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A CHARATERIZATION OF COMMUTATORS FOR
PARABOLIC SINGULAR INTEGRALS

YANPING CHEN and YONG DING∗

Abstract
In this paper, the authors give a characterization of the Lp-boundedness of the commutators for
the parabolic singular integrals. More precisely, the authors prove that if b ∈ BMOϕ(Rn, ρ), then
the commutator [b, T ] is a bounded operator from Lp(Rn) to the Orlicz space Lψ(Rn), where the
kernel function � has no any smoothness on the unit sphere Sn−1. Conversely, if assuming on
� a slight smoothness on Sn−1, then the boundedness of [b, T ] from Lp(Rn) to Lψ(Rn) implies
that b ∈ BMOϕ(Rn, ρ). The results in this paper improve essentially and extend some known
conclusions.

1. Introduction

Suppose that Sn−1 = {x ∈ Rn : |x| = 1} is the unit sphere in Rn equipped with
the Lebesgue measure dσ , where | · | denotes the Euclidean norm in Rn. Let
b ∈ Lloc(Rn), then the commutator of the classical singular integral is defined
by

[b, T ]f (x) = p.v.
∫

Rn

�(x − y)

|x − y|n (b(x)− b(y))f (y) dy,

where � is homogeneous function of degree zero on Rn \ {0}, that is,

(1.1) �(μx) = �(x) for any μ > 0 and x ∈ Rn \ {0}.
Moreover, � ∈ L1(Sn−1) satisfying the following cancellation condition:

(1.2)
∫
Sn−1

�(x ′) dσ (x ′) = 0.

In 1976, Coifman, Rochberg and Weiss gave the following result:

Theorem A ([2]). If � ∈ Lip1(S
n−1) satisfies (1.1) and (1.2), and b ∈

BMO, then [b, T ] is bounded on Lp(Rn) (1 < p < ∞). Conversely, if [b,Rj ]
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is bounded on Lp(Rn) for some p, 1 < p < ∞ and all j = 1, . . . , n, then
b ∈ BMO, where Rj is the j’th Riesz transform.

In 1978, Janson [6] extended Theorem A. To state the result in [6], we give
some notations and definitions.

Let ψ be a non-decreasing convex function on R+ with ψ(0) = 0, let
ψ−1 denote the inverse function of ψ . The Orlicz space Lψ(Rn) is the set of
functions f satisfying

�(f,ψ) =
∫

Rn
ψ(λ|f (y)|) dy < ∞

for some λ > 0. The norm in Lψ is defined by

‖f ‖Lψ = inf
λ>0

1

λ

(
1 +

∫
Rn
ψ(λ|f (y)|) dy

)
= sup

g∈Lψ∗
�(g,ψ∗)≤1

∣∣∣∣
∫

Rn
f (y)g(y) dy

∣∣∣∣,
where ψ∗ is the complementary Young function of ψ , which is given by

ψ∗(s) = sup
0≤t<∞

[st − ψ(t)], 0 ≤ s < ∞.

The following generalized Hölder’s inequality holds in the Orlicz spaceLψ(Rn)
(see [9] for its proof):

(1.3)

∣∣∣∣
∫

Rn
f (y)g(y) dy

∣∣∣∣ ≤ ‖f ‖Lψ‖g‖Lψ∗ .

Now we give the definition of BMOϕ as follows. Denote

M(b,Q) = 1

|Q|
∫
Q

|b(x)− bQ| dx,

where bQ = 1
|Q|

∫
Q
b(x) dx andQ is a cube in Rn. Let ϕ be a positive function,

then

BMOϕ(R
n) =

{
b ∈ Lloc(R

n) : ‖b‖BMOϕ
= sup

x∈Rn
r>0

M(b,Q(x, r))

ϕ(r)
< ∞

}

where Q(x, r) denotes the cube centered at x and with diameter r .
With the above notations, Janson got the following conclusion:

Theorem B ([6]). Suppose that � ∈ C∞(Sn−1) satisfies (1.1) and (1.2)
and 1 < p < ∞. Let ϕ and ψ be two non-decreasing positive functions on R+
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connected by the relation ϕ(r) = rn/pψ−1(r−n) (or equivalently ψ−1(t) =
t1/pϕ(t−1/n)). If ψ is convex, ψ(0) = 0 and ψ(2t) ≤ Cψ(t), then b belongs
to BMOϕ if and only if [b, T ] maps Lp(Rn) boundedly into Lψ(Rn).

Notice that in Theorem B, � was assumed on a very stronger smoothness
condition on Sn−1. Hence, it is natural to ask if the conclusion of Theorem B
holds still under a weaker condition of�. In the paper, we will give a positive
answer to this question. In fact, we will improve and extend Theorem B under
the parabolic cases. Before stating our results, let us recall some definitions
and some known results.

In 1966, Fabes and Rivière [5] introduced the parabolic singular integral.
Let α1, . . . , αn be fixed real numbers with αi ≥ 1. It is easy to see that for each
fixed x ∈ Rn, the function

F(x, ρ) =
n∑
i=1

xi
2

ρ2αi

is a strictly decreasing function of ρ > 0. Therefore, there exists an unique
ρ = ρ(x) such that F(x, ρ) = 1. It was proved in [5] that ρ is a metric on
Rn and the metric space is denoted by (Rn, ρ). For μ > 0 and x ∈ Rn, if we
denote by

δμ : (x1, x2, . . . , xn) −→ (μα1x1, μ
α2x2, . . . , μ

αnxn)

a dilation on Rn, then we have the polar decomposition x = δρx
′ with x ′ ∈

Sn−1, ρ = ρ(x) and dx = ρα−1J (x ′)dρ dσ(x ′), where

J (x ′) = α1x
′2
1 + · · · + αnx

′2
n and α =

n∑
i=1

αi.

Suppose that� is a real valued and measurable function defined on Rn \{0}.
It is said that � is homogeneous of degree zero with respect to δμ, if for any
μ > 0 and x ∈ Rn \ {0}
(1.4) �(δμx) = �(x).

Moreover, we also assume that� satisfies the following cancellation condition:

(1.5)
∫
Sn−1

�(x ′)J (x ′) dσ (x ′) = 0.

In [5], Fabes and Rivière proved that if � ∈ C1(Sn−1) satisfying (1.4) and
(1.5), then the parabolic singular integral operator T is bounded on Lp(Rn) for
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1 < p < ∞, where T is defined by

(1.6) Tf (x) = p.v.
∫

Rn

�(y)

ρ(y)α
f (x − y) dy.

Later, the above result was improved by Nagel, Riviere and Wainger [7]
and the regularity condition assumed on � was removed.

Theorem C ([7]). If� ∈ L log+ L(Sn−1) satisfies (1.4) and (1.5), then the
operator T is bounded on Lp(Rn) for 1 < p < ∞.

Recently, the condition of� in Theorem C was weakened further by Chen,
Ding and Fan:

Theorem D ([4]). If � ∈ H 1(Sn−1) satisfies (1.4) and (1.5), where
H 1(Sn−1) denotes the Hardy space on the unit sphere Sn−1, then the para-
bolic singular integral operator T is bounded on Lp(Rn) for 1 < p < ∞.

Let us now turn to the definitions of the BMO space and the Lipschitz space
on (Rn, ρ). Denote by E (x, r) = {y : ρ(x − y) < r} the ellipsoid centered
at x and with radius r . For j > 0, jE denotes the j -times extension of the
ellipsoid E with the same center. Moreover, |E (x, r)| is the Lebesgue measure
of E (x, r), which is comparable to rα . Let E c denote the complement of E .

For a positive function ϕ, the parabolic BMOϕ(Rn, ρ) space is defined by

BMOϕ(R
n, ρ) =

{
b ∈ Lloc(R

n) : ‖b‖BMOϕ,ρ = sup
x∈Rn
r>0

M(b, E (x, r))

ϕ(r)
< ∞

}
,

where M(b, E ) = 1
|E |

∫
E

|b(x) − bE | dx, and bE = 1
|E |

∫
E
b(x) dx. When

ϕ ≡ 1, then we denote simply BMO1(Rn, ρ) by BMO(Rn, ρ) and ‖b‖BMO1,ρ

by ‖b‖BMO,ρ .
For 0 < β ≤ 1, the definition of parabolic Lipschitz space�β(Rn, ρ) is the

following:

�β(R
n, ρ) =

{
b : ‖b‖�β,ρ = sup

x,y∈Rn

|b(x)− b(y)|
ρ(x − y)β

< ∞
}
.

For b ∈ Lloc(Rn), the commutator [b, T ] of parabolic singular integral operator
is defined by

(1.7) [b, T ]f (x) = p.v.
∫

Rn

�(x − y)

ρ(x − y)α
(b(x)− b(y))f (y) dy.

The commutator of the parabolic singular integral operator arises naturally
in the theory of parabolic PDE. In 1996, Bramanti and Cerutti [1] proved the
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commutator of parabolic singular integral operator is bounded on Lp(Rn) and
gave some applications of the commutator in the theory of parabolic PDE.

Theorem E ([1]). Suppose that b ∈ BMO(Rn, ρ) and that� ∈ Lipβ(S
n−1)

(0 < β ≤ 1) satisfies (1.4) and (1.5), then [b, T ] is bounded on Lp(Rn)
(1 < p < ∞).

In 2004, Palagachev and Softova [8] gave the boundedness of commutator
of parabolic singular integral with variable kernel on the Morrey space and
gave some applications of the commutators in studying parabolic PDE.

Recently, we improved Theorem E and removed the regularity condition
assumed on � in Theorem E.

Theorem F ([3]). Suppose� ∈ L(log+ L)2(Sn−1) satisfies (1.4) and (1.5).
If b ∈ BMO(Rn, ρ), then the commutator [b, T ] defined in (1.7) is bounded
on Lp(Rn) for 1 < p < ∞.

The main results in this paper are as follows.

Theorem 1.1. Let ψ be a non-decreasing convex function on R+ with
ψ(0)= 0 andψ(2t) ≤ Cψ(t). For 1 < p < ∞, denote ϕ(r)= rα/pψ−1(r−α)
(or equivalently, ψ−1(t) = t1/pϕ(t−1/α)). Suppose that 0 < β ≤ 1 satisfies
1 < p < α/β and � ∈ L

α
α−β (Sn−1) satisfying (1.4) and (1.5). Then for

b ∈ BMOϕ(Rn, ρ), [b, T ] is bounded operator from Lp(Rn) to Lψ(Rn).

The following result can be seen a reverse of Theorem 1.1.

Theorem 1.2. Suppose that � satisfies (1.4) and (1.5) and there are con-
stants C1 > 0 and γ > 1 such that for any x ′, y ′ ∈ Sn−1

(1.8) |�(x ′)−�(y ′)| ≤ C1(
log 2

ρ(x ′−y ′)

)γ .
If [b, T ] for some 1 < p < ∞ maps Lp(Rn) boundedly into Lψ(Rn), then
b ∈ BMOϕ(Rn, ρ), where ψ and ϕ are both as in Theorem 1.1.

In particular, by taking ϕ(r) ≡ 1 and ψ(t) = tp for 1 < p < ∞ in
Theorem 1.1 and Theorem 1.2, we get the following corollary of Theorem 1.1
and Theorem 1.2:

Corollary 1.3. If � satisfies (1.4), (1.5) and (1.8), then the commutator
[b, T ] is a bounded operator on Lp(Rn) (1 < p < ∞) if and only if b ∈
BMO(Rn, ρ).

For 1 < p < q < ∞, if we take ψ(t) = tq , then ϕ(r) = rα/pr−α/q in
Theorem 1.1 and Theorem 1.2. Notice that BMOtβ (Rn, ρ) = �β(Rn, ρ) (see
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Lemma 3.4 in Section 3), we therefore get another corollary of Theorem 1.1
and Theorem 1.2:

Corollary 1.4. Suppose that 1 < p < q < ∞ with 1/p − 1/q ≤ 1/α.
If � satisfies (1.4), (1.5) and (1.8), then [b, T ] is a bounded operator from
Lp(Rn) to Lq(Rn) if and only if b ∈ �α( 1

p
− 1
q
)(R

n, ρ).

Remark 1.5. Notice that the regularity condition assumed on � has been
removed in Theorem 1.1, hence the conclusion of Theorem 1.1 is a substantial
improvement of Theorem B and Theorem E. Moreover, it is easy to see that the
condition (1.8) is weaker than the Lipshitz condition Lipβ(S

n−1)(0 < β ≤ 1).
So Theorem 1.2 is also a substantial improvement and extension of Theorem B
and Uchiyama’s result in [11].

In the proof of Theorem 1.1, we will need to apply the (Lp, Lq)-bounded-
ness of the parabolic fractional integral T�,β , which is an extension of the
Hardy-Littlewood-Sobolev theorem for the Riesz potential (see [10]). So, these
results have also itself independent interest. Here the parabolic fractional in-
tegral is defined by

T�,βf (x) =
∫

Rn

�(y)

ρ(y)α−β f (x − y) dy,

where 0 < β < α with � ∈ L α
α−β (Sn−1) satisfying (1.4).

Theorem 1.6. Suppose that 0 < β < α, and that� ∈ L α
α−β (Sn−1) satisfies

(1.4).
(i) T�,β is of weak type

(
1, α

α−β
)
. That is, there exists a constant C > 0

such that for any f ∈ L1(Rn) and λ > 0,

∣∣{x ∈ Rn : |T�,βf (x)| > λ}∣∣ ≤
(
C

λ
‖f ‖1

) α
α−β
.

(ii) For 1 < p < α
β

and 1
q

= 1
p

− β

α
, T�,β is of type (p, q).

Corollary 1.7. Suppose that � ∈ L
α

α−β (Sn−1) (0 < β ≤ 1) satisfies
(1.4) and (1.5), let b ∈ �β(Rn, ρ). Then the commutator [b, T ] defined in
(1.7) is a bounded operator from Lp(Rn) to Lq(Rn) for 1 < p < α/β and
1/q = 1/p − β/α. More precisely, we have ‖[b, T ]f ‖q ≤ C‖b‖�β,ρ‖f ‖p,
where the constant C is independent of b and f .
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2. Proofs of Theorem 1.1 and Theorem 1.6

Let us begin with the proof of Theorem 1.6.

Proof of Theorem 1.6. First we prove that for 1 ≤ p < α
β

and 1
q

= 1
p
− β

α
,

T�,β is of weak type (p, q). Set K(x) = �(x)

ρ(x)α−β and E(s) = {x ∈ Rn :
|K(x)| > s} for s > 0. Then

(2.1) |E(s)| ≤ As
− α
α−β ,

where A depends only on α, β and �. In fact, by (1.4) and |J (x ′)| ≤ α, we
have that

|E(s)| ≤ 1

s

∫
E(s)

|�(x)|
ρ(x)α−β dx

≤ 1

s

∫
Sn−1

|J (x ′)||�(x ′)|
∫ ( |�(x′)|

s

) 1
α−β

0
rβ−1 dr dσ(x ′)

≤ As
− α
α−β .

Obviously, we may take A = α
β

∥∥�∥∥ α
α−β
L

α
α−β (Sn−1)

. Now for fixed μ > 0, let

K1(x) = sgn(K(x))(|K(x)| − μ)χE(μ)(x)

and K2(x) = K(x) − K1(x). It is easy to see that ‖K2‖∞ ≤ μ. Thus for
1 < p < α

β
, from (2.1) we get

∫
Rn

|K2(x)|p′
dx = p′

∫ μ

0
sp

′−1|E(s)| ds ≤ p′A
∫ μ

0
s
p′−1− α

α−β ds

= α − β

α
Aqμ

α
α−β

p′
q .

Hence, when 1 ≤ p < α
β

, we obtain that

(2.2) ‖K2‖p′ ≤
(
α − β

α
Aq

) 1
p′
μ

α
(α−β)q .

So, for f ∈ Lp(Rn), Hölder’s inequality implies that

‖K2 ∗ f ‖∞ ≤
(
α − β

α
Aq

) 1
p′
μ

α
(α−β)q ‖f ‖p.
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For any λ > 0, set μ to satisfy

(
α − β

α
Aq

) 1
p′
μ

α
(α−β)q ‖f ‖p = λ

2
.

Then ∣∣∣∣
{
x ∈ Rn : |K2 ∗ f (x)| > λ

2

}∣∣∣∣ = 0.

Thus

(2.3)

∣∣{x ∈ Rn : |T�,βf (x)| > λ}∣∣ ≤
∣∣∣∣
{
x ∈ Rn : |K1 ∗ f (x)| > λ

2

}∣∣∣∣
≤

(
2

λ
‖K1 ∗ f ‖p

)p
.

It follows from (2.1) that

(2.4)

∫
Rn

|K1(x)| dx =
∫
E(μ)

(|K(x)| − μ) dx ≤
∫ ∞

0
|E(t + μ)| dt

≤ A

∫ ∞

μ

t
− α
α−β dt = βA

α − β
μ

− β

α−β .

For any f ∈ L∞(Rn) and x ∈ Rn, by (2.4), we conclude that

(2.5) |K1 ∗ f (x)| ≤ ‖f ‖∞
∫

Rn
|K1(x)| dx ≤ βA

α − β
μ

− β

α−β ‖f ‖∞.

For any f ∈ L1(Rn), it also implies that

(2.6) ‖K1 ∗ f ‖1 ≤
∫

Rn

∫
Rn

|K1(x − y)||f (y)| dy dx ≤ βA

α − β
μ

− β

α−β ‖f ‖1.

Thus (2.5) and (2.6) show that T1 : f → K1 ∗ f is of type (∞,∞) and of
type (1, 1). The Riesz-Thörin theorem leads to that T1 is also of (p, p) type
for 1 < p < ∞, and

(2.7) ‖T1‖(p,p) ≤ βA

α − β
μ

− β

α−β .

Combining (2.3) with (2.7) yields that
(2.8)∣∣{x ∈ Rn : |T�,βf (x)| > λ}∣∣ ≤

(
2

λ

βA

α − β
μ

− β

α−β ‖f ‖p
)p

= C

(
1

λ
‖f ‖p

)q
.
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where C is independent of λ and f .
Therefore, (2.8) tells us that T�,β is of weak type (p, q) for 1 ≤ p < α

β

and 1
q

= 1
p

− β

α
. For 1 < p < α

β
, take p0 such that p < p0 <

α
β

and let q0

satisfy 1/q0 = 1/p0−β/α. By (2.8) and applying Marcinkiewicz interpolation
theorem, we obtain that T�,β is of type (p, q), where 1/q = 1/p−β/α. Thus
we complete the proof of Theorem 1.6.

Proof of Corollary 1.7. For any f ∈ Lp(Rn) and x ∈ Rn, by the defin-
ition of the parabolic fractional integral T�,β , we have the following pointwise
relationship between the commutator [b, T ](f )(x) and T|�|,β(|f |)(x):

|[b, T ](f )(x)| ≤
∫

Rn
|b(x)− b(y)| |�(x − y)|

ρ(x − y)α
|f (y)| dy

≤ C‖b‖�β,ρ
∫

Rn

|�(x − y)|
ρ(x − y)α−β |f (y)| dy

= C‖b‖�β,ρT|�|,β(|f |)(x).
Then by Theorem 1.6 we get

‖[b, T ](f )‖q ≤ C‖b‖�β,ρ‖T|�|,β(|f |)‖q ≤ C‖b‖�β,ρ‖f ‖p.

Before proving Theorem 1.1, let us give two lemmas. Suppose that η ∈
C∞

0 (R
n) with supp(η) ⊂ {x : ρ(x) < 1} and

∫
Rn η(y) dy = 1. For r > 0 and

b ∈ BMOϕ(Rn, ρ), we denote

(2.9) br(x) =
∫

Rn
b(x − δry)η(y) dy.

Lemma 2.1 ([6]). Suppose that b ∈ BMOϕ(Rn, ρ) with ‖b‖BMOϕ,ρ ≤ 1.
Then for any r > 0, b − br ∈ BMOϕ(Rn, ρ) and ‖b − br‖BMOϕ,ρ

≤ Cϕ(r).

Lemma 2.2. Let 0 < β ≤ 1. If b ∈ BMOϕ(Rn, ρ), then br ∈ �β(Rn, ρ) and

(2.10) ‖br‖�β,ρ ≤ Cr−βϕ(r)‖b‖BMOϕ,ρ .

Proof. By the definition (2.9) of br , we get

|br(x)− br(y)|
=

∣∣∣∣r−α
∫

Rn
b(z)η(δr−1(x − z)) dz− r−α

∫
Rn
b(z)η(δr−1(y − z)) dz

∣∣∣∣.
Note that

r−α
∫

Rn
η(δr−1y) dy =

∫
Rn
η(y) dy = 1,
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for any ν, independent of z, we have

|br(x)− br(y)|

= r−α
∣∣∣∣
∫

Rn
(b(z)− ν)η(δr−1(x − z)) dz−

∫
Rn
(b(z)− ν)η(δr−1(y − z)) dz

∣∣∣∣
≤ r−α

∫
Rn

|b(z)− ν||η(δr−1(x − z))− η(δr−1(y − z))| dz.

If ρ(x−y)
r

≤ 1, by ‖η‖∞ ≤ C, we get

|br(x)− br(y)|

≤ Cr−α
∫

Rn
|b(z)− ν||η(δr−1(x − z))− η(δr−1(y − z))|β dz

≤ Cr−α|δr−1(x − y)|β
∫

Rn
|b(z)− ν||∇η(δr−1(ιx + (1 − ι)y − z))|β dz,

where 0 < ι < 1. Let E = {z : ρ(ιx + (1 − ι)y − z) < r} and ν = bE . Then
by |(x − y)i | ≤ ρ(x − y)αi , supp(∇η) ⊂ {x : ρ(x) < 1} and ‖∇η‖∞ ≤ C,
we have

|br(x)− br(y)|
≤ C|δr−1(x − y)|βr−α

∫
E

|b(z)− bE | dz

≤ Cϕ(r)‖b‖BMOϕ,ρ

(
r−2α1(x1 − y1)

2 + · · · + r−2αn(xn − yn)
2
)β/2

≤ Cϕ(r)‖b‖BMOϕ,ρ

((
ρ(x − y)

r

)2α1

+ · · · +
(
ρ(x − y)

r

)2αn)β/2

≤ Cϕ(r)‖b‖BMOϕ,ρ

(
ρ(x − y)

r

)β
.

If ρ(x−y)
r

≥ 1, we get

|br(x)− br(y)|
≤ Cr−α

∫
Rn

|b(z)− ν||η(δr−1(x − z))− η(δr−1(y − z))|β/max{αi } dz

≤ Cr−α|δr−1(x − y)|β/max{αi }
∫

Rn
|b(z)− a|

× |∇η(δr−1(ιx + (1 − ι)y − z))|β/max{αi } dz.
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Let E = {z : ρ(ιx + (1 − ι)y − z) < r} and ν = bE , then by |(x − y)i | ≤
ρ(x − y)αi , supp(∇η) ⊂ {x : ρ(x) < 1}, and ‖∇η‖∞ ≤ C, we get

|br(x)− br(y)|
≤ C|δr−1(x − y)|β/max{αi }r−α

∫
E

|b(z)− bE | dz

≤ Cϕ(r)‖b‖BMOϕ,ρ

((
ρ(x − y)

r

)2α1

+ · · · +
(
ρ(x − y)

r

)2αn) β

2 max{αi }

≤ Cϕ(r)‖b‖BMOϕ,ρ

(
ρ(x − y)

r

)β
.

Thus (2.10) follows from the above estimates in two cases.

For a measurable function f , denote by mf the distribution function of f ,
i.e.,

mf (t) = ∣∣{x : |f (x)| > t}∣∣ for t > 0.

Lemma 2.3 ([6]). Suppose that 1 ≤ p2 < p < p1 < ∞, θ is a non-
increasing function on R+, L is a linear operator such that

(2.11)

⎧⎪⎪⎨
⎪⎪⎩
mLg(t

1/p1 · θ(t)) ≤ C

t
, if ‖g‖p1 ≤ 1,

mLg(t
1/p2 · θ(t)) ≤ C

t
, if ‖g‖p2 ≤ 1.

Then ∫ ∞

0
mLg(2t

1/p · θ(t)) dt ≤ C if ‖g‖p ≤ (p/p1)
1/p.

Proof of Theorem 1.1. We will apply some idea taken from [6] to prove
Theorem 1.1. We may assume that ‖b‖BMOϕ,ρ ≤ 1, then by (2.10) ‖br‖�β,ρ ≤
Cr−βϕ(r) for r > 0. Choose pi (i = 1, 2) such that 1 < p2 < p < p1 <

α
β

and denote 1/qi = 1/pi −β/α. Then by Corollary 1.7, for f ∈ Lpi (i = 1, 2)
with ‖f ‖pi ≤ 1

(2.12) ‖[br, T ]f ‖qi ≤ Cr−βϕ(r).

On the other hand, by Lemmas 2.1 we know that b− br ∈ BMOϕ(Rn, ρ) with
‖b − br‖BMOϕ,ρ

≤ Cϕ(r). Note that � ∈ L
α

α−β (Sn−1) ⊂ L(log+ L)2(Sn−1),
applying Theorem F for i = 1, 2 and f ∈ Lpi with ‖f ‖pi ≤ 1, we have

(2.13) ‖[b − br, T ]f ‖pi ≤ Cϕ(r).
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We now take r = t−1/α , by (2.12) and (2.13) we obtain the following weak
estimate:

(2.14) m[b,T ]f
(
t1/pi ϕ(t−1/α)

) ≤
(

2Cϕ(r)

t1/pi ϕ(r)

)pi
+

(
2Cr−βϕ(r)
t1/pi ϕ(r)

)qi
= C

t
.

If set θ(t) = ϕ(t−1/α), then (2.14) is just (2.11). Hence, by Lemma 2.3, when
‖f ‖p ≤ (p/p1)

1/p we have∫
Rn
ψ

( |[b, T ]f (x)|
2

)
dx =

∫ ∞

0
m[b,T ]f (2ψ

−1(t)) dt ≤ C.

This shows that ‖[b, T ]f ‖Lψ ≤ C and Theorem 1.1 is proved.

3. Some lemmas

In this section, we give some lemmas which will be used in the proof of
Theorem 1.2.

Lemma 3.1. If ρ(x) ≥ 4ρ(y), then

ρ((x − y)′ − x ′) ≤ 3
ρ(y)

ρ(x)

where x ′ = (
x1

ρ(x)α1 , . . . ,
xn

ρ(x)αn

) ∈ Sn−1.

Proof. Write
(3.1)

ρ((x − y)′ − x ′) = ρ

(
x1 − y1

ρ(x − y)α1
− x1

ρ(x)α1
, . . . ,

xn − yn

ρ(x − y)αn
− xn

ρ(x)αn

)
.

Denote ϕi(x) = xi
ρ(x)αi

, then

(3.2)
∂ϕi

∂xi
(x) = ρ(x)−αi − xiαiρ(x)

−αi−1 ∂ρ(x)

∂xi
.

By F(x, ρ) = 1, we get

∂ρ(x)

∂xi
= xiρ(x)

−2αi∑n
j=1 αjx

2
j ρ(x)

−2αj−1
.

This together with (3.2) shows that

(3.3)

∂ϕi

∂xi
(x) = ρ(x)−αi − xiαiρ(x)

−αi−1 xiρ(x)
−2αi∑n

j=1 αjx
2
j ρ(x)

−2αj−1

= ρ(x)−αi
(

1 − αix
2
i ρ(x)

−2αi∑n
j=1 αjx

2
j ρ(x)

−2αj

)
.
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Since |xi |
ρ(x)αi

≤ 1 and

(3.4) min{αi} ≤
n∑
j=1

αjx
2
j ρ(x)

−2αj ≤ max{αi},

we get by (3.3) and (3.4)

(3.5)

∣∣∣∣∂ϕi∂xi
(x)

∣∣∣∣ ≤
(

1 + αi

min{αj }
)
ρ(x)−αi .

Applying (3.5) and the mean value theorem to ϕi(x), we have

(3.6)

∣∣∣∣ xi − yi

ρ(x − y)αi
− xi

ρ(x)αi

∣∣∣∣ ≤
∣∣∣∣∂ϕi∂xi

(ξ)

∣∣∣∣|yi | ≤ (1 + αi)ρ(ξ)
−αi |yi |,

where ξ = t (x − y)+ (1 − t)x for some t ∈ (0, 1). Then we have

ρ(x) ≤ ρ(ξ)+ ρ(x − ξ) = ρ(ξ)+ ρ(ty) ≤ ρ(ξ)+ ρ(y).

Bearing in mind ρ(x) ≥ 4ρ(y), so ρ(ξ) ≥ 3ρ(y) and ρ(ξ) ≥ 3/4ρ(x). This
together (3.6) yields

(3.7)

∣∣∣∣ xi − yi

ρ(x − y)αi
− xi

ρ(x)αi

∣∣∣∣ ≤ (1 + αi)(4/3)
αi ρ(x)−αi |yi |

≤ 2αi(4/3)
αi ρ(x)−αi |yi |.

Notice that ρ(δμx) = μρ(x) for μ > 0, it follows from (3.1) and (3.7)

ρ((x − y)′ − x ′) ≤ ρ

(
2α1

(
4

3ρ(x)

)α1

|y1|, . . . , 2αn

(
4

3ρ(x)

)αn
|yn|

)

≤ 4

3
ρ(x)−1 max{(2αi)1/αi }ρ(|y1|, . . . , |yn|)

= 4

3
ρ(x)−1 max{(2αi)1/αi }ρ(y)

≤ 3ρ(x)−1ρ(y).

Lemma 3.2. If � satisfies the conditions (1.4) and (1.8), then for ρ(x) ≥
4ρ(y), ∣∣∣∣ �(x − y)

ρ(x − y)α
− �(x)

ρ(x)α

∣∣∣∣ ≤ C

ρ(x)α
(
log ρ(x)

ρ(y)

)γ .
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Proof. Since ρ(x) ≥ 4ρ(y), then by (1.4), (1.8) and Lemma 3.1 we get

(3.8) |�(x − y)−�(x)| ≤ C(
log ρ(x)

ρ(y)

)γ .
Now we claim that

(3.9) |ρ(x)−α − ρ(x − y)−α| ≤ C
ρ(y)

ρ(x)α+1
.

In fact, we know 3/4 ≤ ρ(x−y)
ρ(x)

≤ 5/4 by ρ(x) ≥ 4ρ(y). On the other hand,
using the convexity of t−α , it is easy to check that

1 − (1/2)−α

1 − 1/2
≤ 1 − t−α

1 − t
for t > 1/2 and t 
= 1.

Hence |1 − t−α| ≤ 2
(
2α − 1

)|1 − t | for t > 1/2.

Thus, for ρ(x) ≥ 4ρ(y) we have

|ρ(x)−α − ρ(x − y)−α| ≤ 2
(
2α − 1

) ρ(y)

ρ(x)α+1
.

Hence we get (3.9). Applying (3.8), (3.9) and notice that � ∈ L∞(Sn−1), we
have ∣∣∣∣ �(x − y)

ρ(x − y)α
− �(x)

ρ(x)α

∣∣∣∣
≤ |�(x − y)−�(x)|

ρ(x)α
+ |�(x − y)||ρ(x − y)−α − ρ(x)−α|

≤ C

ρ(x)α
(
log ρ(x)

ρ(y)

)γ + C
ρ(y)

ρ(x)α+1

≤ C

ρ(x)α
(
log ρ(x)

ρ(y)

)γ .
Lemma 3.3 ([9]). Let |E| be a set of finite measure. Then

‖χE‖Lψ∗ = |E|ψ−1(|E|−1).

Lemma 3.4 ([6]). If 0 < β ≤ 1 and ϕ(t) = tβ , then BMOϕ(Rn, ρ) =
�β(Rn, ρ).
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4. Proof of Theorem 1.2

In the proof of Theorem 1.2, we will use some idea taken from [11]. Suppose
that [b, T ] is a bounded operator from Lp(Rn) to Lψ(Rn), we are going to
prove that b ∈ BMOϕ(Rn, ρ). Below, Bj (j = 1, . . . , 15) denotes the positive
constant depending only on �, p, α, γ and Bi (1 ≤ i < j).

Without loss of generality, we assume ‖[b, T ]‖Lp→Lψ = 1. We wish to
prove that there exists a constantB := B(�, p, α, γ ) such that for any x0 ∈ Rn

and r ∈ R+,

(4.1) N := 1

|E (x0, r)|ϕ(r)
∫

E (x0,r)

|b(y)− a0| dy ≤ B,

where a0 = |E (x0, r)|−1
∫

E (x0,r)
b(y) dy. If we denote

T̃ f (x) = p.v.
∫

Rn

�̃(x − y)

ρ(x − y)α
f (y) dy,

where �̃(x) = −�(−x), then it is easy to see that [b, T̃ ] is the adjoint operator
of [b, T ]. Hence ‖[b, T̃ ]‖Lψ∗ →Lp

′ = 1. Notice that [b − a0, T̃ ] = [b, T̃ ], thus
we may assume a0 = 0. Let

(4.2) f (y) = [sgn(b(y))− c0]χE (x0,r)(y),

where c0 = 1
|E (x0,r)|

∫
E (x0,r)

sgn(b(y)) dy. By 1
|E (x0,r)|

∫
E (x0,r)

b(y) dy = a0 =
0, it is easy to check that |c0| < 1. Moreover, the following properties of f are
obvious:

(4.3) ‖f ‖∞ ≤ 2,

(4.4) supp f ⊂ E (x0, r),

(4.5)
∫

Rn
f (y) dy = 0,

(4.6) f (y)b(y) > 0,

(4.7)
1

|E (x0, r)|ϕ(r)
∫

Rn
f (y)b(y) dy = N.

Since � satisfies (1.5) and (1.8), then there exists a positive number B1 < 1
such that

(4.8) σ (�) = σ

({
x ′ ∈ Sn−1 : �(x ′) ≥ 2C1(

log 2
B1

)γ
})

> 0,
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where σ is the measure on Sn−1 which is induced from the Lebesgue measure
on Rn. Let

� =
{
x ′ ∈ Sn−1 : �(x ′) ≥ 2C1(

log 2
B1

)γ
}
> 0,

then � is a closed set. If denote �̃ = {x ′ ∈ Sn−1 : −x ′ = (−x)′ ∈ �},
then σ(�̃) = σ(�) > 0. We claim that if x ′ ∈ �̃ and y ′ ∈ Sn−1 satisfying
ρ(y ′ − (−x)′) ≤ B1, then

(4.9) �(y ′) ≥ C1(
log 2

B1

)γ .
In fact, since

|�((−x)′)−�(y ′)| ≤ C1(
log 2

ρ(y ′−(−x)′)
)γ ≤ C1(

log 2
B1

)γ
and note that �((−x)′) ≥ 2 C1(

log 2
B1

)γ , we have �(y ′) ≥ C1(
log 2

B1

)γ . Now denote

G = {
x ∈ Rn : ρ(x − x0) > B2r and (x − x0)

′ ∈ �̃}
,

where B2 = 3B−1
1 + 1. Then for x ∈ G,

(4.10)
|[b, T̃ ]f (x)|

≥ |T̃ (bf )(x)| − |b(x)||T̃ f (x)|

=
∣∣∣∣
∫

Rn

�((y − x)′)
ρ(y − x)α

b(y)f (y) dy

∣∣∣∣ − |b(x)|
∣∣∣∣
∫

Rn

�((y − x)′)
ρ(y − x)α

f (y) dy

∣∣∣∣
:= I1 − I2.

We first give the estimate of I1. If ρ(y − x0) < r , then

ρ(x − x0) > B2ρ(y − x0) > 4ρ(y − x0).

By Lemma 3.1, we see that

ρ((y − x)′ − (x0 − x)′) ≤ 3
ρ(y − x0)

ρ(x − x0)
≤ B1.

Then �((y − x)′) ≥ C1(
log 2

B1

)γ by (4.9). Thus, it follows from (4.4), (4.6) and
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(4.7) that

(4.11)

I1 ≥ C1(
log 2

B1

)γ
∫

E (x0,r)

b(y)f (y)ρ(y − x)−α dy

≥ C1(
log 2

B1

)γ
∫

E (x0,r)

b(y)f (y)(ρ(x − x0)+ ρ(y − x0))
−α dy

≥ C1(
log 2

B1

)γ 2−α
∫

E (x0,r)

b(y)f (y)ρ(x − x0)
−α dy

= B3r
αϕ(r)Nρ(x − x0)

−α.

Let us turn to I2. Since ρ(x − x0) ≥ 4ρ(y − x0), by (4.3), (4.4), (4.5) and
Lemma 3.2 we get

(4.12)

I2 ≤ |b(x)|
∫

E (x0,r)

|f (y)|
∣∣∣∣ �(y − x)

ρ(y − x)α
− �(x0 − x)

ρ(x0 − x)α

∣∣∣∣ dy
≤ C|b(x)|

∫
E (x0,r)

|f (y)|
ρ(x − x0)α

(
log ρ(x−x0)

r

)γ dy
≤ B4r

α|b(x)|ρ(x − x0)
−α

(
log

ρ(x − x0)

r

)−γ
.

Set

F =
{
x ∈ G : |b(x)| > B3Nϕ(r)

2B4

(
log

ρ(x − x0)

r

)γ
and ρ(x − x0) < Np/αr

}
.

By (4.10), (4.11) and (4.12), we have

‖f ‖p′
Lψ∗

≥
∫

Rn
|[b, T̃ ]f (x)|p′

dx

≥
∫
(G\F)∩{ρ(x−x0)<Np/αr}

(
1

2
B3Nϕ(r)r

αρ(x − x0)
−α

)p′

dx

≥
∫

{B5(|F |+(B2r)α)1/α<ρ(x−x0)<Np/αr}∩G

(
1

2
B3Nϕ(r)r

αρ(x − x0)
−α

)p′

dx
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=
(
B3Nϕ(r)r

α

2

)p′ ∫ Np/αr

B5(|F |+(B2r)α)1/α
t−αp

′+α−1 dt

∫
�̃

J (x ′) dσ (x ′)

≥ σ(�̃)

(
B3Nϕ(r)r

α

2

)p′

α − αp′
[
Np(1−p′)rα(1−p′) − B

(1−p′)α
5 (|F | + (B2r)

α)1−p′]
.

Since −p′ = p(1 − p′), thus we have

(|F | + (B2r)
α)1−p′

≤ B6N
p(1−p′)(rα(1−p′) + ϕ(r)p(1−p′)rp(1−p′)α‖f ‖p(p′−1)

Lψ
∗

)
.

By Lemma 3.3 and the definition of f , we have ‖f ‖Lψ∗ ≤ Crαψ−1(r−α) =
Cϕ(r)r

α

p′ . Hence |F | + (B2r)
α ≥ B7N

prα .
If N ≤ (2B−1

7 Bα2 )
1/p, then Theorem 1.2 is proved. If N > (2B−1

7 Bα2 )
1/p,

we get

(4.13) |F | ≥ B7

2
Nprα.

On the other hand, for x ∈ E (x0, r) and y ∈ F we have the following facts:

(a) ρ(x − y) ∼ ρ(y − x0);

(b) �((x − y)′) ≥ C1(
log 2

B1

)γ .

The fact (a) follows from F ⊂ G and B2 > 4. By ρ(y − x0) > B2ρ(x − x0)

and Lemma 3.1, we have ρ((x − y)′ − (x0 − y)′) ≤ B1 and then get (b) by
applying (4.9).

Now, we denote g(y) = (sgn(b(y)))χF (y). For x ∈ E (x0, r) we have

(4.14)

|[b, T ]g(x)|
≥ |T (bg)(x)| − |b(x)||T g(x)|

≥
∫
F

�((x − y)′)
ρ(x − y)α

|b(y)| dy − |b(x)|
∫
F

|�((x − y)′)|
ρ(x − y)α

|g(y)| dy

= K1 −K2.

We first estimate K2. Since � ∈ L∞(Sn−1) and ρ(x − y) ∼ ρ(y − x0), we
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have

(4.15)

K2 ≤ B8|b(x)|
∫
F

ρ(y − x0)
−α dy

≤ B8|b(x)|
∫ Np/αr

B2r

ρ−1 dρ

∫
Sn−1

J (y ′) dσ (y ′)

≤ B9|b(x)| logN.

Now regarding K1. By the facts (a) and (b), we have

(4.16) K1 ≥ C1(
log 1

B1

)γ B3Nϕ(r)

2B4

∫
F

ρ(y − x0)
−α

(
log

ρ(y − x0)

r

)γ
dy.

The estimate of K1 is divided into two cases, namely

1◦: γ ≥ α; 2◦: 1 < γ < α.

Case 1◦. Since the function s → log s
s

is decreasing for s ≥ 3 and 4r < B2r <

ρ(y) < Np/αr for y ∈ F , hence by (4.16) and (4.13) we get

K1 ≥ B10Nϕ(r)r
−α

∫
F

(
log ρ(y−x0)

r

ρ(y−x0)

r

)α(
log

ρ(y − x0)

r

)γ−α
dy

≥ B10Nϕ(r)(logB2)
γ−α

(
logNp/α

Np/α

)α
B7

2
Np

= B11ϕ(r)N(logN)α.

Case 2◦. In this case, the function s → (log s)γ

sα
is still decreasing for s ≥ 3. By

4r < B2r < ρ(y − x0) < Np/αr if y ∈ F and (4.16), (4.13) we have

K1 ≥ B10Nϕ(r)r
−α

∫
F

(
log ρ(y−x0)

r

)γ(
ρ(y−x0)

r

)α dy

≥ B10
B7

2
ϕ(r)NpN

(logNp/α)γ

Np

= B12ϕ(r)N(logN)γ .

Summing up the estimates in Case 1◦ and Case 2◦, there exists a constant τ > 1
such that

(4.17) K1 ≥ B13ϕ(r)N(logN)τ .
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Thus, by (4.14), (4.15) and (4.17), we get

(4.18) |[b, T ]g(x)| ≥ B13ϕ(r)N(logN)τ−B9|b(x)| logN, x ∈ E (x0, r).

Since ‖[b, T ]‖Lp→Lψ = 1. Thus by (4.13), (4.18) and the generalized Hölder’s
inequality (1.3), we have

B14r
α
p
+α
ψ−1(r−α)N

≥ rαψ−1(r−α)
(∫

ρ(x−x0)≤N p
α r

dx

)1/p

≥ rαψ−1(r−α)
(∫

F

dx

)1/p

= rαψ−1(r−α)‖g‖p
≥ ‖χE (x0,r)‖Lψ∗ ‖[b, T ]g‖Lψ
≥

∫
E (x0,r)

|[b, T ]g(x)| dx

≥ B13ϕ(r)N(logN)τ
∫

E (x0,r)

dx − B9 logN
∫

E (x0,r)

|b(x)| dx

≥ B13ϕ(r)r
αN(logN)τ − B9ϕ(r)r

αN logN.

This shows that

(4.19) B14r
α
p ψ−1(r−α) ≥ B13(logN)τϕ(r)− B9 logNϕ(r).

Since ϕ(r) = r
α
p ψ−1(r−α), then (4.19) becomes B14 ≥ B13(logN)τ −

B9 logN . Therefore, there exists a constant B := B(�, p, α, γ ) such that
N ≤ B. Thus we finish the proof of Theorem 1.2.

Acknowledgement. The authors would like to express their deep gratitude
to the referee for his/her reading carefully and valuable comments.

REFERENCES

1. Bramanti, M., and Cerutti, M., Commutators of singular integrals on homogeneous spaces,
Boll Un. Mat. Ital. B (7) 10 (1996), 843–883.

2. Coifman, R., Rochberg, R., and Weiss, G., Factorization theorems for Hardy spaces in several
variables, Ann. of Math. (2) 103 (1976), 611–636.

3. Chen, Y., and Ding, Y., Lp bounds for the commutator of parabolic singular integral with
rough kernels, Potential Anal. 27 (2007), 313–334.



a charaterization of commutators 25

4. Chen, Y., Ding, Y., and Fan, D., A parabolic singular integral operator with rough kernel,
J. Aust. Math. Soc. 84 (2008), 163–179.

5. Fabes, E., and Rivière, N., Singular integrals with mixed homogeneity, Studia Math. 27 (1966),
19–38.

6. Janson, S., Mean oscillation and commutators of singular integral operators, Ark. Mat. 16
(1978), 263–270.

7. Nagel, A., Rivière, N., and Wainger, S., On Hilbert transforms along curves II, Amer. J. Math.
98 (1976), 395–403.

8. Palagachev, D., and Softova, L., Singular integral operators, Morrey spaces and fine regularity
of solutions to PDE’s, Potential Anal. 20 (2004), 237–263.

9. Rao, M., and Ren, Z., Theorey of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math. 146,
Marcel Dekker, New York 1991.

10. Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Math.
Series 30, Princeton Univ. Press, Princeton, NJ 1970.

11. Uchiyama, A., On the compactness of operators of Hankel type, Tôhoku Math. J. 30 (1978),
163–171.

YANPING CHEN
APPLIED SCIENCE SCHOOL
UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
BEIJING 100083
CHINA
E-mail: yanpingch@126.com

YONG DING (Corresponding author)
SCHOOL OF MATHEMATICAL SCIENCES
BEIJING NORMAL UNIVERSITY
LABORATORY OF MATHEMATICS
AND COMPLEX SYSTEMS (BNU)
MINISTRY OF EDUCATION
BEIJING 100875
CHINA
E-mail: dingy@bnu.edu.cn


