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A CHARATERIZATION OF COMMUTATORS FOR
PARABOLIC SINGULAR INTEGRALS

YANPING CHEN and YONG DING*

Abstract

In this paper, the authors give a characterization of the L?”-boundedness of the commutators for
the parabolic singular integrals. More precisely, the authors prove that if » € BMO, (R", p), then
the commutator [b, T is a bounded operator from L” (R") to the Orlicz space Ly (R"), where the
kernel function  has no any smoothness on the unit sphere S"~!. Conversely, if assuming on
2 a slight smoothness on $"~1, then the boundedness of [b, T] from L”(R") to Ly (R") implies
that b € BMO,(R", p). The results in this paper improve essentially and extend some known
conclusions.

1. Introduction

Suppose that $"~! = {x € R" : |x| = 1} is the unit sphere in R" equipped with
the Lebesgue measure do, where | - | denotes the Euclidean norm in R”. Let
b € Lio(R"), then the commutator of the classical singular integral is defined

by
y)

0. T1f (x) = p-V-/ ——— ) —b(y) f(y)dy,

Qx —
re X —yI"

where €2 is homogeneous function of degree zero on R" \ {0}, that is,
(1.1) Q(ux) = Q(x) forany wu >0 and x € R"\ {0}.

Moreover, Q € L'(S"!) satisfying the following cancellation condition:
(1.2) / Q(x)do(x") =0.
Sn—1

In 1976, Coifman, Rochberg and Weiss gave the following result:

THEOREM A ([2]). If Q2 € Lipl(S”_l) satisfies (1.1) and (1.2), and b €
BMO, then [b, T is bounded on L¥ (R") (1 < p < 00). Conversely, if [b, R;]
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is bounded on LP(R") for some p, | < p < occandall j = 1,...,n, then
b € BMO, where R; is the j’th Riesz transform.

In 1978, Janson [6] extended Theorem A. To state the result in [6], we give
some notations and definitions.

Let ¢ be a non-decreasing convex function on R, with ¢ (0) = 0, let
¥~ ! denote the inverse function of . The Orlicz space Ly (R") is the set of
functions f satisfying

o(f. ) =/ vAIfODDdy < o0
e

for some A > 0. The norm in L is defined by

1
1/ ley =§ggz(1 +[Rn w(klf(y)l)dy) = sup

€Ly
o(g.¥y)=l1

/ fmMe®) dy‘,
Rﬂ

where ¥* is the complementary Young function of v, which is given by

Y (s) = sup [st — ()], 0<s < o00.

0<t<oo

The following generalized Holder’s inequality holds in the Orlicz space Ly, (R")
(see [9] for its proof):

(1.3) ‘/ F»ey) dy‘ =lflz,llglz,.-
RH

Now we give the definition of BMO,, as follows. Denote

1
M@, Q) = 0l /Q |b(x) —bgldx,

1

where by = 1]

then

f 0 b(x)dx and Q is acube in R". Let ¢ be a positive function,

BMO, (R") = {b € Lic®") : [Bllnsio, = sup T 2) oo}
xeR(; o(r)

r>

where Q(x, r) denotes the cube centered at x and with diameter r.
With the above notations, Janson got the following conclusion:

THEOREM B ([6]). Suppose that @ € C*®(S"™") satisfies (1.1) and (1.2)
and1 < p < o0. Let ¢ and r be two non-decreasing positive functions on R
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connected by the relation ¢(r) = r"Py~ (™) (or equivalently ¥~ (t) =
t1Pt=Vm). If r is convex, ¥ (0) = 0 and ¥ (2t) < Cy(t), then b belongs
to BMO,, if and only if [b, T maps L (R") boundedly into L, (R").

Notice that in Theorem B, €2 was assumed on a very stronger smoothness
condition on $"~!, Hence, it is natural to ask if the conclusion of Theorem B
holds still under a weaker condition of 2. In the paper, we will give a positive
answer to this question. In fact, we will improve and extend Theorem B under
the parabolic cases. Before stating our results, let us recall some definitions
and some known results.

In 1966, Fabes and Riviere [5] introduced the parabolic singular integral.
Letoay, ..., a, be fixed real numbers with o; > 1. It is easy to see that for each
fixed x € R”, the function

2

Flx.p) =Y -

20[,'
i=1 p

is a strictly decreasing function of p > 0. Therefore, there exists an unique
p = p(x) such that F(x, p) = 1. It was proved in [5] that p is a metric on
R" and the metric space is denoted by (R", p). For 4 > 0 and x € R", if we
denote by

&7

8# : (xl’x25 .. ',xn) — (/’Lalxla Maz-xZa ey U xn)

a dilation on R", then we have the polar decomposition x = §,x" with x’ €
§"=1 p = p(x)and dx = p* ' J(x")dp do (x'), where

n
J(xX) =apx 4 Fox? and o= E Q.
i=1

Suppose that Q2 is a real valued and measurable function defined on R" \ {0}.
It is said that € is homogeneous of degree zero with respect to §,,, if for any
u > 0and x € R"\ {0}

(1.4) Q(6,x) = Q(x).
Moreover, we also assume that 2 satisfies the following cancellation condition:

(1.5) f Q(x"NJ(x)do(x") =0.
Sn—1

In [5], Fabes and Riviere proved that if Q2 € C Lsn=1 satisfying (1.4) and
(1.5), then the parabolic singular integral operator T is bounded on L” (R") for
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1 < p < oo, where T is defined by

Q)
n ()

(1.6) Tf(x) = p-V-/ Sx—=y)dy.
R
Later, the above result was improved by Nagel, Riviere and Wainger [7]
and the regularity condition assumed on 2 was removed.

TuEOREM C ([7]). IfQ € Llog"™ L(S"™") satisfies (1.4) and (1.5), then the
operator T is bounded on L? (R") for 1 < p < oo.

Recently, the condition of €2 in Theorem C was weakened further by Chen,
Ding and Fan:

TueOREM D ([4]). If @ € H'(S"™!) satisfies (1.4) and (1.5), where
H'(S") denotes the Hardy space on the unit sphere S"~', then the para-
bolic singular integral operator T is bounded on LP(R") for 1 < p < oo.

Let us now turn to the definitions of the BMO space and the Lipschitz space
on (R", p). Denote by €(x,r) = {y : p(x — y) < r} the ellipsoid centered
at x and with radius r. For j > 0, j& denotes the j-times extension of the
ellipsoid & with the same center. Moreover, |& (x, r)| is the Lebesgue measure
of &(x, r), which is comparable to r*. Let &° denote the complement of &.

For a positive function ¢, the parabolic BMO, (R", p) space is defined by

0 n M(b, &(x,r))
BMO,(R", p) = {b € Lioc(R") @ [IbllBMO,,p = SUp ————— < 00,
xng’ go(r)

where M(b, &) = g [, 1b(x) = bgldx, and bs = g7 [, b(x)dx. When
¢ = 1, then we denote simply BMO, (R", p) by BMO(R", p) and ||b|lgmo, .
by [|bllBmo, -

For 0 < B < 1, the definition of parabolic Lipschitz space Ag(R", p) is the
following:

|b(x) — b(y)|
Ap(R", p) = {b 1Bllayp = Sup ————= <00
p pP x,yeR? ,O(X - y)ﬂ
For b € Li,.(R"), the commutator [b, T'] of parabolic singular integral operator
is defined by
Qx—y)
(1.7) . T1f(x) =p.v. [ ————,(bx) = b(y) f(y)dy.
re P(X =)

The commutator of the parabolic singular integral operator arises naturally

in the theory of parabolic PDE. In 1996, Bramanti and Cerutti [1] proved the
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commutator of parabolic singular integral operator is bounded on L” (R") and
gave some applications of the commutator in the theory of parabolic PDE.

THEOREM E ([1]). Suppose that b € BMO(R", p) and that Q2 € Lipﬁ(S"_l)
O < B < 1) satisfies (1.4) and (1.5), then [b, T] is bounded on L?(R")
(1 < p < 00).

In 2004, Palagachev and Softova [8] gave the boundedness of commutator
of parabolic singular integral with variable kernel on the Morrey space and
gave some applications of the commutators in studying parabolic PDE.

Recently, we improved Theorem E and removed the regularity condition
assumed on €2 in Theorem E.

THEOREM F ([3]). Suppose Q € L(log™ L)*(S"~") satisfies (1.4) and (1.5).
If b € BMO(R", p), then the commutator [b, T] defined in (1.7) is bounded
on LP(R") for 1 < p < oc.

The main results in this paper are as follows.

THEOREM 1.1. Let W be a non-decreasing convex function on Ry with
Y (0)=0and y(2t) < Cy(t). For1 < p < oo, denote ¢(r) =r*Py=1(r=%)
(or equivalently, y='(t) = t"/Po(t="/%)). Suppose that 0 < B < 1 satisfies
1l < p < a/fand Q € L“%ﬂ(S”_l) satisfying (1.4) and (1.5). Then for
b € BMO,(R", p), [b, T is bounded operator from L?(R") to L (R").

The following result can be seen a reverse of Theorem 1.1.

THEOREM 1.2. Suppose that Q2 satisfies (1.4) and (1.5) and there are con-
stants Cy > 0 and y > 1 such that for any x', y' € §"~!

C
(log 557575)"

If [b,T] for some 1 < p < oo maps LP(R") boundedly into Ly (R"), then
b € BMO,(R", p), where yr and ¢ are both as in Theorem 1.1.

(1.8) Q") — Q0N <

In particular, by taking ¢(r) = 1 and ¥ (zr) = ¢t for1 < p < oo in
Theorem 1.1 and Theorem 1.2, we get the following corollary of Theorem 1.1
and Theorem 1.2:

CoroOLLARY 1.3. If Q satisfies (1.4), (1.5) and (1.8), then the commutator
[b, T] is a bounded operator on LP(R*) (1 < p < o0) if and only if b €
BMO(R", p).

For1 < p < g < oo, if we take ¥ (¢t) = t9, then ¢(r) = r*/Pr=/4 in
Theorem 1.1 and Theorem 1.2. Notice that BMO,s (R", p) = Ag(R", p) (see
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Lemma 3.4 in Section 3), we therefore get another corollary of Theorem 1.1
and Theorem 1.2:

COROLLARY 1.4. Supposethat 1 < p < q < ocowithl/p —1/qg < 1/a.
If Q satisfies (1.4), (1.5) and (1.8), then [b, T] is a bounded operator from
LP(R") to LY(R") if and only if b € Ay1_1,(R", p).

P4

ReEMARK 1.5. Notice that the regularity condition assumed on €2 has been
removed in Theorem 1.1, hence the conclusion of Theorem 1.1 is a substantial
improvement of Theorem B and Theorem E. Moreover, it is easy to see that the
condition (1.8) is weaker than the Lipshitz condition Lip 5(S 0 < B <.
So Theorem 1.2 is also a substantial improvement and extension of Theorem B
and Uchiyama’s result in [11].

In the proof of Theorem 1.1, we will need to apply the (L?, L?)-bounded-
ness of the parabolic fractional integral Tq g, which is an extension of the
Hardy-Littlewood-Sobolev theorem for the Riesz potential (see [10]). So, these
results have also itself independent interest. Here the parabolic fractional in-
tegral is defined by

Q)
w p(y)eP

where 0 < 8 < « with Q € Luafﬁ(S"_l) satisfying (1.4).

Topf(x) = / Flx—y)dy,
R

THEOREM 1.6. Suppose that0 < B < «, and that Q € L& (S"~1) satisfies
(1.4).

(1) Tq,p is of weak type (1, ﬁ) That is, there exists a constant C > 0
such that for any f € L'(R") and ). > 0,

c N\
[{x eR" 1 |Topf(x)] > A}| < <x||f||1> ﬁ-

(i) For 1 < p < % andé = % - g, Tq p is of type (p, q).

COROLLARY 1.7. Suppose that Q2 € L“%ﬂ(S”_l) (0 < B < 1) satisfies
(1.4) and (1.5), let b € Ag(R", p). Then the commutator b, T defined in
(1.7) is a bounded operator from LP(R") to LY(R") for 1 < p < a/B and
1/q = 1/p — B/a. More precisely, we have ||[b, T1f |y < Cllbllag.oll fllps
where the constant C is independent of b and f.
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2. Proofs of Theorem 1.1 and Theorem 1.6
Let us begin with the proof of Theorem 1.6.

PROOF OF THEOREM 1.6 First we prove thatfor 1 < p < § and é = %— g,

Tq p is of weak type (p, g). Set K(x) = pgf% and E(s) = {x € R" :
|K(x)| > s} fors > 0. Then

(2.1) |E(s)| < As™a7,

where A depends only on «, § and €. In fact, by (1.4) and |J(x')| < «, we
have that

L[ 12w
E - d
| <s>|sst(s)p(xw ;

1

eaHI )@=

< 1[ |J(x/)||52(x/)|/(S) A1 dr do (x')
S sn—1 0
< As 57,

o
a=p
o

Lm(S”‘l

Obviously, we may take A = %H Q ; Now for fixed u > 0, let

Ky (x) = sgn(K () (|1K ()] — 1) x e (x)

and K»(x) = K(x) — K;(x). It is easy to see that ||K;|.c < . Thus for

l<p< % from (2.1) we get

12 1 , @
|K> ()| dx = p’/ sP N E@s)|ds < p’A/ sP 175 ds
R 0 0
o

Hence, when 1 < p < %, we obtain that

L

o — :3 ’ e
(2.2) 1Kzl < <TAq> W

So, for f € L?(R"), Holder’s inequality implies that

1

o —ﬂ i a
K2 % flloo = (TACI) pe=Pa | flp-
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For any A > 0, set u to satisfy

P ) s, = L
o—p)q = —.
p q 2 P )

Then 2
=x eR": Ky x f(x)| > EH =0.
Thus
A
{x eR": | Tapf(x)| > A} < {x eR": K * f(x)] > 5”
(2.3)

2 p
< (Xlllﬁ * f”p) :

It follows from (2.1) that

/ |K1(X)|dx=/ (IK(X)I—M)dXS/ |E(t + p)ldt
R" E(w) 0

2.4) o
_ BA s
<A t"e P dt = T
I a—p
For any f € L*°(R") and x € R", by (2.4), we conclude that
BA  _ s
(2.5) IKi* fOl < fllee [ [K1(x)]dx < " /3“ A f lloo-
R" -

For any f € L'(R"), it also implies that

BA _ s
(2.6) 1K1 * [l < / |Ki(x = WIfWdydx < o ﬂu <A flh-
n RYI -
Thus (2.5) and (2.6) show that T} : f — K * f is of type (oo, 0o) and of
type (1, 1). The Riesz-Thorin theorem leads to that 7 is also of (p, p) type
for1 < p < 00, and
2.7) 1Tl < =
: Lil(p,p) = o — ,BM .
Combining (2.3) with (2.7) yields that
(2.8)
BA

2 s p 1 q
[{x €R": [Tapf(x)] > A} < (Xm = ||f||p> = C(X”f”p) :
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where C is independent of A and f.

Therefore, (2.8) tells us that T g is of weak type (p,q) for1 < p < %
andé = % — g.Forl <p< %,take po such that p < pg < % and let g
satisty 1 /g0 = 1/po—B/a. By (2.8) and applying Marcinkiewicz interpolation
theorem, we obtain that Tq g is of type (p, q), where 1/g = 1/p — B/a. Thus

we complete the proof of Theorem 1.6.

PROOF OF COrROLLARY 1.7. Forany f € LP(R") and x € R", by the defin-
ition of the parabolic fractional integral Tg, g, we have the following pointwise
relationship between the commutator [b, T]1(f)(x) and Tig) (| f]) (x):

12 =yl

[[b, T1(f)(x)] 5/ |b(x) — b(y)] | fldy
R px —y)

12(x = y)|
< Cllbll [ 220l dy
M J o =y
= ClIbllagpTisrp (1 f D).
Then by Theorem 1.6 we get

1D, TY(H)llg = Cllblagp I Tinp(fDllg = ClbIA,oILf Nlp-

Before proving Theorem 1.1, let us give two lemmas. Suppose that n €
C5°(R™) with supp(n) C {x : p(x) < 1} and fRn n(y)dy = 1. Forr > 0 and
b € BMO,(R", p), we denote

2.9) boo) = [ be =800 dy.
Rn
LEMMA 2.1 ([6]). Suppose that b € BMO,(R", p) with ||blgmo,., < 1.
Then for any r > 0, b — b, € BMO,(R", p) and ||b — b,|lgmo,, < Ce(r).

LEMMA 2.2. Let0 < B < 1. If b € BMO,(R", p), then b, € Ag(R", p) and

(2.10) 1B:1la5.0 < Cr=Po@)lIblIBMO, . o-

Proor. By the definition (2.9) of b,, we get
b (x) — br(y)|
r“"/ b()nS,-1(x —z))dz — r“"f b()né,-1(y — z))dz|.
R" R"

Note that
/ n(ar-ly)dy=/ ) dy = 1,
Rn R'l
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for any v, independent of z, we have
|b-(x) — br(y)]

=r ¢

/ B() — N1 (x — 2)) dz — / (B() — VNG, (y — 2)) dz
R® R®
< / 15) = V19t (x — 2)) = (8,1 (y — 2)] dz.

Rn

If 2520 < 1, by Il < C, we get
|br(x) = by ()]
<Cr /R |b(z) = vI[n(1 (x —2)) — 0,1 (y — ) dz
< Cro81(x — I’ /R 16(z) = vI| V(&1 (x + (1 = 0y — 2)IP dz,

where 0 <t < 1.Let& ={z: ptx+ (1 —1)y —2) < r}and v = bg. Then

by [(x — y)il < p(x — )%, supp(Vn) C {x : p(x) < 1} and [Vl < C,
we have

by () — by ()]
< CI8,1(x — )|Fr / 1b(2) — by | dz
&

_ _ 2
< CoIbllsyo, p(r 2 (1 — y)> + -+ r 72 (x, — y)2)”

_ 2 _ 2aun B2
< Cooblmo, ((Z572) o (2E22)T)

p
Y
< C(O(r)”b“BMOw,p(M> .

If@ > 1, we get

by (x) — b ()|

<Cr | |b(z) = v|[n@-1(x — 2)) — n(8-1 (y — z))|P/meit g7
RI‘I

= Crr¥é,-1(x = y)l

B/ max{e;}

1b(z) —al
RVI

X V(81 (1x 4+ (1 — O)y — z))| P/ maxtead gz,



A CHARATERIZATION OF COMMUTATORS 15

Let& ={z: ptx+ (1 =)y —z) <r}and v = bg, then by |(x — y);| <
p(x — y)%, supp(Vn) C {x : p(x) < 1}, and |Vnlle < C, we get

b, (x) — by ()]
< C18,-1(x — )|/ maxlei—a f |b(z) — bg|dz
&

2a1 2\ b
X — X — 2 maxfe; }
§C<ﬂ(”)||b||BMoV,,p(<u) 4ot (p( Y)> )

-
. B
< ap(r)nanMow,p(M) .

Thus (2.10) follows from the above estimates in two cases.

For a measurable function f, denote by m the distribution function of f,

e mp(t) = |{x: | f0)l > 1}|  for 0.

LEMMA 2.3 ([6]). Suppose that 1 < p, < p < p; < 00, 0 is a non-
increasing function on Ry, L is a linear operator such that

mpg (e 0(1) < flglp =1,

(2.11)

mp(t'7-0(0) < =, i llgly, < 1.

Then o
/ mi VP60 di <C if llgll, < (p/p0)"".
0

Proor oF THEOREM 1.1. We will apply some idea taken from [6] to prove
Theorem 1.1. We may assume that ||b|lgmo, ., < 1, then by (2.10) [|b,|a,., <
Cr=Po(r) forr > 0. Choose p; (i =1,2)suchthatl < p, < p < p; < %
and denote 1/q; = 1/p; — B/a. Then by Corollary 1.7, for f € L? (i =1, 2)
with || fl, <1

(2.12) by, T1fly < CrPo(r).

On the other hand, by Lemmas 2.1 we know that b — b, € BMO,,(R", p) with
Ib — b, lsmo,, < Ce(r). Note that 2 € L7 (S"~")  L(log* L)*($"h),

applying Theorem F fori = 1,2 and f € L?" with || f||,, < 1, we have

(2.13) Ilb—=br, T1fllp, = Co(r).
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We now take r = ¢~'/%, by (2.12) and (2.13) we obtain the following weak
estimate:

Q214 mpryp (7o 7) < ( ot )”" (Lﬂ‘/’(’))qi _<

[I/Pi(p(r) [1/ﬁi(p(r) t )

If set O(t) = @(t~'/*), then (2.14) is just (2.11). Hence, by Lemma 2.3, when
fll, < (P/Pl)l/p we have

b, T o _
f lﬁ(W) dx :/ mpp, 712y o) de < C.
1 0

This shows that [|[6, T]f ||z, < C and Theorem 1.1 is proved.

3. Some lemmas

In this section, we give some lemmas which will be used in the proof of
Theorem 1.2.

LEmMA 3.1. If p(x) > 4p(y), then

p((x— vy —xy <322
p(x)
[ S Xn n—1
where x' = (p(j‘c‘)a] R p(x)ﬂn) e "
ProOOF. Write
(3.1
/ / X1 — V1 X1 Xn — Yn Xn
p((x—y)—X)=p< - - )
px—y)  plx)n px —y)  plx)
= N
Denote ¢; (x) = T then
99 —a, —a—1 9P (X)
(3.2) — () = p(x) ™" = xjop(x) T =
0x; ax;
By F(x, p) =1, we get
Ip(x) _ x;p(x) "2
0x; S apxip(x) TR
This together with (3.2) shows that
d¢i x; p(x) 72

(xX) = p(x)™% — xpap(x) 4! :
ax; o Z;l:l ocjszp(x)—z%—l

12 —2a;
(1 ™y

D1 e p(x) TR

(3.3)
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Jxi |

Since F6E

< 1and

n

3.4 minf{o;} < Zajszp(x)fz"»f < max{w;},
j=1

we get by (3.3) and (3.4)

(3.5)

A9
8_x,-(x)

o o
< (1 + — )p(x) .
min{o;}

Applying (3.5) and the mean value theorem to ¢; (x), we have

(3.6) ' Xi — Vi - Xi |
px —y)*  p(x)%

A9 —a
< ‘5(5)'% <A+ a)p@E) "yl
where £ = t(x — y) + (1 — t)x for some ¢ € (0, 1). Then we have

p(x) < p@&)+px—8)=pE&) +pty) <pE)+p0).

Bearing in mind p(x) > 4p(y), so p(§) > 3p(y) and p(§) > 3/4p(x). This
together (3.6) yields

‘ X~y o X
plx =y px)%

= +a)@/3)% p(x)™ | yil

= 20;(4/3)% p ()" yil.

3.7

Notice that p(8,x) = up(x) for u > 0, it follows from (3.1) and (3.7)

/ / 4 . 4 o
p(x —y) —X)S/)(Zal(m> |)’1|,---,206n<m> |)7n|>

<£_L ( —1 Qa: 1/a;
=3P x)" max{(2o;) "oyl ..y [yal)

4 _1 1/
=§,o(x) max{(2c;) "} p(y)

<3p(x) ().

LEMMA 3.2. If Q satisfies the conditions (1.4) and (1.8), then for p(x) >
4p(y),
-y Q| _ c

px =y pO*| T p(x)*(log 28)"
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ProOOF. Since p(x) > 4p(y), then by (1.4), (1.8) and Lemma 3.1 we get

(3.8) QG —y) - QW) = ———-
(log %y;)y
Now we claim that
w w p(y)
(3.9 lo(x)™ —px —y) ™" < C,o(x)““ .

In fact, we know 3/4 < % < 5/4 by p(x) > 4p(y). On the other hand,
using the convexity of ¢, it is easy to check that
1-@1/2)" - 1 -1t~

for t>1/2 and t#1.
1—12 ~ 1—1 or t>1/2 and 17

Hence
11— <2(2% = 1)|1 — ¢ for t>1/2.

Thus, for p(x) > 4p(y) we have

P(y)
p(x)a+1 :

Hence we get (3.9). Applying (3.8), (3.9) and notice that @ € L>(5""), we
have

lp()™ —p(x —y) ¥ =2(2* - 1)

Qx—y) Q)
plx—y)*  px)*

< 12(x —y) — Q)

+1Q&x = WllpGx =y~ = p) ™

p(x)~
C
= p(x)\Y ¢ p();)—i-l
p(x)« (log p(y)) p(x)
C
=

p(x)*(log 283)"

LemmaA 3.3 ([9]). Let |E| be a set of finite measure. Then

IxellL,. = IElW"(EI™.

LeMMA 3.4 ([6]). If 0 < B < 1 and ¢(t) = 1P, then BMO,(R", p) =
Aﬁ(Rn, ,0)
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4. Proof of Theorem 1.2

In the proof of Theorem 1.2, we will use some idea taken from [11]. Suppose
that [b, T'] is a bounded operator from L”(R") to Ly (R"), we are going to
prove that b € BMO, (R", p). Below, B; (j =1, ..., 15) denotes the positive
constant depending only on 2, p,a, y and B; (1 <i < j).

Without loss of generality, we assume ||[b, T']||zr—r, = 1. We wish to
prove that there exists a constant B := B(S2, p, «, ) such that for any x, € R"
andr € Ry,

1

4.1 N=—"
“-D € G0 DIe) Json

|b(y) —aoldy < B,

where ag = |€ (xg, r)| ! S xy.ry () dy. If we denote

~ Q(x — y)
Tf) =pv. | ——f(ydy.
np(x =)
where ﬁ(x) = —Q(—x), then itis easy to see that [b, f] is the adjoint operator

of [b, T]. Hence ||[, T]||LW_)L,)/ = 1. Notice that [b — ag, T] = [b, f], thus
we may assume ag = 0. Let

4.2) ) = [sgn(b(y)) — colxzxo,r (V).
where ¢y = —‘g(X‘O,r)l fmo’,) sgn(b(y)) dy. By —lg(xlo,,,)l fg(mr)b(y) dy = ay =

0, it is easy to check that |cy| < 1. Moreover, the following properties of f are
obvious:

43) 1 flloo < 2,
(4.4) supp f C &(xo, ),

(4.5) N fydy =0,

(4.6) FMb(y) >0,

4.7) _ L fb(y)dy =N.

1€ (x0, @) Jre

Since €2 satisfies (1.5) and (1.8), then there exists a positive number B; < 1
such that

(4.8) o(A) = 0<{x’ esS" Qi) > LU}) > 0,
(log B%)
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where o is the measure on S”~! which is induced from the Lebesgue measure
on R". Let

/ n—1 / 2C,
A=3ix €S :Q(x)zﬁ > 0,
(log B_l)
then A is a closed set. If denote A = x' e $"1: —x' = (=x) € A},

then O’(K) = o(A) > 0. We claim that if x’ € A and y € $"! satisfying
p(y' — (=x)) < By, then

4.9) QO =
In fact, since

C] < Cl
(log o=5)" ~ (log 7)”

12((=0)) = QO =

and note that Q((—x)’) > 2 7. Now denote

—L—, we have Q(y’) >

(1 gs%)
G = {x €R": p(x —x9) > Bor and (x — xo) € K}

where B, = 3B1_1 + 1. Then for x € G,
(4.10) _
[[b, T1f (x)]

> |T(bf)(x)] — [T f(x)]

Q —
_ / Mb(y)f(y)dy‘ b
e p(y —x)¢

= 11 — 12.

f ((y—_f( )dy
re Py —

We first give the estimate of I;. If p(y — x¢) < r, then
p(x —x0) > Bop(y — x0) > 4p(y — Xo).
By Lemma 3.1, we see that

Py — x0) < B,

p((y —x) = (xo—x)) <3 <
p(x — Xo)

Then Q((y — x)") >

by (4.9). Thus, it follows from (4.4), (4.6) and

<log Bi)
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(4.7) that
I >Lv/ ) F )Py — x) - d
- (log B%)y & (xo,r) Y YIPLY y
C
> m '/;( )b()’)f(}’)(p(x —x0) + p(y — X))~ dy
(411) By & (xo,r
Cy B _
_ =l s b - .
= (log 2)" /‘é’uo,r) ) fMpx —x0) *dy

= Bsr®o(r)Np(x — x0)™*

Let us turn to I,. Since p(x — x9) > 4p(y — xp), by (4.3), (4.4), (4.5) and
Lemma 3.2 we get

—X) Q(xg —x)

p(y —x)*  plxg—x)®
[f DI
#(xor) p(x — x0)?(log

plx — Xo))_y

I < |b(x)] |f(y )I‘

&(x0,1)

(4.12) = Cb(x)| ey

< Byr®[b(x)|p(x — x0)™* (log .

Set

— 14
' {x €G] > ) (log o XO)>

234 r
and p(x — xp) < N”/"‘r}.

By (4.10), (4.11) and (4.12), we have

171,
b, T1f (x)|” dx

R"

’

4
(%Bstﬂ(r)raP(x - XO)a> dx

= [
(G\F)N{p(x—x0)<NP/r}
1 v
o —
> f (—B3N<p<r)r p(x — x0) ) dx
{BS(IF|+(Bar)®) o < p(x—x0) <N?/r}nG \ 2
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B:N a\ P NPy ,
= <—3 ) ) / P +“_1dtﬁl(x/) do(x)
B 1/a

2 S(F1+(Bar)) Iy

/

BiNo(r)r \”
2

> 0 (R)=>—— -

[NP(I*P’)FOZ(]*P/) _ BS(I*I’/)O‘(lFl + (Bzr)ot)lfpr].

Since —p’ = p(1 — p’), thus we have

(|F| + (Bor)®)' =7
< B6Np(1_pl) (r“(l_”/) —+ gp(r)p(l_l’/)rﬂ(l—P/)O! ”f”P(w]:,—l))
= p ‘

By Lemma 3.3 and the definition of f, we have | f|.,. < Croy~l(r™) =
Cgo(r)r%. Hence |F| 4+ (Byr)® = B7NPr“.

IfN < (ZB{IBZ"‘)I/I’, then Theorem 1.2 is proved. If N > (2B.le§)l/1’,
we get

B
(4.13) |F| > %N”r“.

On the other hand, for x € &(x¢, r) and y € F we have the following facts:
@ p(x—y)~ p(y —x0);

_ / > C]
(b) Q(x—y)) > (e 2]
The fact (a) follows from F C G and B, > 4. By p(y — x0) > Bap(x — x)
and Lemma 3.1, we have p((x — y)' — (xo — ¥)’) < By and then get (b) by
applying (4.9).
Now, we denote g(y) = (sgn(b(y))) xr(y). For x € &(x¢, r) we have

I[b, T]g(x)]
> [T (b)) = b)) Tg(x)]

@iy / Q((x =)
—Jropx =)

Q _ !/
b(y)| dy — [b(x)] / 20X = D10 )1y
F op(x—y)

= K| — K».

We first estimate K». Since Q € L®(S" 1) and p(x — y) ~ p(y — xp), we
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have
K; < leb(x)|/ p(y —x0) *dy
F
4.15 wrier
“@.15) < Bylb(x)| p! dp/ I do(y)
Bzr Sn—

< Bo|b(x)|log N.

Now regarding K. By the facts (a) and (b), we have

C, BN —x)\’
4.16) K> — -2 (p(r)/,o(y—xo)_“(logM> dy.
(logB—l) 2By F r

The estimate of K is divided into two cases, namely

1°: y > a; 2°: 1<y <a.
Case 1°. Since the function s — logs is decreasing for s > 3 and 4r < Byr <
p(y) < NP/®r for y € F, hence by (4.16) and (4.13) we get

- 10g p(y—xo) \ « o(y — x0) y—a
K1 = BioNe(r)r ™ / (W) <log M) dy
=)

log N”/"‘)“ B,

> BioNg¢(r)(log Bz)y_“< NPT >

= Bi1¢(r)N(log N)*.

Case 2°. In this case, the function s — (logs) is still decreasing for s > 3. By

4r < Bor < p(y —x9) < NP/%rify € F and (4.16), (4.13) we have

pPO— xO))

lo
K > 310N§0(”)7’a/ ( s dy

P (p(}r—x()))

(log N7/@)”

> B & (r)YN’N
= byo ) @ NP
= Bip(r)N(log N)" .

Summing up the estimates in Case 1° and Case 2°, there exists a constant 7 > 1
such that

4.17) Ki > Bizp(r)N(log N)®.
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Thus, by (4.14), (4.15) and (4.17), we get
(4.18) |[b, T1g(x)| = Bizp(r)N(log N)*—Bo|b(x)|log N, x € &(xo,1).

Since ||[b, T]||Lr—1, = 1. Thus by (4.13), (4.18) and the generalized Holder’s
inequality (1.3), we have

Bir vy (r TN

1/p
zr“w—1<r—“>< [ dx)
p(x—xg)<Nar
1/p
> r"‘gﬁ%r“)(/ dx)
F

=y lel,
> [l x# o) Ly 11D, Tl L,

> / b, T1g(x)] dx
& (xo.,1)

> B13¢(r)N (log N)T/ dx — Bglog N |b(x)|dx
& (x0,7r) & (x0,r)

> Bi3p(r)r*N(log N)' — Bop(r)r“*N log N.
This shows that
(4.19) Bur ¢~ (r™) = Bi3(log N)"¢(r) — Bolog No(r).

Since @(r) = rry~'(r=®), then (4.19) becomes By > Biz(logN)™ —
Bylog N. Therefore, there exists a constant B := B(2, p, «, y) such that
N < B. Thus we finish the proof of Theorem 1.2.
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