S = Ks . So the p.t.f. vσ will determine a natural map

m : P. St(Ks). → P.BG

Furthermore π1 : P. St(Ks). → K is a homotopy equivalence.

Remark. The point of the corollary is that there is a connection in the
universal bundle in the simplicial sense (see Dupont-Ljungmann [7]) which
thus pulls back to a connection in the bundle over the star complex. We shall
return to this elsewhere.
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