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BOUNDARY INTERPOLATION AND
APPROXIMATION BY INFINITE

BLASCHKE PRODUCTS

ISABELLE CHALENDAR, PAMELA GORKIN and JONATHAN R. PARTINGTON

Abstract
This paper considers the problem of boundary interpolation (in the sense of non-tangential limits)
by Blaschke products and interpolating Blaschke products. Simple and constructive proofs, which
also work in the more general situation of H∞(�) where � is a more general domain, are given
of a number of results showing the existence of Blaschke products solving certain interpolation
problems at a countable set of points on the circle. A variant of Frostman’s theorem is also
presented.

1. Introduction

It is a well known theorem of Fatou that a bounded analytic function f on
the open unit disc D has radial limits at almost all points of the unit circle. In
addition, each bounded analytic function can be factored in a natural way into
a product of an inner function and an outer function. Thus, the study of the
space of bounded analytic functions, H∞, is greatly aided by studying each
of these entities separately. Because of the importance of inner functions as
fundamental building blocks for analytic functions, there has been an extensive
amount of work on them. Each inner function is created using fundamental
building blocks as well: every inner function is a product of a Blaschke product
and a singular inner function. In this paper we focus on Blaschke products.

A Blaschke product is an inner function B of the form

B(z) = λ

∞∏
j=1

|zj |
zj

zj − z

1 − zj z
,

where zj ∈ D and |λ| = 1. In interpolation theory, Blaschke products play a
particularly important role. For example, the Nevanlinna–Pick theorem says
that if we are given a finite set of points z1, . . . , zn in D, then there exists
a solution to the interpolation problem f (zj ) = wj for j = 1, . . . , n with
f ∈ H∞ and ‖f ‖∞ ≤ 1, if and only if a certain quadratic form is nonnegative.
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When this happens, there is a (finite) Blaschke product of degree at most n

solving the interpolation problem. It is possible to generalize this work in many
ways: the finite set of points {z1, . . . , zn} can be replaced by interpolating
sequences (zn) inside the unit disc, one can ask when functions in a space
other than H∞ do the interpolation, and in the case in which the function has
radial limits it is possible to consider boundary interpolation. In this paper, we
will focus on boundary interpolation by Blaschke products.

While it may not make sense to study the value of the Blaschke product
on the unit circle, it certainly makes sense to study radial limits of Blaschke
products wherever they exist. Finite Blaschke products, for example, are con-
tinuous everywhere on the unit circle. Thus, asking when points z1, . . . , zn on
the unit circle can be mapped to a second set of points on the unit circle by a
finite Blaschke product makes sense and many results in this direction exist.
In fact, assuming the zj are distinct, it turns out that interpolation is always
possible and the Blaschke product is never unique (see, for example, [5], [22],
and [16]). For infinite sequences (zj ) the situation is quite intriguing. Letting
B∗(z) denote the radial limit of the Blaschke product B at a point z on the unit
circle, G. T. Cargo [6] showed that given n distinct points z1, . . . , zn on the
unit circle and n points w1, . . . , wn inside the unit disc, there exists a Blaschke
product B such that B∗(zj ) = wj for each j . In [3], Belna, Cowell, and Pira-
nian extended this result to (infinite) sequences of points. A Blaschke product
is said to be an interpolating Blaschke product if its zero sequence (zn) has the
property that there exists a positive constant δ such that

inf
m�=n

∏ ∣∣∣∣ zm − zn

1 − zmzn

∣∣∣∣ ≥ δ > 0.

In [12], the second author and Mortini showed that, under appropriate condi-
tions, interpolation can also be accomplished using an interpolating Blaschke
product. Later, Hjelle [19] also gave a constructive proof of this result. In [14],
the authors studied interpolation by functions of minimal norm and noted that
the techniques in the aforementioned paper can be applied to more general
domains. The same is true for some of the proofs in Section 3 of this paper.

We begin by considering relevant interpolation results. Given two finite sets
of interlaced points on the unit circle (where the points are ordered in terms
of increasing argument) the authors of [16] gave an algorithm that produced
a Blaschke product of lowest degree that identifies each set of points. In Sec-
tion 2, we show that under certain convergence assumptions, the same can be
done for infinitely many points. In Section 3, we also look at interpolation on
the unit circle. We show that if we are given a uniformly bounded sequence of
analytic functions, (pn), then we can approximate these functions (along radii)
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with a function of norm supn ‖(pn)‖∞. In case the pn are constants this result
can, for example, be deduced from a theorem of Belna, Cowell, and Piranian
(Theorem 3.1). However, our techniques are taken from the theory of uniform
algebras and therefore are potentially more widely applicable. As a corollary,
in the case sup ‖pn‖ = 1, we show how to obtain a short proof that there exist
Blaschke products that do the interpolation, obtaining a very special case of a
result of Nicolau [24].

Since the radius is a connected set, its closure in the maximal ideal space
of H∞ is a closed and connected set. Thus, given any inner function I , its
radial cluster set is a compact, connected set. Theorem 3.1 tells us that given
a sequence of points (zn) on the unit circle, there exists a Blaschke product
B such that the radial cluster set of B is the same as the radial cluster set
of I at each zn. This result was extended by R. Berman [4] and A. Nicolau
[24]. In particular, Nicolau considered radial limits of more general functions
on sets of Lebesgue measure zero and of type Fσ and Gδ . In Section 4, we
prove a generalized Frostman’s theorem. We will show the following: Given
an inner function I and a Blaschke product b, for almost all α sufficiently
small, the function Iα = (I +α(1−b))/(b+α(b−1)I ) is a ratio of Blaschke
products. This fraction retains properties of the Blaschke product b: if b is
interpolating, we can choose α so that the denominator is interpolating; if b

is thin, we can choose α so that the denominator is thin; if b = 1 on a set E,
then the fraction Iα will provide a Blaschke product approximating I on the
set E (see, for example, [11, Chapter X, section 5] and [29] for a discussion of
results on approximation by ratios of interpolating Blaschke products). Since
we may choose our interpolating Blaschke products tending to 1 along various
subsets in D, we recover information about the limiting behavior of I along
those subsets.

2. Constructive interpolation by Blaschke products

We begin with an infinite version of Theorem 8 from [8]. With additional
assumptions on convergence it is possible to write down a simple and explicit
expression for a Blaschke product that interpolates (certain sets of) infinitely
many points on the unit circle. This is the first of our set of interpolation
results. Two sets of real numbers {a1, . . . , an} and {b1, . . . , bn} are said to be
interlaced, if a1 < b1 < · · · < an < bn.

We begin with an easily-proved result that achieves interpolation in the
simplest case.

Theorem 2.1. Let a1 < b1 < a2 < b2 < · · · be a sequence of real numbers
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with limit 0 and satisfying the condition

(1)
∑ |ak − bk|

|ak| < ∞.

Then the infinite product F(z) = ∏∞
k=1

z−bk

z−ak
converges locally uniformly to an

analytic function on C\{ak : k ≥ 1} such that F maps the upper half-plane H+
into the upper half-plane, the lower half-plane H− into the lower half-plane,
and the extended real line into the extended real line (where the value at 0 is
interpreted as a non-tangential limit).

Proof. Writing Fn(z) = ∏n
k=1

z−bk

z−ak
, we have that Fn maps H± to H± by

[8, Thm. 8], and Fn tends locally uniformly to F because

Fn(z) =
n∏

k=1

(1 + (ak − bk)/(z − ak))

and
∑ |ak−bk|/|z−ak| converges locally uniformly. Also note that by equation

(1), the sequence (Fn(0)) converges. Now given 0 < ε < 1 choose N such
that ∞∑

k=N+1

|ak − bk|
|ak| < ε.

For every ζ purely imaginary and sufficiently close to 0 we have

(2)

∣∣∣∣
N∏

k=1

ζ − bk

ζ − ak

− FN(0)

∣∣∣∣ < ε.

To estimate the value of F(ζ ) write wk = (ak − bk)/(ζ − ak). Note that since
ζ is purely imaginary and ak is real we have

∞∑
k=N+1

|wk| =
∞∑

k=N+1

|ak − bk|
|ζ − ak| ≤

∞∑
k=N+1

|ak − bk|
|ak| < ε.

Therefore,
∣∣∣∣

∞∏
k=N+1

(1 + wk) − 1

∣∣∣∣ ≤
∞∏

k=N+1

(1 + |wk|) − 1 ≤ exp

( ∞∑
k=N+1

|wk|
)

− 1

< eε − 1 ≤ (e − 1)ε.

This implies that the non-tangential limit of F(ζ ) has imaginary part of at most
order ε. Combining this fact with equation (2) and the convergence of (Fn(0)),
we see that the nontangential limit exists at 0.
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The next result is a stronger form of Theorem 2.1.

Theorem 2.2. Let (bk)k≥1 be a sequence of distinct real numbers. Then
there exists a sequence c1, a2, a3, . . . of real numbers such that the product

F(z) = z − c1

z − b1

∞∏
k=2

z − bk

z − ak

converges locally uniformly to a holomorphic function on H+ ∪H− such that
F maps H+ into H+ and H− into H−. Further F(b1) = ∞ and F(bk) = 0
for k > 1, in the sense of non-tangential limits. Moreover, if the closure of
{bk}k≥1 is countable, then F maps the extended real line into the extended real
line, in the sense of non-tangential limits.

Proof. Inductively we form a product

FN(z) = z − c1

z − b1

N∏
k=2

z − bk

z − ak

,

for N = 2, 3, . . ., such that at each stage the ordered zeroes z1, . . . , zN , say,
and poles p1, . . . , pN , say, are interlaced, that is, p1 < z1 < p2 < z2 < . . . <

pN < zN . It is clear that to do this it is enough at the N th stage to choose aN

sufficiently close to bN but distinct from all previously chosen points and not
equal to any of the (bk), with an appropriate choice of sign of aN − bN . This
guarantees that FN maps each of H+ and H− to itself, by [8, Thm. 8], and
preserves the extended real line.

In order that the limit function may exist and have the required properties,
we choose our N -th point carefully: we retain the first N − 1 points and we
choose aN to satisfy the additional conditions |bN − aN | < 2−N , |aN − bk| >

N2|bN − aN | and |aN − ak| > N2|bN − aN | for all k < N , and (in the case
when the set of accumulation points of the set of (bk) is countable, including
additional points 	1, 	2, . . . not already in the set of (bk) or {c1, a2, . . . , aN }),
|aN − 	k| > N2|bN − aN | for all k < N . This is always possible at this stage,
because we have only finitely many points.

As in the proof of Theorem 2.1, we have local uniform convergence of the
infinite product and, since the choice of the (aN) gives us that

∞∑
j=2

|aj − bj |
|aj − z| < ∞

for all z that are either (i) not in the closure of the set of (bk), (ii) one of the ak

(where we exclude one term from the sum) or bk , or (iii) in the closure of the
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set of (bk) if it is countable (i.e., including additional points (	k) as above), we
deduce that F is a holomorphic function mapping H+ to H+ and H− to H−,
and the nontangential limit of F at the points listed above is real (or infinite at
the points ak and b1).

In what follows, we let δmn = 1 if m = n and 0 if m �= n. For z ∈ ∂D, we
let G∗(z) denote the radial limit of the function G at the point z.

Corollary 2.3. Let (zn) be a sequence of distinct points on the unit circle.
Then for each n there exists a function Gn ∈ H∞ with ‖Gn‖∞ ≤ 1, such that
G∗

n(zm) = (−1)δmn+1. If the sequence has countable closure, then we may take
Gn to be a Blaschke product.

Proof. We transform to the half-plane and use Theorem 2.2. Note that a real
or infinite nontangential limit at a real point now corresponds to a nontangential
limit of modulus one at a point on the circle. Moreover, an inner function whose
nontangential limits all have modulus one is necessarily a Blaschke product.

3. Interpolation by inner functions

Letting Cρ(B, z) denote the radial cluster set of a Blaschke product at the point
z, we have the following result due to Belna, Cowell and Piranian.

Theorem 3.1 ([3]). Let (zn) be a sequence of distinct points on the unit
circle and let (�n) denote a countable set of nonempty, closed, connected sets
in D. Then there is a Blaschke product B such that

Cρ(B, zn) = �n

for n = 1, 2, 3, . . . .

Related results appear in [24] and [4]. In [24], Nicolau showed that given a
set E ⊂ ∂D of measure zero and of type Fσ and Gδ , and a function φ defined
on E with sup{|φ(eit )| : eit ∈ E} ≤ 1 such that for each open set O the set
φ−1(O) is an Fσ and Gδ set, then there is a Blaschke product B that extends
analytically to ∂D \ E such that limr→1− B(reit ) = φ(eit ) for eit ∈ E, and
Nicolau shows that the result of Belna, Colwell and Piranian can be obtained
as well. In [4], Berman considers the special case in which φ = 0 and φ = 1.

The papers [12], [13], and [19] study similar situations, but consider the
existence of interpolating Blaschke products that do the interpolation. These
proofs are primarily constructive and (necessarily) somewhat complicated.
However, as we show below, our results from the previous section can be used
to obtain a very simple proof of the existence of a Blaschke product that does
the interpolation (see Corollary 3.6). Our proofs can be adapted to work in
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more general situations than previous proofs, because they rely on properties
that many uniform algebras have. The next theorem is an auxiliary one, that
will assist us in our simplified proof. While it follows from Cargo’s or Belna,
Cowell, and Piranian’s result the following proof requires little machinery
and obtains information about the subproducts. Since we wish to make our
construction as general as possible, we include this proof below.

Theorem 3.2. Let (zn) be a sequence of points on the unit circle. Then for
each n, there exists a Blaschke product Bn such that B∗

n(zm) = 0 if m �= n and
B∗

n(zn) = 1. Furthermore, the Blaschke product can be chosen so that every
subproduct of Bn will have radial limit of modulus 1 at zn.

Proof. Note that for each point λ, it is relatively easy to construct a
Blaschke product Bλ with radial limit 0 at λ and radial limit of modulus 1
at every other point: To see this, look at the radius ending at λ = eiθ . Choose
a sequence of points (aj ) on the radius that are (equally) ρ-separated from
each other, say ρ(aj , aj+1) = 1/2. Now, these will form an interpolating
Blaschke sequence [21, p. 204]. If we denote this set of points by (an), then∑

n(1 − |an|) < ∞. Thus, we may choose a sequence Nn → ∞ so that∑
n Nn(1 − |an|) < ∞. Note that for each k, we may drop off finitely many

terms to assume that
∑

n Nn(1 − |an|) < 1/2k . Now consider the Blaschke
product Bλ defined as follows:

Bλ(z) =
∞∏

j=1

( |aj |
aj

aj − z

1 − ajz

)Nj

.

We claim that Bλ has the property that Bλ(re
iθ ) → 0 as r → 1. So let reiθ be

an arbitrary point on the radius and note that by our choice of aj , there exists
aj0 such that ρ(reiθ , aj0) ≤ 1/2. Therefore

|Bλ(re
iθ )| ≤

∣∣∣∣aj0 − reiθ

1 − aj0e
iθ

∣∣∣∣
Nj0

≤ 1/2Nj0 → 0

as r → 1, because r → 1 implies Nj0 → ∞. Since Bλ is continuous at eiγ

for γ �= θ , the assertion that Bλ has radial limits of modulus 1 at every other
point follows.

We suppose now that our sequence is (zn) with z1 = 1 and we construct
Bj so that Frostman’s condition [7, p. 14] is satisfied at z = 1; that is, if (amj )

denotes the zeroes of Bj , then

∑ 1 − |amj |2
|1 − amj | < 1/2j .
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It is known that if Bj satisfies this condition, then Bj and all of its subproducts
have radial limit at the point 1. To create Bj , choose zeroes (amj ) along the
radius tending to zj (for j > 1) as in the first paragraph so that

∑
(1 −

|amj |) < 1/2j and the Frostman condition
∑ 1−|amj |2

|1−amj | < 1/2j is satisfied, with
multiplicity included. Thus Bj will have radial limit zero at each zj and it (and
all of its subproducts) will have radial limit of modulus 1 at the point 1.

Now if we form the Blaschke product whose zero sequence is the union of
the zero sequences of the Bj , it is clear that the radial limit at each zj is zero.
Since this new Blaschke product satisfies the Frostman condition at z = 1, it
has radial limit of modulus 1 at z = 1. Multiplying by a constant of modulus
1, we obtain the desired Blaschke product.

To obtain our Blaschke product, we chose the zeros equally spaced. How-
ever, it is clear that if we move the zeros along the radius very slightly with
respect to the pseudohyperbolic metric, the radial limit will remain zero. Thus,
if we multiply functions of the type obtained in the previous theorem, we obtain
the following corollary.

Corollary 3.3. Given a sequence (zn) of distinct points on the unit circle,
there exists a Blaschke product B with simple zeros such that B�(zn) = 0 for
all n.

It was pointed out to us by the referee that an explicit example can also be
found in [27, p. 317, Problem 13].

To complete our proof of Theorem 3.5 we use the following lemmas. The
first of these is from [2].

Lemma 3.4. Let j be an integer, j > 1. Let a1, . . . , aj , b1, . . . , bj be
nonnegative numbers. Suppose that ak + bk ≤ 1 for k = 1, . . . , j . Then

a1 + a2b1 + a3b1b2 + · · · + ajb1 · · · bj−1 ≤ 1.

We have now completed the preliminary work for the proof of Theorem 3.5
that relies, primarily, on the existence of the Bj below, uniform algebra prop-
erties, and a normal families argument. Thus, they can be applied to H∞ on
more general domains in the disc. In addition, we can interpolate functions
rather than scalars, if our sequence of functions is uniformly bounded.

Theorem 3.5. Let (eiθn ) denote a sequence of points on the unit circle.
Let (kn) be a sequence of analytic functions for which there exists a constant
M with sup ‖kn‖∞ = M . Then there exists a function F ∈ H∞ for which
limr→1 |F(reiθn) − kn(re

iθn )| = 0 for each n. Further, we may choose the
interpolating function F so that ‖F‖∞ = M .
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Proof. Use Corollary 2.3 to obtain H∞ functions Gn with ‖Gn‖ ≤ 1 and
G∗

n(zm) = (−1)δmn+1. Let gn = (Gn + 1)2/4 and hn = (Gn − 1)2/4. Then

(1) |gn| + |hn| ≤ 1 on D;

(2) g∗
n(zn) = 1 and g∗

n(zm) = 0 for m �= n;

(3) h∗
n(zn) = 0 and h∗

n(zm) = 1 for m �= n.

Let
Fn = k1g1 + k2g2h1 + k3g3h1h2 + · · · + kngnh1 . . . hn−1.

Then, by Lemma 3.4, ‖Fn‖∞ ≤ max{‖kj‖ : j = 1, . . . , n}. Now fix j .
Note that |Fm(reiθj ) − kj (re

iθj )| → 0 for each m and j = 1, . . . , m. If
n, m ≥ N > j we use Lemma 3.4 to see that

|Fn(re
iθj ) − Fm(reiθj )| ≤ |(h1 · · · hN−1)(re

iθj )| sup{‖kj‖ : j ≥ N}
≤ M|hj (re

iθj )|.

Recalling that limr→1 |kj (re
iθj )−Fn(re

iθj )| for n > j , and choosing r ∈ R
with 0 < r < 1, we use Lemma 3.4 once more to obtain

|F(reiθj ) − kj (re
iθj )| ≤ |F(reiθj ) − Fn(re

iθj )| + |Fn(re
iθj ) − kj (re

iθj )|
≤ M|hj (re

iθj )| [|h1h2 · · · hj−1hj+1 · · · hn−1(re
iθj )|]

+ |Fn(re
iθj ) − kj (re

iθj )|
≤ M|hj (re

iθj )| + |Fn(re
iθj ) − kj (re

iθj )|.

Our assumptions imply that hj (re
iθj ) → 0 as r → 1 and the second

summand also tends to zero as r → 1, completing the proof.

As a corollary, we obtain a very special case of Nicolau’s result on radial
limits of Blaschke products [24]. The proof is similar to the one in [14, p. 496]
that was used to obtain functions that interpolate sequences in the maximal
ideal space of H∞, as opposed to sequence of points on the boundary of the
disc. (See also [28].)

Corollary 3.6. Given a sequence of distinct points on the unit circle,
(zj )j , and a sequence of analytic functions (kj ) defined on the unit disc such that
sup ‖kj‖ = 1, there is a Blaschke product b such that |b(reiθj )−kj (re

iθj )| → 0
for all j .

Proof. Choose a function F , using Theorem 3.5, that does the interpola-
tion. Choose a Blaschke product B, according to Corollary 3.3 with radial limit
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0 at each zj and use Corollary 2.3 to obtain a second (nonconstant) function
G of norm 1 with radial limit 1 at each zj . Consider the set

S =
{(

1 − G

2

)2

Bh +
(

1 + G

2

)2

F : h ∈ H∞, ‖h‖ ≤ 1

}
.

Let I = F(1 + G)2/4. Letting ξn denote the zeros of B, consider the
interpolation problem f (ξn) = I (ξn) where f is in the (closed) unit ball of
H∞. Then every function in S is a solution of this problem and therefore there
are (at least) two distinct solutions to this interpolation problem. By Stray’s
theorem [28], there is a Blaschke solution b. Now b − I = Bk for some
k ∈ H∞ and B(rzj ) → 0 as r → 1. Since

b = I + Bk = F(1 + G)2/4 + Bk,

G(rzj ) → 1 and B(rzj ) → 0 for each j , it follows that b is the solution we
seek.

Remark 3.7. Theorem 3.5 above is valuable because of its constructive
nature. As Nicolau shows [24, p. 251] it follows easily from Berman’s result
[4] and Stray’s theorem [28] that for each analytic function g in the unit ball of
H∞ there exists a Blaschke product B that extends analytically to T \ E such
that

lim
r→1

(I (reit ) − g(reit )) = 0

for eit ∈ E, where E is a set of measure zero that is of type Fσ and Gδ .

4. A variation of Frostman’s theorem

In this section, we present a variant of Frostman’s theorem. For a single point
on the unit circle, S. Axler noted this in his paper [1].

To obtain our results, we will need one technical lemma later that is depend-
ent upon the special nature of the so-called thin Blaschke products. Recall that
a Blaschke product is said to be an interpolating Blaschke product if its zero
sequence (zn) has the property that there exists a positive constant δ such that

inf
m�=n

∏ ∣∣∣∣ zm − zn

1 − zmzn

∣∣∣∣ ≥ δ > 0.

This is a condition on the separation of the zeroes of the Blaschke product;
that is, if we denote the pseudohyperbolic distance between two points z and
w in the unit disc by ρ (so that ρ(z, w) = ∣∣ z−w

1−zw

∣∣). The pseudohyperbolic disc
of radius δ about a point z will be denoted by Dρ(z, δ).
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We will use the notion of the so-called thin Blaschke products: A Blaschke
product is thin if

lim
n→∞(1 − |zn|2)|B ′(zn)| = 1.

Note that a thin Blaschke product may have finitely many repeated zeroes.
For interpolating Blaschke products we have the following well-known lemma
of Hoffman ([20]). (The version we cite below can be found on [11, p. 404].)

Lemma 4.1 (Hoffman’s Lemma). Let B be an interpolating Blaschke
product with zeroes (zn) satisfying

inf
n

(1 − |zn|2)|B ′(zn)| ≥ δ > 0.

Then there exist positive constants, λ = λ(δ) and r = r(δ), with λ < 1,
λ < 2λ/(1 + λ2) < δ and r < 1, satisfying

lim
δ→1

λ(δ) = 1

lim
δ→1

r(δ) = 1

and the set B−1(�(0, r)) = {z : |B(z)| < r} is the union of pairwise disjoint
domains Vn, zn ∈ Vn, and

Vn ⊂ {z : ρ(z, zn) < λ}.
Also, B maps each domain Vn univalently onto �(0, r) = {w : |w| < r}.

We now turn to the extension of Frostman’s theorem. There are many the-
orems about subalgebras of L∞ that are related to Theorem 4.4 below; our
result seems to combine several of them. Recall that H∞ + C is the closed
subalgebra of L∞ containing functions that are sums of functions in H∞ and
continuous functions. It is known [17] that for every inner function I there is a
Blaschke product B such that I/B = IB and B/I = BI are both in H∞ +C.
Thus, there is a unimodular function u for which u and u are in H∞ + C, and
such that BI = u. Therefore B/u = I almost everywhere on ∂D.

We will use the following result that is useful in many contexts (see, for
example, [30, Lemma 5.4]).

Lemma 4.2. Let (zn) and (z′
n) be sequences satisfying sup ρ(zn, z

′
n) < 1.

Then (zn) is thin if and only if (z′
n) is thin.

Finally, we recall a result of S. D. Fisher and J. E. Shapiro:

Theorem 4.3. [9] Let f, g ∈ H∞(D) have no common singular inner factor.
Then the set of α for which f + αg has a nontrivial singular inner factor has
logarithmic capacity zero.
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Having completed the preliminaries, we turn to the theorem.

Theorem 4.4. Let I be an inner function and let b be a Blaschke product.
Then there exists ε > 0 such that for all α with |α| < ε, except possibly a set
of capacity zero,

I + α(1 − b)

b + α(b − 1)I
= b̃

bα

where b̃ and bα are Blaschke products depending on α. If the Blaschke product
b is interpolating, then bα will be as well and if the Blaschke product b is thin,
then bα will be too.

Proof. Let Iα = I+α(1−b)

b+α(b−1)I
. Note that by Theorem 4.3, for all α except a

set of capacity zero,
b + α(b − 1)I = bαgα,

where bα is a Blaschke product and gα is an outer function. Since b is inner
and α can be chosen to be small, we may further assume that gα is invertible
in L∞ and therefore in H∞. Similarly, for an appropriate choice of α, we
note that 1 − b is outer and we again apply Theorem 4.3 to conclude that
I + α(1 − b) = b̃Fα , where Fα is an invertible outer function. Now bαIα ∈
H∞(D) and |bαIα| = 1 almost everywhere on the unit circle, so it is inner.
Thus, bαIα = b̃Fα/gα so Fα/gα is an outer function with modulus one almost
everywhere on the unit circle and therefore it is constant.

Now suppose that the initial Blaschke product b is interpolating. Let ε > 0
and consider b+ε(b−1)I . Then for ε sufficiently small, there exists a Blaschke
product bε that is a finite product of interpolating Blaschke products and an
invertible outer function Fε such that b + ε(b − 1)I = bεFε (see, for example,
[18]). Using Hoffman’s lemma (Lemma 4.1) and the fact that we now assume
that b is interpolating, the zeros of bε for ε sufficiently small, will be ρ-
separated. If we write bε = ∏n

j=1 bj with bj interpolating, this means that there
exists δ > 0 such that the pseudohyperbolic distance ρ(ZD(bj ), ZD(bk)) ≥ δ

for j �= k and therefore the union is an interpolating sequence (see [20], [25,
p. 217] or [11, p. 287]). Thus, bε will actually be interpolating.

To complete the proof, we now consider the case in which b is thin. Let (zn)

denote the zero sequence of the thin Blaschke product b. Using Lemma 4.1,
we know that there exist δ and λ such that {z : |b(z)| < δ} ⊆ ⋃

n Dρ(zn, λ).
Thus, if w /∈ Dρ(zn, λ) for any n, then |b(z)| ≥ δ. Now let α be chosen with
2|α| < δ. Then

|bα(z)gα(z) − b(z)| < 2|α|.
In particular, bα cannot vanish outside

⋃
n Dρ(zn, λ). Further, by Rouché’s

theorem, bαgα has the same number of zeroes as b in Dρ(zn, λ). Because
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b is thin, there exists N such that b has exactly one zero in Dρ(zn, λ) for
n ≥ N . Thus, recalling that the zeroes of b were denoted by (zn), and letting
the zeroes of bα be denoted by (z′

n), we see that these two sets of points satisfy
the conditions of Lemma 4.2. Thus, bα is a thin Blaschke product.

Remark 4.5. Thin Blaschke products also interpolate on the boundary. In
this context, we have a Belna, Cowell, Piranian-like result:

Theorem 4.6 ([12, Theorem 3.3]). Let (αj ) be a sequence of distinct points
on ∂D and let (βj ) be a sequence of points on ∂D. Then there exists a thin
interpolating Blaschke product b such that b�(αj ) = βj for all j .

Thus, given an inner function I and a sequence of points on the unit circle,
we may choose a thin Blaschke product b that has radial limit one on the
sequence. In this case, our function Iα and I will have the same radial limits
on this sequence.

One final remark is in order here. Let M(L∞) and M(H∞) denote the space
of nonzero multiplicative linear functionals on L∞ and H∞, respectively, and
let b be any Blaschke product. Let F = {x ∈ M(L∞) : x(b) = 1}. Here, we
identify functions with their Gelfand transforms. Then F is a peak set for H∞
(with peaking function (1 + b)/2) and therefore [10, p. 39] H∞|F = {f ∈
L∞ : f |F ∈ H∞|F } is a closed algebra with maximal ideal space given by
{x ∈ M(H∞) : supp x ⊂ F }, where supp x denotes the support set for the
representing measure of x. Therefore x(b) = 1 and so x(Iα) = x(I ) for all
x ∈ M(H∞|F). But bαgα = b + α(1 − b)I , so x(bαgα) = 1 for all such x.
In particular, I |F = b̃bα|F and bα|F = gα|F ∈ H∞|F . On every such peak
set, then, I is a ratio of such Blaschke products. (This, as well as the Frostman
representation, can be compared with the work of D. Suarez [29]).

Axler’s observation was the following: choosing b(z) = z, in this case, the
peak set F above is the fiber X1 = {x ∈ M(L∞) : x(z) = 1}. Therefore, the
fact that bα has no zero converging to 1 implies that bα|X1 is a constant of
modulus 1. Thus, I |X1 equals a Blaschke product on X1. Our result can be
thought of as the appropriate generalization of Axler’s observation.
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