MATH. SCAND. 108 (2011), 26-54

LATTICE GAUGE FIELD THEORY
AND PRISMATIC SETS

B. AKYAR and J. L. DUPONT

Abstract

We study prismatic sets analogously to simplicial sets except that realization involves prisms, i.e.,
products of simplices rather than just simplices. Particular examples are the prismatic subdivision
of a simplicial set S and the prismatic star of S. Both have the same homotopy type as S and in
particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus
for a Lie group G and a set of parallel transport functions defining the transition over faces of
the simplices, we define a classifying map from the prismatic star to a prismatic version of the
classifying space of G. In turn this defines a G-bundle over the prismatic star.

1. Introduction

In the study of global properties of locally trivial fibre bundles it is a funda-
mental difficulty that the usual combinatorial methods of algebraic topology
depends on the use of simplicial complexes which structure behaves badly with
respect to local trivializations. By a theorem of Johnson [11], the base and total
space of a locally trivial smooth fibre bundle with projection ¥ : E — B can
be triangulated in such a way that & is a simplicial map. But obviously even
in this case a general fibre is not a simplicial complex in any natural way.
However such a fibre has a natural decomposition into prisms, i.e., products
of simplices, and the whole triangulated bundle gives the basic example of a
prismatic set, analogous to the notion of a simplicial set derived from a sim-
plicial complex. Prismatic sets were introduced and used by the second author
and R. Ljungmann in [7] (see also Ljungmann’s thesis [12]) in order to con-
struct an explicit fibre integration map in smooth Deligne cohomology, see
also Dupont-Kamber [6]. But the important special case of the prismatic sub-
division of a simplicial set was used in Akyar [1] in connection with “Lattice
Gauge Theory” in the sense of Phillips-Stone [19], [21]. Similar constructions
have been used in other connections, see e.g. McClure-Smith [16] or Brasselet-
Teissier [2]. One can see Liischer [13] for further information about Lattice
Gauge Fields.

In this paper we shall give a more systematic treatment of prismatic sets and
their properties but we shall concentrate on the applications to lattice gauge
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theory extending the work of Phillips and Stone to arbitrary simplicial sets
and all dimensions. For an arbitrary simplicial set S and a given Lie group G
together with a set of parallel transport functions in their sense, we construct a
prismatic set P.S of the same homotopy type as S and a classifying map from
PStoa prismatic version of the standard model for BG, for a reference see
Segal [22]. This is one of our main results (Theorem 8.1). Geometrically, for
S a simplicial complex, P.S is closely related to the nerve of the covering by
stars of vertices (Theorem 5.1). In turn this gives a principal G-bundle with a
connection and thus in principle gives rise via the usual Chern-Weil and Chern-
Simons Theory to explicit formulas for characteristic classes (Corollary 8.2).
We shall return to this elsewhere. One can see Cheeger-Simons [3], Chern-
Simons [4], Dupont [5], Freed [9], Witten [23] for further information about
Chern-Simons Theory.

The paper is organized as follows:

In Chapter 2, prismatic sets are defined and their various realizations are
studied.

The third chapter introduces the prismatic triangulation of a simplicial map
and in particular of a simplicial set. Furthermore, we comment on the calcu-
lation of the homology of the geometric realization of a prismatic set.

In Chapter 4 we study prismatic sets associated to stars of simplicial com-
plexes. It turns out that the prismatic set P.S given in this chapter in the case
of a simplicial complex is the nerve of the covering by stars of vertices.

In the fifth chapter, we compare the two star simplicial sets and prove that
there is a natural surjective map p : PS — P StS. It turns out that this map
is an isomorphism for § = K*, where K is a simplicial complex.

In Chapter 6, we introduce a prismatic version of the classifying space.
This is done by replacing the Lie group G by the singular simplicial set of
continuous maps Map(A?, G).

In Chapter 7, we introduce the notion of “compatible transition functions”
similar to the “parallel transport functions” of Phillips-Stone [19] for a simpli-
cial complex K. We show how a given bundle on the realization of a simplicial
set and so-called “admissible trivializations” give rise to a set of compatible
transition functions and vice versa. We end the chapter with a remark on the re-
lation between the compatible transition functions and parallel transport along
a piecewise linear path.

Finally in the last chapter we construct the classifying map for a given set
of compatible transition functions. For this we construct a prismatic map from
P S to the prismatic model for the classifying space constructed in Chapter 6.
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interests and comments during the preparation of this paper. Also we would
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2. Prismatic Sets

Prismatic sets are similar to simplicial sets but they are realized by using prisms
instead of only simplices.

Let AP = {(to, ooy ty) € RPHI | Yuti=115 < 1} be a standard p-
simplex given with barycentric coordinates. A prism is a product of simplices,
that is, a set of the form A% = A9 x ... x Afr,

The motivating example is triangulated fibre bundles:

ExaMPLE 2.1. Given a smooth fibre bundle 7 : ¥ — Z withdimY =
m+n,dim Z = m and compact fibres possibly with boundary. By a theorem of
Johnson [11], there are smooth triangulations K and L of Y and Z, respectively
and a simplicial map 7’ : K — L in the following commutative diagram

K| —— Y
l’ln/l l’n
L] ——— Z,

and the horizontal maps are homeomorphisms which are smooth on each sim-
plex. Let K be an ordered simplicial complex as in Dwyer-Henn [8, Section 3]

and let |[K| = |_|T€Kk AR x t/~,k=0,...,dim K, be the geometric realiza-
tion.
bjl'l Y
bl é
7|
Z
a; Z ay
A simplex T in K has vertices t = (0, ..., b(q)o . bg, ... b)) witho =

(ao, ..., ap) in L such that n’(b;) = a;. So geometrically, for an open simplex
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¢ in L, we have

r M eh ~ sl x| | Avr

ren1(o)

We collect all these decompositions in the formal definition below using
simplicial sets. For these we recall the notation but refer otherwise to Mac
Lane [14], May [15].

DErFINITION 2.2. A simplicial set § = {S,} is a sequence of sets with
face operators d; : S, — S,_1 and degeneracy operators s; : S; — S;11,

i =0,...,q,satisfying the simplicial identities:
did;y © i< Siy18i 1 i<
did; = { ! . . §;S; = { e . .
’ didiyy @ i>], ’ Sisi—1 - L> ],
and Sj,]dl‘ . I < ]
dis; = id i=ji=j4+1

de,'_l DI> ] + 1.
ExamPpLE 2.3. A simplicial complex K gives a simplicial set where

Kp = :(aiw ""ai,;)

some non-decreasing sequences
for a given partial ordering of Ky
is the set of p-simplices.

ExAMPLE 2.4. Given an open cover % = {U;} of a smooth manifold Z we

have the nerve N% = {N%(p)} of the covering, where

Nup)= | | U,n---nU,,
i0yennsip
and (io, . .., i,) is non-decreasing for a given partial order of the index set.

Letus denote U;,N---NU;, by Uj,...i,- Then N 9 is a simplicial manifold,
where the face and degeneracy maps come from the inclusions

SjZU‘

That is, N%(p) is a smooth manifold for each p and the face and degener-
acy maps are smooth. There is also a corresponding simplicial set N;% =
{Ny4%U(p)} called the discrete nerve of the covering. Here N;%(p) is simply
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the set consisting of an element for each non-empty intersection of p 41 open
sets from %. So there is a natural forgetful map N% — N,%.

NotE. If S has only face operators, then it is called a A-set.

DEerNITION 2.5. Given p > 0, a (p 4+ 1)-multi-simplicial set S is a se-
quence {S;,....4,} Which is a simplicial set in each variable g;, i = 0, ..., p
and such that the face and degeneracy operators

commute with d]l., s; fork #land k,l =0,..., p.

DEFINITION 2.6. 1) A prismatic set P is a sequence {P,} = {P, 4, } of

(p + 1)-multi-simplicial sets together with face operators

,,,,, qp

di: Ppgy....q, = Pp—1,q0.. 6100y

commuting with dj’. and sj’. (interpreting dj’.‘ = sj'.‘ = id on the right) such that
{P,}isa A-set.

ii) A prismatic set is called a strong prismatic set if similarly there are given
degeneracy operators

Sk PPJIO ,,,,, @ PP+1,f10»...»11k,qk-,m,qp
making {P,} a simplicial set.

REMARK 1. We can also give another definition of a prismatic set in terms
of functors of categories as follows:

Let A be the simplicial category with objects [n] = (O, ..., n) and non-
decreasing functions as morphisms. Furthermore let A;; € A denote the sub-
category allowing only strictly increasing functions as morphisms. In the cat-
egory of small categories Cat consider for each p =0, 1, 2, ..., the (p + 1)-
multi-simplicial category

Dp)=Ax---xA (p + 1 factors).

Now define a functor IT°? : A°? — Cat the category of small categories
by II°°([p]) = II(p)°P. This gives a simplicial category with the k-th face
map dy : I®(p) — O®°(p — 1), k = 0,..., p, given by deleting the k-
th factor, and similarly the k-th degeneracy map given by a repetition. The
Grothendieck construction for the lax functor T} = H°|A;Y (cf. Goerss-
Jardine [10, Chap. IX.3]) provides a small category L(II;") together with a
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projection 7 : L(ITI;Y) — ASP. In fact objects of L(II;") are just pairs (p, J)
with p € A and J € II(p).

A prismatic set (respectively strong prismatic set) is now a functor: L(IT;")
— Sets (respectively L(IT°P) — Sets).

ExAMPLE 2.1 CONTINUED. Recall from [8] that an ordered simplicial com-
plex K gives rise to a simplicial set K* with the same realization. Here sim-
plices are just non-decreasing tuples. That is,

ios - - - » @) a simplex of K
K;:{(aio,...,ai”) (alo az,,) plex }

(with repetitions) ig < - -+ < i.
Similarly the situation in Example 2.1 gives a prismatic set as follows:
Py(K/L)gy,..q, consists of pairs (o, t), where o is a (p + 1)-tuple 0 =

(@o, ...,ap) € Lyandt = (by, ..., bY | ...1b§, ..., by,)isa(p+q+1)-tuple
satisfying the following:

1) The set of distinct vertices gives a simplex in K
2) Each group |b}, ..., b! .| s non-decreasing.

Then we have face and degeneracy operators d', s]’: deleting and repeating
respectively each element in the groupings, whereas dy, s; deletes and repeates
each grouping, respectively. It is now straight forward to check that this is a
(strong) prismatic set.

ExampLE 2.7. For a given simplicial set S, consider the (p + 1)-multi-
simplicial set £, = § x --- x §, (p + 1)-times. d; : E,§S — E, S
is the projection which deletes the i-th factor. Similarly, the diagonal map
s;  E,S — E, 1S repeats the i-th factor. This is a strong prismatic set.

Prismatic sets have various realizations.

DEerINITION 2.8. First, we have for each p the thin (geometric) realization

(2.9) |Pp| = |_| A0 Pp,qo .... qp//\»

with equivalence relation “~” generated by the face and degeneracy maps

sj. c AD0-dip o AG0-Git]gp and

77} < A0-Givdp _y Aqo.‘.qf—l‘-‘qp’

respectively. Now {| P, |} is a A-space hence it gives a fat realization

(2.10) P =] A7 x [Pyl/~
p=0
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Here the face operators are 7; x d; : A%% x P, — A0y P,_; where
m; is the projection 7; : A%~% — A9-4i-9 deleting the i-th factor. The
further equivalence relation on ||| P.||| given in (2.10) is thus generated by

' -1 i
(e't,s,0) ~ (t,mis, dio), te AP, seA? W oeP,, .. -

REMARK 2. For strong prismatic sets, the degeneracy operators s; are de-
termined by the diagonal map A; : A?9% — A9-4449 repeating the i-th
factor. Hence for a strong prismatic set we have a thin realization

|P|=I[IPIl/~
given by the above and the further relation

'ty s,0) ~ (t, Ais,s;0), te AP se A g e P,

ExampLE 2.11. For a given simplicial set S and E, S as in Example 2.7 we
have ||| E S ||| as the fat realization of the simplicial space whose p-th term is
[S| x---x|S ]|, (p 4+ 1)-times. This is a contractible space. In fact it is well-
known that in general for any space X the simplicial space E, X = X x---x X,
(p + 1)-times, has a contractible fat realization.

3. Prismatic Triangulation

Let us return to the case of a triangulated fibre bundle |K| — |L|. In this case

the natural map
Py(K/L)gy....qy = Kgottqptp

induces a homeomorphism
|P(K/L)| ——— IK]|
lﬂ/ lﬂ
Ll ———=—— IL]

The top horizontal map in this diagram we shall call the prismatic triangulation

homeomorphism N
A |P(K/L) — |K]|.

It is induced by
B At 57,(0,1) = (s L tps?, T) € AP X Ky,

where (¢, 5,0, T) € AP x AP x P,(K/L)g,. 4, a0d g = qo + -+ - + qp.
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Norte. Ifé isanopen p-simplex in L then A provides a natural trivialization
of |[K|, = 7~ 1(|6]), that is, a homeomorphism

Ai1G] X |Py(K /)] —> K],

We can generalize this construction to any simplicial map:

ExAMPLE 3.2 (Prismatic triangulation of a simplicial map). Let f : § — S
be a simplicial map of simplicial sets and define P.(f) by

is given by
{0,....90l... 190+ ... +gp-1+p,....90+---+4q,+p} = {0,..., p}.
Explicitly

Koy = Sq+p © S(@ot..4qp+p—)ee(Gotap14p) © " © Sgy © S(gg—1)...(0)
where the §; are left out and

S(qot+-4gi+i=1)...(qot-+gi1+) = Sqottgi+i=1 O "7 O Sqpttgii+is

i =0,..., p. The boundary maps in the fibre direction

d]l : Pp(f)qo ..... @ Pp(f)qo,...,q,-—l,...,q,,

are inherited from the face operators defined on S, ,. Thus

d/l (6’ U) = (&’ d40+'"+q,'7|+i+joi)-

are inherited from the ones on S, ,. That is,
S; (5, O') = (6', qu+~--+qi_1+i+j0)'
The boundary maps

di : Pp(f)qo,...,qp - Pp—l(f)qo,...,z}f,.“,qp
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are determined by the boundary maps defined on both S, , and S . Thus
d,‘ (6', U) = (d[&, dqo+--~+q,-7|+i O:--0 qo+"'+Qi+iG)’
here the composition of the face operators can be shortly written as

Aot i1+ got-ai+) = Dgottgi i+ © O dgyotgioti

NoTE. P.(f) is a prismatic set, but in general not a strong one as we shall
see in Remark 4 below.

THEOREM 3.3. There is a pullback diagram

PO —2— S|
ll.fl ll.fl
IS| —=—|S|

In particular X is a homotopy equivalence.

PrOOF. The map A : AP x A% x Py(f)gy..q, = AITP X S,1p is given
by Alt,s,5,0) = (tos°, ..., 1,57, 0). Fort € AP, u € AP is uniquely
of the form u = (ts°, ..., t,s), that is, (u,0) = A(t,s,0,0). In fact A :
AP x A4 — AP+ is a diffeomorphism exhibiting A?* as the (p + 1)-st
join . . ~ .

AT AP %ok A 5 APTE
(Here the join is made using only the open interval (0,1).) The commutativity

of the diagram follows from the definition of P (f) hence A factors over the
pullback [|S_|| x5, [S.| in the diagram

PO —2— [IS.]l x5, 1S.| — 22— S|
llfl lprl llfl
1S —4— S — S|

and we want to show that A is a homeomorphism.

Elements in the pullback ||S || X5, |S.| are represented by pairs ((7,0),
(u,0)) such that f(0) = py,...4,(0) and t = p9-(u), where o € Sy,
o€ S'q. It follows from the above that over each open p-simplex ||5r | in|S],
A provides a homeomorphism onto its image

yeees

AAI Ao = erp~ Ala ).
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Now A is shown to be a homeomorphism by induction over the skeleton of
IIS.1I-

REMARK 3. For the case of a simplicial complex, notice the similarity of
the above theorem with Example 2.1 cf. the note following (3.1).

ExAMPLE 3.4 (Prismatic triangulation of a simplicial set). Let § be a sim-
plicial set and S = * the simplicial set with one element in each degree.
Here P,(f) = P,S is called the p-th prismatic subdivision of S and for each
t € AP the map A,(t, —) : |P,S| — |S.| is a homeomorphism. In this case,

Theorem 3.3 gives a homeomorphism A : |||P.S ||| = I*] x |S |, where
] = ||, A"/dA". In particular A : |[|P.S ||| — |S.| is a homotopy equival-
ence. We shall call P_.S the prismatic triangulation of S.

For later use, let us give the explicit construction of the p + 1-prismatic set
P S and its realization:

PPSqO ssss qp — Pqo+-+qp+p
The face operators
i _ —
dj . Pquo ..... GivenGp — Oq+p Pquo,...,qffl,...,q,, - Sq+p71
are defined by ;
dj i=dgytiq +itj>
j=0,...,q;. Similarly, the degeneracy operators
i _ —
Sj - PpSqo...girnay = Sa+p = PpSqo,..qi+1,.q; = Sqtp+1
can be defined by

8} 1= Sgotetgi it
j=0,...,q;. The face maps
diiy © PpSg,....q,

p

— Pp184,.51 0,

{RRIEE]

are the operators corresponding to the inclusions

deleting the g; + 1 basis vectors with indices g9 + -+ ¢i—1 +i,...,q0 +
s g+

REMARK 4. In terms of category theory, the prismatic triangulation can be
considered as induced by the functor 2 : L(II;") — AP defined by

P(p, (qol x -+ x[gp])) =0, ..., qlqo+ 1, ...,
go+q +1...lgg+---+qgo+---+go—1+p,...,q+ p),



36 B. AKYAR AND J. L. DUPONT

that is, it takes the product of ordinals to an ordinal in the simplicial category
A. Note that P.S is not a strong prismatic set since the morphism repeating
one of the [¢;]’s above would not map to a non-decreasing sequence by the
functor defined above.

Now we turn to the realizations. For the sequences of spaces {|P.S.|}, we
obtain the fat realization:

PSS = |_| AP X |PyS.|/~,
p=0

where
|PpS.| = |_| AN L I Y

and the face operators |d;| : |P,S| — |P,—1S | are given by |d;| = m; x d;
with 77; : A9 — A-4i-9 beeing the natural projection.
Note that A, : A? x |P,S | — |§ | satisfies

Apo (' xid) = A,_ o (id xd;).
Thus A, induces the map A on the fat realization.

Let ||| P.S ||| respectively |||S |||? denote the sub-complexes generated by
AP x |P,S | respectively AP x |S |. Then the restriction of A to [|[|P.S|[|? is
given by

Ap(t,s,0) = (1, Ap(t, 5,0)).

EXAMPLE 3.5. For § = A? via the map Ap P IIP.S|II? — |S.|, the image

of the p-th prismatic subdivision {t} x |P,S | is shown in the figures:

@ @

(0) D 0) H
p=1 Forp > 1

Here the “division points”: 1 > x; > --- > x, > 0 are given by the interior
coordinates

X1=l—to,)C2=1—10—[1,...,xp_1=1—t0—"-tp_1,xp=tp
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for a point with barycentric coordinates t = (to, ..., t,).
For p = 1 and S = A3 the image is

3

@)

0
M

COROLLARY 3.6. The map A, induce a homeomorphism

A PSS = S22 [ > |S.]-

COROLLARY 3.7. The composite map proj, oA = A
PSS — S — IS

is a homotopy equivalence.

REMARK 5. We can calculate the homology of the geometric realization of
a prismatic set as follows:
A prismatic set P has a double complex (C, ,(P), dy, dg). Here

CouP)= B Cpgpg,(P)

G-+ gp=n

is the associated chain complex C,(P) generated by P, 4, . 4,- The vertical
boundary map is defined by using boundary maps in the fibre direction

3% 2 Cpugon... 0 (P) = Cpgo..qi—1,...q,(P)

given by 9% = > (—1)/d!, where, if ¢; = 0 then 8%, = 0. The total vertical
boundary map is then

Ay = aOF + (_l)qo+131F RS (_l)qo+-~-+q,771+p3PF_
There is also a horizontal boundary map

0y = dyp + (—1)q°+181 4+ (_1)40+~--+q,,71+p8p’
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where 5 0 : ifge>0

““la : ifg =0,
so that @ = dy + dy is a boundary map in the total complex C.(P) which is
the cellular chain complex for the geometric realization. Hence it calculates
the homology. In the case of P (f) for f : § — S asimplicial map, the double

complex gives rise to a spectral sequence which for a triangulated fibre bundle
is the usual Leray-Serre spectral sequence.

REMARK 6. For each p and each ¢t € AP, )\,p(l’)_l SIS = {t) x [P,S ]
induces a map of cellular chain complexes

aw : C.(S) — Cp, «(P)
given by
aw(x) = Z Sqot-+ap1+p—1 0"+ © S0 (X) (go,....q,)
q0+'”+qp:n
where x € S,. This is related to the Alexander-Whitney map C.(S) —
C. (S)®(17+1) .
4. Prismatic Sets and Stars of Simplicial Complexes

For a simplicial set S and the prismatic triangulation P_S there is another closely
related prismatic set P.S which, as we shall see for a simplicial complex, is
the nerve of the covering by stars of vertices considered as a prismatic set.

DEFINITION 4.1. For S a simplicial set let P.S be the prismatic set given
by

..... qp *= Pqo+-+g,+2p+1s

where face and degeneracy operators on P, S4o.....q, are inherited from the ones
of S;42,+1 as follows:
Letg = go + - - - + g,, the face operators

are defined by

di :=dgypvq12i4j» J=0,....q but j#g +1,i=0,...,p.

.....

p + 1 face operators

{dq()+lv dq0+q1+3’ EI) dq+2p+1}~
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Similarly the degeneracy operators

i
S - Sg+2p+1 = Sg42p+2

can be defined by

S]l = Sgo4 Ao 2+ _]= 0, ey qiy but j ;éq,- +1,i=0, N

Furthermore the face operators

corresponds to the inclusions
Aq+2p7q;7] — Aq+2p+]

deleting the ¢; + 2 basis vectors with indices gg + - - -+ q;—1 + 2i, ..., qo +
--++¢q; +2i + 1. That is,

d(l) = dqo+“‘+q;71+2l‘ O--+0 dqo+~~+q,'+2i+1’ i = 0, ey P
REMARK. As P.S, P.S is a prismatic set but in general not a strong prismatic

set.

REALIZATION OF P S. The equivalence relation on

.....

p=0
is given as described for (2.10).
The relations of P.S to S and P S are as follows:

PROPOSITION 4.2. Leti : ||S|| < |[|P.S||| be an inclusion defined for
(t,x) € AP x S, by

i(t,x)=(t,1,500---05,x) € A? x (A")PT! x §,.1 C AP x |P,S |,

and let r : |||[P.S||| = |IS.|| be the retraction defined for (t,s,y) € AP x
ATy X Sgi0pt

r(t, s, y) = (t,d)....q0) © dgo+1 © "+ © digyt-+q, 1+2p)...(q+2p) © g+2p+1Y),

where the d; are left out and dyt...1q, ,+2i)...(qo++q+2i) = Agottqi1+2i ©
c O lgytegi 2 L= 0, ceey P
(1) i is a deformation retract with the retraction r.
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(2) There is a commutative diagram of homotopy equivalences
ISl —— 1P

N

1P.S.1l

A

ISl

whege f AP x Aqﬂ"'qf(’) X Sqpopt1 — AP X API xS, takes
(t,s°,...,87,x) to (t,s",...,8P, dgyt1 0 dgytg,43 © -+ © dgi2p+1X),
X € Sgiap+1-

Here A is a homeomorphism by Corollary 3.6 and A o foi : ||S| —
IS~ [1=ll < |S.| is given by

Ao foi(t,x)=Ao f(t,1,500---08px)
=A(t,1,diodso---0ody,p1 0800 08,x)
=(t,At,1,diodso---0odypp10800---05,x))
= (t,t,dyod3o---0dyp 10800 - 05,X)
=(t,t,x)

which is clearly a homotopy equivalence. See [1] for further details of the
proof.

For an ordered simplicial complex K, there is another prismatic complex
defined using the stars of simplices. Classically, the open star St(o') of a simplex
o in the realization | K| is the union of all open simplices whose face is 0. The
star complex is the union of closures

U ol xSte) = lol x It S K| x K],

o simplex (0,7)

where (o, ) runs through pairs of simplices which are both faces of another
simplex of K. This is a sub-complex of |K| x |K]|.

We describe the associated simplicial subset St(K*) € (K* x K*). as
follows:

Let (0, 7) € K X K, where 0 = (ajy, - - ., a;,), T = (bj,, ..., b;,) such that
there is another simplex 6’ = o0 Ut = (¢, . - . , Cx,). By allowing repetitions
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and taking ¢’ € K*, we can assume n = p + r + 1 so that either ¢;, = a;, or
¢k, = bj,, wheret = 0,..., p,u =0,...,r. Also we can assume ¢, = a;,,
and if a;, = bj, then b;, comes before g;,. In other words (o, 7) is of the form

/ /
o =dw)..00,:1)0 T =d)..,)0

where 0 <v; <--- <vqy <nand0 <& <--- <&, <nand& # vy,
Vk, . Therefore replacing (O’, 'L') by (S(U,H)‘.‘(v]) o d(v])‘.‘(v,qu)d/, S(EPH)W(E]) o
d,)..,.)o') inthe product simplicial set (K* x K*) , we arrive at the following
definition for a general simplicial set S.

DErINITION 4.3. Let (S x §). denote the product simplicial set with di-
agonal face and degeneracy operators. Let St(S) be the simplicial subset of
(S x §). containing all simplices in degree n = p +r + 1 = deg(c’) of the
form

($0y110e00) © D). T s S 1)) © AiE1).cy)0 )

where 0 < vy <--- < vy <nand0 <& < --- <&, <nwith & # v,
Vk, [ as above. Here ¢, )..cv) = 8y, 008y, dw))..,,) =dv, 0---0d
S(Epin)en(er) = Sty © - 08¢ and dgy . g,.) = dg 00 dg,,.

Vr412

ReEMARK 7. The projection on the first factor 7r; : § x § — § gives a
simplicial map 7y : St(S). — S. Hence, we obtain a prismatic set P, St(S), =
P (1) as in Example 3.2. Here forr = gg+---+¢q,+pando = 5(,,,)..(v) ©
A0 = Mgo.qy 0> T = Se,0).60) © @), )0 We have

P, St(8)gy....q, = {(0,0,7) € S X SUS)y+p

C Sy x (S x 8)g4p | 0, T given above}.

That is, 771(0, T) = [Lg....q,(0), Where 0 = d(,)..v,,)0" € S,. So the ele-

ments in P, St(S)y,,... 4, are of the form (7, py.... 4,0, 7), where T € S, .
Explicitly

..........

<+ Sqo+q1+15(q0+q1)--(qo+1)Sq05 (go—1)...(0) -

5. Comparison of the two Star Prismatic Sets

We shall now prove that this is closely related to the prismatic set P.S defined
in the previous section.

THEOREM 5.1. (1) There is a natural (surjective) map

p:PS— PStS).
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) If S = K, where K is a simplicial complex, then p is an isomorphism.

PrOOF. (1) Take an element y € P,Sy,. .4 = Sgt-tq,+2p+1- Then y

and qo, . .., g, determine an element p(y) i‘r.lep St(8)gy.....q, together with a

(p+19 q+p+1)'part1t10n (Elv e ey Sp: g[l"rlv Vi, enny Vq+ll+1)0fn - p+r+17
where r = qo + ...+ ¢q, + p. Here
§1=qo+1
E=qo+q+3
§p=qo+ - +qp1+2p—1
gp—&-l =r+p+ 1
and the v’s correspond to the complement, that is, vy, ..., Vg 41, Vgo42, - - -

Vao+qi+25 -+ -5 qu+~~+q,,71+p+lv ey Vpgg, are 0, ..+540, 490 + 2, .. q0 + q1 +
2, q9+q+4,....q90+...+qp2+2p—2,...,q90+ - +qgp—1+2p,q0+
“o 4+ ¢gp—1+2p,...,r + p, respectively. Then, in terms of Remark 7 at the
end of Section 4, we define

p(y) =(0,0,7) € P, St(S)yy....q, © Sp X Sgtp X Sgtp
where

0 = d(0)...4qo) © dgo+1© -+ © digytgy1+2p)...qot+4,+2p) © gs2p+1(¥)
Ay ) (V) = Ay, (V)

T = dqo+1 © dqo+q1+3 60 qo+~~+q,,+2p+1()’) = d(sl)...(§p+1)(7’)

0 = Sqot-+qp+p © Sqo+-+gp+p—D-.(qo++gp-1+p) © Sgot-+qp-1+p—1©
"t 0 8g04g1+1 © S(gotg1)...(qo+1) © g0 © Sigo—1)...0) (0)

= S(g+p—1)..(q+p—4,) © " © S(qo+g1)-(go+1) © S(go—1)...0)(0)

Using the above expression for ¢ in terms of d’s and y, we get

0 = S(g+p—1)..(q+p—aqp) © " O S(go+q1)...(qo+1) © S(go—1)...(0) © d(vl)m(‘)q+1)+l)(y)‘

Now by using Definition 4.3 and Remark 7 we can choose y as o’. It follows
that (0, 7) € St(S)4+, and hence p(c’) = (0,0, 1) € P, St(S)g.....q,-

.....

.....
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where o € §,. Again use the partition (p + 1, g + p + 1) as above and again
put y = ¢’ as in Remark 7. Hence for every (¢, o, 7) € P, St(S),, g, there
exist y such that p(y) = (6,0, 7) € P, St(S)y.....q,-

2)If S = K*, K simplicial complex then

.....

.....

. N S
| m1(o, ) € Im{ptg,,..q, : K, = Kq+p}}‘
The map
S S . . . . . .
Wao..nq, - Ky — Ko\, takes (ig, ..., 0p) 0 (ioy.vsiy.vnsipy.nnsip).
p p q+p :
(go+1)-times (gp+1)-times
Then
s
o :(aio,...,aio,...,a,-p,...,aip) € Kq+p’
T = (b, ...,quo, .. .,quw”_wp_w, cnbj,,) € K,

By the definition P,(K*)g,....q, = Pp(K*)gys1....q+1- Then y € KS,, s

vvvvvvvvvv

by p~'(, 0, 1) =y, where

& = (ai07 ) ai,,)7

T = (bj,, “"qu+p) and
Yy = (cko’ coe Chgoy l... |qu()+~--+qp_1+2p’ s qu+2p+1)

such thatfor0 <s <g+2p+1

aj_, - b]} =a,
c, = bi, i, < bj, <a
a;, a, < b,

[l =1,...,p. Hence y € PPK;O
(0, 7) € SUK*) g4 p-
Therefore p : P K®* — P St(K*). is an isomorphism.

exists and is uniquely determined by

REMARK. Note that the above proof of injectivity does not work for general
simplicial sets since in general o’ in Definition 4.3 is not uniquely defined by
the two components in (S X §).

ReMARK. Notice that PK* is different from the one given in Example 2.1
continued. It is not a strong prismatic set.
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6. The Classifying Space and Lattice Gauge Theory

For the definition of a classifying map we need a prismatic version of the
standard construction of the classifying space. We recall from Segal [22] the
usual model of this.

Let G be a Lie group or more generally a topological group with 1 as
the non-degenerate base point such that it has the same homotopy type as
a CW complex and let NG be the nerve of G. Let G be the category with
Ob(G) = G and Mor(G) = G x G, source(go, g1) = &1, target(go, g&1) = &o
and the composition (go, g1) o (g1, &2) = (go, &2) and let N G be the nerve
of the category G. Furthermore, the map y : NG — NG is the nerve of the
functor y : G — G given by ¥(go, g1) = gog1~ "

These two nerves are two simplicial spaces given by

NG(p)=G x---xG (p-times)
NG(p)=G x---xG  (p+ l-times).

By using the face and degeneracy operators on these simplicial spaces one has
their realizations. The usual classifying space BG = EG/ G is constructed as
a simplicial space EG, = G x --- X G, (p + 1)-times and BG, = (G x

- x G)/G. We can identify EG = ING| = L] -0 AP x GP*!/~ and
BG = ||NG]||.

In order to make this simplicial space discrete we can replace G by the
singular simplicial set of continuous maps S,G = Map(AY, G) and E S.G
as in Example 2.7 is a prismatic set. However we shall need another model
constructed as follows:

p=0

DEFINITION 6.1. A continuous mapa € Map(A? x A?-4  GP*+1)iscalled
restricted if it has the form

a(t7 SO, LR sp) = (Clo(t, SO), al(t7 S07 Sl)y ety a[)(tv sov LR} Sp))9

where (z, 5%, ..., 57) € AP x A%~ and if a;(e't, s, ..., s/) is independent
of s forall i < j. Now we define

o = {a: AP x AP — GP*|q is restricted}.

.....

S G acts on this prismatic set diagonally (on the right). By the definition
PBG = PEG/S G, thatis,



LATTICE GAUGE FIELD THEORY 45
ProPOSITION 6.2. The evaluation maps give horizontal homotopy equival-
ences in the diagram

I|IPEG|| —%—— EG

S

IlP.BG ||| —=—— EG/G

Furthermore the top map is equivariant with respect to the homomorphism
ev:|SG|— G.

ProoF. First notice that the evaluation map ev : |S.G| — G is a homotopy
equivalence. Also the equivariance is obvious by the commutative diagram

IPEGI| x|SG| ————— EGx G
IPEG|| —————— EG

where the vertical maps are given by quotients and the actions of |S G| and
G are free. Since ||| P.EG ||| and EG are both contractible, the evaluation map
induces a homotopy equivalence on the quotient. (See May [15, Chapter 3].)

7. Lattice Gauge Theory, Parallel Transport Function

In lattice gauge theory in the sense of Phillips and Stone [19] they construct for
a given Lie group G and a simplicial complex K a G-bundle with connection
on | K| associated to a set of G-valued continuous functions defined over the
faces of a simplex. These they call “parallel transport functions” since they
are determined by parallel transport for the connection. In this section we
shall introduce similar “compatible transition functions” for K replaced by a
simplicial set S and in the following section we shall use these to construct
a classifying map on the star complex P_S. First we consider G-bundles over
simplicial sets.

DEFINITION 7.1. A bundle over |S | is a sequence of bundles over A? x o
for all p, where o € S, and with commutative diagrams;

gl
Fjo —— F,

| |

_ j
AP 1xdja‘s—>A1’x0
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and i
Fyo — F,

l l

j
AP« §;0 — T S AP xo

with the compatibility conditions:

i JEETN i< S LA
&&= <i+15j . . n'n = —i—1=] . .
grel 1=, n-n 1>,
and o
gl s i<
n'g =11 Coi=ji=j+1
gi-lpi i>j4+1.

Given a G-bundle F — |S|, G a Lie group, we can choose a trivialization
¢s 1 Fo — AP x o x G for each non-degenerate 0 € §, since A? is
contractible. If ¢ is degenerate, that is, there exists t such that o = s;7, then
the trivialization of o is defined as pullback of the trivialization of 7, that is,

Po = Ui*(fl?r)-

DEFINITION 7.2. A set of trivializations is called admissible, in case ¢, for
o = s;T is given by ¢, = 1'" (¢y).

LEMMA 7.3. Admissible trivializations always exist.

Now, let us define the transition functions for a simplex o € S),:

DEeFINITION 7.4. Given a bundle F — |S| and a set of trivializations,
we get for each face t of say dimt = ¢ < p in o, a transition function
Vo,r : A? — G as follows: The bundle map ® given by the diagram

A1 x (d(i,,)...(io)g) x G L) AP x (U) x G

l |

i
Al xdg). ipo ~—————— AP x0o
. . — —_ _io...i —1 _i(]...i —_ _io e _i7
where d(;) o = 7,0 = ¢, 08" o Piy.ipo° & = E© o &' and

gh-ir = gt o ... 0 glr, determines vy, by the formula

O, g) = ("0---0e"(t), v, (t)g), teA! geG.
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This defines the set of transition functions {vs . | 0 € S, and 7 is a face of o'}
for the bundle over S |.

REMARK. The transition functions are generalized lattice gauge fields. Clas-
sically lattice gauge fields are defined only on 1-skeletons but one can extend
them to p — 1 simplices for all p which gives rise to transition functions on
AP, as above.

We now list a number of propositions stating their properties. The proofs
are straight forward. For details see Akyar [1].

PROPOSITION 7.5. Given a bundle on a simplicial set and admissible trivi-
alizations, the transition function v, , where T is a face of o, satisfies;

(i) o is non-degenerate: if y = djo and v = d;y then
Vo,r = (Vg,y 0 €").0y 7.

This is called the cocycle condition.

(i) o isdegenerate: ifo = sjo’andt = d;o thenwheni < jfort = sj_ 7’
one gets v = djo' andwheni > j+1fort = s5;7' onegetst' = d;_0’.
For the other cases, i = j ori = j+ 1, t = o'. Then the transition
functions satisfy:

Vorpon/Tl 1 i<
Vor =11 Ci=ji=j41
vagr/on/ D i>j+ L

(ii1) If t is a composition of face operators of o, e.g., T = dr~i-Vg | =
1,..., p, where dP~-D =gdi0---0 d, then
Vor = (U, g1y 0 (6)77).(0z15 g2y 0 (6)P 1)

i
e (vd"pf(,#[)a,’d‘pﬂ'o_ o€ )'Ujl’f‘.ﬂ,l"

PROPOSITION 7.6. Assume that we have a bundle over |S |. Then

(1) There exist admissible trivializations such that the transition functions
are given by o
Vodo =1 if i <p.

() Fort = d"% Vo, i = 1,...,p, we get vy as product of some
transition functions:

Vo,r = (V5 0 (€)77).(Vg1, 0 (NP1 (0, 0 (€)1

i\ 1
o Wgp-irng © (€)7).(Vgp-ig)-
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(3) The transition functions v, - satisfy the compatibility conditions:

; { Vdo ci<p—1
Vs OE = -1 . .
VdproVq o * =P 1

(4) For a degenerate o, we have
1 i<
Uso =4 1 i=ji=j+1
veon/ 1 i>j+1
ProPOSITION 7.7. Given a bundle, one can find admissible trivializations

such that the transition functions are determined by functions v, : AP~' — G
for o € S, non-degenerate.

PROPOSITION 7.8. Suppose given a set of transition functions
vyt AP 5 G

foro €S, for all p, satisfying the compatibility conditions

) :vdﬂ, ci<p—1
1
vy, 08 =

—1 . . _
Vd, 10V * L=D 1

and )
Us;o = Vg 01’

Then one can define for each o € S, and each lower dimensional face T of o,
a function v, ; such that (1) and (ii) in Proposition 7.5 hold and such that

{v(I s i=p
Vo,r = .
1 : i<p.

PROPOSITION 7.9. Given a set of transition functions v, , satisfying (i) and
(i) in Proposition 7.5, there is a bundle F over |S | and trivializations with
transition functions vy ;.

COROLLARY 7.10. Given a set of functions v, satisfying the compatibility
conditions in Proposition 7.6, one can construct a bundle F over |S | and the
trivializations with the transition functions ve.4,; = Vo and Vs 40 = 1 when
i < pand vy, = v, o1 foradegenerate .

DEerINITION 7.11. A set of functions {v,},es as in Proposition 7.8 are
called a set of “compatible transition functions”.
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We end this section by comparing these compatible transition functions with
the “parallel transport functions” (p.t.f.) of Phillips and Stone [19]. For § = K*
a set of such functions consist of a set of maps, V,; : ¢, — G for each r-simplex
ocof K,r > 1,c,isthe (r —1)-cube givenby 0 <5, <1,...,0<s, , <1,
where 0 = (ao, ..., a,) € K with the compatibility conditions

1. Cocycle condition

Vo(SaysoovsSa, = 1,00, 84,_,)
= V(ao,...,ap)(sal PRI sal,_l)'v(a,, ..... a,)(sap_H PRI Sa,_l)-
2. Compatibility condition
Vo (Sayso-osSa, =0,...,8,_,)

4

~
(@gs..s@p, ... a,,l)(sal, BRI su,,a ceey sa,,l)'

Now, suppose we have compatible transition functions {v,} for a principal
G-bundle E — |K| with triangulated base. Then for 0 = (ay, ..., a,), the
ptf. Vs : ¢ — G is given by the parallel transport E,, — E, along paths
determined as follows:

Leto = {(ap,...,a,) € K* ands = (S4y, - . Sq,_,) € Co-
We pick r — 1 points as Py, ..., P,_ so that Pj is on the line segment from
agp to ay, that is,

P = (1 - Sal)a() +su1al = ((1 — Sap» sul)’ (a(), al)) € IKl
Similarly, P, is on the line segment from P; to az, P, = (1 — 54,) P1 + sg,a0.
Then

P2 = ((1 - Saz)(l - sa])’ (1 - Sag)salv sazs (aOv alv (12>)-

By continuing in the same way, we get

P_, = (1 - Sarfl)Pr72 + Sa, Ar—1-

Let o be the piecewise linear path from a¢ through Py, ..., P._; to a,. In
other words, « is determined uniquely up to parametrization by » — 1 numbers
Says v+ Sa_,.For Po_y = (t,d,0) € A" x K,_y,d,0 = (ap, ...,a,_1), the
element

Va(sl, . e -,sr—l) = vo(t) €G

is to be interpreted as the parallel transport along «.
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ar

8. The Classifying Map

THE CONSTRUCTION OF THE CLASSIFYING MAP. For a given set of compatible
transition functions (c.t.f.) {v,} satisfying Proposition 7.8 we have seen in
Proposition 7.9 that there is an associated G-bundle F over | S |. Recall that the
composite map A o f : PSS = S| — |S]is a homotopy equivalence.
In this section, we construct a classifying map for the bundle (A o f)*F over
I1P.SII-

THEOREM 8.1.

(1) For given c.t.f’s {v, ), there is a canonical prismatic map m : P.S —
P BG.

(2) The induced map of geometric realizations
evollmlll = : |IP.S || =L ||P.BG || <> BG
is a classifying map for the G-bundle (A o f)*F over || |PS|]|.
PrOOF. (1) The mapm : P.S — P BG is defined as
m(o) = [(ao, ai, ..., ap)]

where o € ﬁquo.‘.qp = Sy42p+1.4 =qo+---+qpanda; : AP x A9 — G
are given in (8.2) below. First some notation. In the following, we use for

convenience the interior coordinates (xi, ..., x,) of the standard simplex with
barycentric coordinates (7, ..., t,) as defined in Example 3.5. Similarly the
interior coordinates of A% are s' = (s15 -5 sél_). In these the map A from

Section 3 is induced by the maps A, : AP x A®+1-@Hl — AG+2PH! given by

Ap(x,so,O, ..., 0,57,0)

= (VA = x) +x1, s (L= x1) + x1, x1, X1, 81 (61 — x2) + %2,
1

-1
co 8, (X1 = X2) + X2, X2, X2, s7T (Xp—1 — Xp) + Xp,

p—1 _ p p
Sy (Xp—1 = Xp) + Xp, Xp, Xp, 87 Xp, - -, 84, %p O).
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For convenience, we drop p in A,(x,s) and write A(x, s). Next, let ,0(") :
AP+l AdotHai-1+2i-1 e the degeneracy map fori = 1, ..., p defined

b . .
y @ .— nqo+~~+q,>1+2171 ° q+2p

PO ce-0om

deleting the last ¢; + - - - + g, + 2(p — i + 1) coordinates. For example,

p(P))\(x’s)
= ()1 —xp) +x1, o (1= xp) + X1, X1, X1, 8] (X1 — X2) + X2,
1 —1
) slh (xl —Xz) + X2, X2, X2, .., S{J (xp—l _xp) +xp7

e sé’;]l(xp_l —Xp) +xp, xp),
where pP) = 1= 2r=1 ... o ni+2P is deleting the last g, + 2 coordinates.
With this notation, the maps a; : A? x A% — G defining the classifying
map m (o) are given by

ap(x,so,O,...,sp,O) =1
ap—l(x’ SO’ 07 M Sp_la 0) = Uo',d(P)O'(p(p)()\‘(x’ S)))_l’
a[)—z(x7 S07 07 ML) Sp_2v 0) = va,d(p_1)<p)(r (p(p_l)()\.(x’ s)))_l

(8.2)

ar(x,s%,0,5",0) = vo4y 0 (0P A(x, )7
ao(x,5°,0) = vo.a,,_ 0 (PP (A(x, )7

Then m (o) satisfy Definition 6.1 and it is straight forward that m is a prismatic
map.

(2) For given c.t.f.’s v,, we now have the map of realizations ||m|| :
I1P.S I — P BG ||| given by

[mll(x,s,0) = (x, 5, [(ao, - .., ap)]).

The classifying map m = evo||m|| and the associated bundle map are
given as follows:

We have a bundle F on [S | by Proposition 7.9 and for each p we have that
Ap o AP X |P,S| — |S] is an epimorphism. Hence by pulling back we get
bundles F, — A? x |P,S | inducing a bundle map

¥F —— F

|

IPS|| —— IS|
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The transition functions are now used to define m similarly to m = ev ol||m]|||
in the commutative diagram

F m EG
(8.3) HPSII = BG
e
IP.BG ||

For the construction of m take (x, s,0),x € AP, s € A% 0 € S;10p41.
Here ev denotes the evaluation map as in Proposition 6.2. Then the fibre of F
over (x,s,0) € AP x |13pS‘| is the fibre of F at (A(x,s°,0,...,s”,0),0).
Using the trivialization ¢, : F, — A9727*! x (¢) x G and the projection on
the last factor, we get an isomorphism F, — G. Let ¢, : F(X’S,g) — G be
defined by .

(pa (f(x,s,a)) = Projz ngo'(f(A(X,SO,O,...,SP,O),O'))7

where fiy 500 = ((x,5,0), fox.500...5.0.0)) € Fes,000 fa@.s90...52.00.0) €
F. On the other hand

. 2p—q,—1
(pdmg : Fa’(,,)a — Aq+ P=dp X (d(p)a) x G

gives us
Pdpyo : Fd(p)g - G.

By the definition,
G0 (AP ) 1= .40 (0P (2, 5°,0, . 57, 00).94,,0 (),
where the transition function is
Vodipyo - APl G

The (p + 1)-G-valued components of nﬁ(f(x,s,g)) e AP x GP*! are defined
via the trivialization ¢, ( f) as follows: The (p + 1)-st component is just @, ( f)
and by using the transition function v, 4, » we find the p-th component as

Vordpo (PP A(x, 5%, 0, ..., 57,00) " .66 (f).



LATTICE GAUGE FIELD THEORY 53

We can apply the same method several times to get the other coordinates in
m( f(x,s,g)) as well and using the formula (8.2) we get the commutative diagram
(8.3) above of G-equivariant maps. It follows that F is the pull-back of the
bundle y : EG — BG, hence m is the classifying map for F— ||IPS]I.

In particular for a simplicial complex K we get the following (cf. [19]).

COROLLARY 8.4 (Phillips-Stone).
(1) A set of compatible transition functions {v, } for K a simplicial complex
there is a natural prismatic map

P St(K*). - PBG

(2) The induced map on geometric realization gives a classifying map for
the bundle F pulled back to | St(K)| C |K| x |K].

PrOOF. In the second part of Theorem 5.1, we have showed that p
PK® — P St(K®) is an isomorphism. On the other hand in the previous
proposition, we have defined the classifying map m. This is also valid when
S = K*. So the p.t.f. v, will determine a natural map

m: P.St(K*)., - PBG

Furthermore 7; : P.St(K*). — K is a homotopy equivalence.

REMARK. The point of the corollary is that there is a connection in the
universal bundle in the simplicial sense (see Dupont-Ljungmann [7]) which
thus pulls back to a connection in the bundle over the star complex. We shall
return to this elsewhere.
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