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DIFFERENTIAL GEOMETRY OF MATRIX INVERSION

MARKO HUHTANEN∗

Abstract
Essentially, there exists just the dimension segregating (square) matrix subspaces. In view of
algebraic operations, this quantity is not particularly descriptive. For differential geometric in-
formation on matrix inversion, the second fundamental form is found for the set of inverses of
the invertible elements of a matrix subspace. Several conditions for this form to vanish are given,
such as being equivalent to a Jordan subalgebra. Global measures of curvature are introduced in
terms of an analogy of the Nash fiber.

1. Introduction

The inverse of a nonsingular matrix is undoubtedly the most sought object in
linear algebra.1 There exists an analogous, albeit far more geometrical notion
for the Grassmannian manifolds of square matrices [12], [13]. To this end, let
V be a matrix subspace of C n×n over C (or R) possessing invertible elements.
Such subspaces are called nonsingular. Otherwise, V is called singular if it
does not contain invertible elements. (For singular matrix subspaces, see [5]
and references therein.) For a nonsingular matrix subspace V , set

Inv(V ) = {V −1 : V ∈ V ∩ GL(n, C)},
where GL(n, C) denotes the group of invertible n-by-n complex entried ma-
trices. Since giving a simple characterization of Inv(V ) is not easy in general,
in this paper we are concerned with the differential geometric aspects of the
problem.

In connection with discretizing partial differential equations, the problem
of characterizing the inverses received attention already in the late 1950s [2],
[3]. (See [24] for related historical remarks.) More recently, understanding the
structure of Inv(V ) has turned out to be central in matrix factorization prob-
lems and large scale numerical linear algebra of preconditioning [13], [4]. It
is noteworthy that in preconditioning n is very large whereas dim V � n2,
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1 The inverse is actually rarely computed. An appropriate factorization of the matrix suffices
since, in practice, only operations with the inverse are needed.
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typically dim V = O(n). In the generalized eigenvalue problem the dimen-
sion of the matrix subspace is just two. In applications Inv(V ) is hence often
dimensionwise closer to a curve than to a hypersurface.

To measure how curved Inv(V ) is locally, a Riemannian geometric approach
yields us the second fundamental form II of Inv(V ). (How to interpret II geo-
metrically, see [16, Chapter 8].) The sectional curvatures of Inv(V ) can then
be found with II. The second fundamental form is shown to vanish identically
if and only if V is a so-called invertible matrix subspace. Several equivalent
conditions for this to happen are given. Most notably, V is invertible if and
only if V is equivalent to a Jordan subalgebra. Hence the concept is linked
with a classical notion of nonassociative algebras, resembling the way how
the exponential function is linked with Lie subalgebras. Related with linear
estimation theory, this same link exists with statistics in case of real symmetric
matrix subspaces [23].

For a global measure of curvature, we introduce an analogue of the Nash
fiber from algebraic geometry by forming the set of limits of tangent spaces at
the zero matrix. This is somewhat nonstandard since the zero matrix is merely
a boundary point of Inv(V ). However, homogeneity of Inv(V ) makes this
natural. Then the grade of V is defined as the span of the tangent spaces of
Inv(V ). The grade of V is compared with the dimension of V .

The paper is organized as follows. Section 2 is concerned with the properties
of the Grassmannian Grk(C n×n). From the view-point of linear algebra, its
elements can be regarded as being either nonsingular or singular. To distinguish
elements of Grk(C n×n) qualitatively, in Section 3 nonsingular matrix subspaces
are treated as Riemannian manifolds. The curvature of Inv(V ) is inspected. In
Section 4 global measures of curvature are considered.

2. The Grassmannian Grk(Cn×n)

In what follows, we are concerned with the Grassmannian Grk(C n×n) consist-
ing of k dimensional subspaces of C n×n over C.2 One can proceed completely
analogously with the Grassmannian of k dimensional matrix subspaces of C n×n

over R. This relaxed structure is of equal importance including, for example,
subspaces of Hermitian matrices.

On Grk(C n×n) there exists a standard Riemannian structure giving rise to the
respective distance function. For a review on distance functions on a Grass-
mannian, see [7, p. 337]. Since the geometry of Grk(C n×n) is not our main

2 As opposed to matrix groups and matrix subalgebras, matrix subspaces have not received much
attention. In operator theory, a closed subspace of B(H), the algebra of all bounded operators on
a Hilbert space H , is called an operator space. Associated operator space theory has developed
rapidly in recent years [8], [20].
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object of interest, we employ a metric that can be defined more readily. To
this end, on any matrix subspace V ∈ Grk(C n×n) we use the standard inner
product

(1) (V1, V2) = tr(V ∗
2 V1)

with V1, V2 ∈ V . Equipped with this, suppose V , W ∈ Grk(C n×n) and denote
by PV and PW the orthogonal projectors on C n×n onto V and W . Then

d(V , W ) = ‖PV − PW ‖
yields a metric on Grk(C n×n), where ‖ · ‖ denotes the operator norm. By ‖ · ‖F

we denote the Frobenius norm.
Usually the points of a Grassmannian do not possess any particular distinct-

ive qualitative properties. With Grk(C n×n) this is not so.

Definition 2.1. A matrix subspace V ∈ Grk(C n×n) is nonsingular (sin-
gular) if the determinant function does not (does) vanish identically on V .

With k = 1 we are dealing with the familiar notion of nonsingularity of a
matrix. If V is nonsingular, then its subset consisting of invertible V ∈ V is
open and dense [12].

Regarding the terminology, nonsingularity is generic as follows.

Theorem 2.2. The set of nonsingular elements of Grk(C n×n) is open and
dense.

Proof. For openness, if V is nonsingular, then the determinant function,
by its continuity, cannot vanish identically on matrix subspaces sufficiently
close to V .

For denseness, suppose V is singular. (This forces k < n2.) Take anyV ∈ V

of unit Frobenius norm. There exists an arbitrarily small λ ∈ C in modulus
such that λI − V is invertible. Orthogonalize such a matrix λI − V against V

to have λI −V = V̂ +E with V̂ ∈ V and E in the orthogonal complement of
V . Clearly, ‖E‖F ≤ ‖λI‖F . Form an orthonormal basis V1, . . . , Vk of V by
setting V1 = V̂ /‖V̂ ‖F . Denote by W the span of V1 + E/‖V̂ ‖F , V2, . . . , Vk .
Then W is nonsingular and of the same dimension as V . Moreover, d(V , W )

equals the norm of the linear operator

V1(·, V1) − 1

1 + (‖E‖F /‖V̂ ‖F )2
(V1 + E/‖V̂ ‖F )(·, V1 + E/‖V̂ ‖F )

on C n×n. As λ approaches zero, E approaches zero and ‖V̂ ‖F approaches one.
Thus, there is an invertible matrix subspace arbitrarily close to V .
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We do not know what is the largest k for which there are necessarily singular
elements in Grk(C n×n). It is of order k = O(n2) though. (For k = n(n − 1),
simply take a matrix subspace with a zero row or column.) Typically matrix
subspaces appearing in factorization problems satisfy k = O(n) [12].

With matrices, mere nonsingularity is not at all sufficient for reliably per-
forming inversion; in practice the condition number is used to assess nonsin-
gularity. For an analogy, for 1 ≤ j ≤ n, denote by σj (V ) the singular values
of a matrix V ∈ C n×n. For a nonsingular matrix subspace V , even though not
readily computable, set

κ(V ) = min
V ∈V ∩GL(n,C)

σ1(V )

σn(V )

to measure its ill-conditioning. In case dim V = 1 we are dealing with the
standard condition number of any matrix V spanning V . Clearly, κ(V ) ≥ 1
with the equality holding if and only if V contains a unitary matrix.

The group GL(n, C) ⊕ GL(n, C) acts on Grk(C n×n) according to

(2) (X ⊕ Y )V = XV Y−1.

This is a natural action preserving, e.g., nonsingularity. The orbit of V is then
a subset of Grk(C n×n) defined as

O(V ) = {XV Y−1 : X ⊕ Y ∈ GL(n, C) ⊕ GL(n, C)}.
Definition 2.3. Matrix subspaces V and W are said to be equivalent if

they are on the same orbit, i.e., there exist invertible matrices X, Y ∈ C n×n

such that W = XV Y−1.

If X and Y can be chosen unitary, then V and W are said to be unitarily
equivalent. If X = Y , then V and W are said to be similar.

Matrix subspaces on the same orbit are in many ways indistinguishable.
Hence there are good reasons to look for elements of O(V ) with simple prop-
erties. With k = 2 this is always possible as there is an element whose members
commute.

Example 2.4. In applications, the Grassmannian Gr2(C n×n) appears in
connection with the generalized eigenvalue problem

(3) V1x = λV2x

with x 
= 0. Namely, assume V = span{V1, V2} ∈ Gr2(C n×n) is nonsingular.3

Then V is equivalent to a matrix subspace W with commuting elements. For

3 If V is singular, then the respective generalized eigenvalue problem (3) is sometimes called
ill-disposed. For the generalized eigenvalue problem, see [9], [19].
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this, take X = I and Y to be an invertible element of V . (By this trick, V Y−1

also contains the scalars.) This transformation is of enormous importance for
solving the generalized eigenvalue problem in practice.

Because of this, Grk(C n×n) for k > 2 can be regarded as having a much more
“noncommutative” structure than Gr2(C n×n). Let us emphasize this profound
difference in terms of the following proposition.

Proposition 2.5. Assume n ≥ 2 and k > 2. Then there exists V ∈
Grk(C n×n) whose orbit does not contain a matrix subspace with commuting
elements.

Proof. To recover whether a nonsingular V = span{V1, V2, . . . , Vk} is
equivalent to a matrix subspace W with commuting elements, it is necessary
and sufficient that XVjY

−1 and XVlY
−1 commute with some invertible X, Y ∈

C n×n, for 1 ≤ j < l ≤ k. Hence consider the problem of finding such matrices
X and Y .

Since V is nonsingular, its subset consisting of invertible elements is open
and dense. Thereby we may assume that Vj are all invertible, possibly after
perturbing them slightly in V . For the commutativity, consider the linear maps

(4) M �−→ VlV
−1

j M − MV −1
j Vl

on C n×n, for 1 ≤ j < l ≤ k. A matrix subspace W with commuting elements
exists if and only if the intersection of the nullspaces of (4) contains an invert-
ible element M . Then the condition M = Y−1X determines X and Y for an
equivalence.

With this, it suffices to consider the case k = 3 and n = 2. Take

V1 = I, V2 =
[

1 1
0 1

]
and V3 =

[
1 0
1 1

]

for which the intersection of the nullspaces of (4) is just the zero matrix.

A matrix subspace is said to be symmetric if all its elements are symmetric
matrices. Symmetric matrix subspaces appear in the study of determinantal
hypersurfaces [21] and in statistics [23].

Proposition 2.6. A nonsingular V ∈ Gr2(C n×n) is equivalent to a sym-
metric matrix subspace.

Proof. Since V is nonsingular, it is equivalent to a matrix subspace of
the form span{I, W } with W ∈ C n×n. Since any matrix is the product of two
symmetric matrices, we have W = S1S2 for two symmetric matrices with at
least S2 invertible. Hence V is equivalent to span{S−1

2 , S1}.
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For a nonsingular matrix subspace V , there are always elements of O(V )

containing the scalars. Such elements are somewhat easier to analyze and
thereby of interest. For example, in operator space theory, a matrix subspace
V over C is said to be an operator system if it contains the scalars and is closed
under the Hermitian transposition, i.e., if V ∈ V , then V ∗ ∈ V [8].

Example 2.7. The set of Toeplitz and Hankel matrices are unitarily equi-
valent matrix subspaces often encountered in practice.4 For the unitary equi-
valence, take X to be the permutation with ones on the antidiagonal and Y = I .
The set of Toeplitz matrices contains the scalars.

3. The set Inv(V ) as a Riemannian submanifold

Next, in view of matrix inversion, we consider ways to qualitatively distinguish
nonsingular elements of Grk(C n×n). To this end, for a nonsingular matrix
subspace V over C (or R) denote the set of its inverses by

Inv(V ) = {V −1 : V ∈ V ∩ GL(n, C)}.
As a manifold this is covered by a single chart which can be obtained after
fixing a basis of V and performing the inversion. In particular, equipped with
the standard inner product (1), Inv(V ) can be regarded as a smooth Riemannian
submanifold of C n×n of dimension k. Then C n×n is equipped with the Frobenius
norm ‖ · ‖F .

Plainly, Inv(V ) is a homogeneous set, i.e., we have

(5) t Inv(V ) = Inv(V )

for any 0 
= t ∈ C (or R). (However, unlike in V , the sum operation is not closed
in Inv(V ) in general.) Therefore it is occasionally natural to treat Inv(V ) as a
projective variety.

For the equivalence there holds

(6) Inv(XV Y−1) = Y Inv(V )X−1.

Similarly, for the transposition we have Inv(V T ) = Inv(V )T .
Many quantities of interest can be computed with the help of Cramer’s rule

for Inv(V ). (Consider, for instance, finding lengths of curves.) Because of
its high computational complexity, Cramer’s rule is really available in small
dimensions only. Therefore its usage is avoided in what follows.

After these preliminary remarks, let us construct the tangent vectors to see
that the tangent bundle of Inv(V ) admits a useful extrinsic characterization.

4 A Toeplitz (Hankel) matrix has constant diagonals (antidiagonals).



differential geometry of matrix inversion 273

For this, take a smooth curve with the Taylor series c(t) = Wt + Ut2 + · · ·
with the coefficients belonging to V . Let V −1 ∈ Inv(V ). Then the Neumann
series expansion yields for
(7)

(V + c(t))−1 =
( ∞∑

j=0

(−1)j (V −1c(t))j
)

V −1

= V −1 − V −1WV −1t + V −1(WV −1W − U)V −1t2 + · · ·
for small enough |t |. Collecting the linear terms of such curves, we can con-
clude that at V −1 ∈ Inv(V ) the tangent space is

(8) V −1V V −1.

In practice, tangent spaces appear in numerical analysis and perturbation the-
ory.

Example 3.1. Suppose the inverse of V is available. Then the classical
perturbation theory yields

(9) (V + W)−1 ≈ V −1 − V −1WV −1

for the inverse of V + W . This approximation belongs to V −1V V −1 by the
fact that V −1 − V −1WV −1 = V −1(V − W)V −1. This constraint is somewhat
confusing since there are no particular reasons for the tangent space V −1V V −1

to contain the inverse of V + W .

In the following case the tangent space is guaranteed to contain the inverse.

Definition 3.2. Let V and W be two nonsingular matrix subspaces of
C n×n over C (or R). If

Inv(V ) = W ∩ GL(n, C),

then we say that W is the inverse of V .

If V has an inverse, then the tangent spaces of Inv(V ) are independent of
the base point V −1 ∈ Inv(V ). Then the closure of Inv(V ) equals V −1V V −1

[13]. Hence the inverse is unique. We denote the inverse by V −1 and say that V

is invertible. Stated equivalently in terms of the Grassmannians, a nonsingular
V ∈ Grk(C n×n) is invertible if the closure of Inv(V ) belongs to Grk(C n×n).
This also explains the terminology used: then V can be regarded as being
invertible in Grk(C n×n).

By (6), the whole orbit of an invertible matrix subspace consists of invertible
matrix subspaces.
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Invertible matrix subspaces can be characterized as follows.

Theorem 3.3 ([13]). V is an invertible subspace of C n×n over C (or R) if
and only if V = V V̂ with an invertible V ∈ C n×n and a matrix subspace V̂

of C n×n over C (or R) that is polynomially closed.5

Moreover, if V contains the scalars, then V is invertible if and only if V is
polynomially closed [13]. Besides this, we do not have a good understanding
of the structure of invertible matrix subspaces as a subset of Grk(C n×n).

Invertible matrix subspaces are of central relevance for solving a certain type
of matrix factorization problems [12]. On the other hand it is a challenge to give
a concrete characterization of Inv(V ) [13]. Since this cannot be done in general,
in what follows we are concerned with describing how curved this set is. Only
the case k ≥ 2 is of interest since k = 1, which corresponds to the standard
matrix inversion, is exceptional. In the latter case the curvature vanishes by the
fact that the invertibility of a matrix V ∈ C n×n can be formulated equivalently
in terms of the invertibility of the respective matrix subspace V = span{V }
whose inverse in the invertible case is simply V −1 = span{V −1}.

For a concept of curvature at a point V −1 ∈ Inv(V ), on the tangent space
define a quadratic function QV −1 : V −1V V −1 → C n×n as

(10) QV −1(M) = 2(I − PV −1V V −1)MV M.

Since V is a subspace and thereby homogeneous, it is enough to inspect this
map at the invertible elements V of unit Frobenius norm.

Although we did not require (7) to be a constant speed curve6, its Neumann
series expansion can be used to relate the quadratic function (10) with geodesics
as follows. (For basics of differential geometry, see [16].)

Proposition 3.4. Let V be a nonsingular matrix subspace of C n×n over C
(or R). The extrinsic curvature of the geodesic in Inv(V ) passing through V −1

with the speed vector M = −V −1WV −1 equals ‖QV −1(M)‖F .

Proof. Consider the coefficient V −1(WV −1W − U)V −1 of the second
order term in the Neumann series expansion (7) of any curve in Inv(V ) passing
through V −1 with the speed vector M . Twice this is the acceleration of the curve
at V −1. Since U ∈ V , the element −V −1UV −1 is necessarily in the tangent
space V −1V V −1. Moreover, for any W there exists a unique U such that
the second order term is in the orthogonal complement of the tangent space.

5 A matrix subspace V of C n×n is said to be polynomially closed over C (or R) if p(V ) ∈ V
for every V ∈ V and every polynomial p with complex (real) coefficients. Equivalently, the
holomorphic functional calculus is defined in V .

6 A curve γ is of constant speed if ‖γ ′(t)‖F is independent of t .
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This choice corresponds to applying I − PV −1V V −1 to 2V −1WV −1WV −1 =
2V −1WV −1V V −1WV −1 = 2MV M . Then, since the tangential acceleration
of the curve is zero, the geodesic in Inv(V ) passing through V −1 with the speed
vector M is among the curves with such a choice for U [16, pp. 138–139].

Consequently, the second fundamental form II of Inv(V ) can be recovered
with the quadratic function QV −1 by setting 1

2 (QV −1(M1 +M2)−QV −1(M1)−
QV −1(M2)) to obtain

II(M1, M2) = (I − PV −1V V −1)(M1V M2 + M2V M1)

at V −1 ∈ Inv(V ). (For this argument, see [16, p. 138].) Then, by using the
Gauss equation [16, Theorem 8.4] and [16, Proposition 8.8], also the sectional
curvatures of Inv(V ) can immediately be found with II. Hence, the Ricci and
scalar curvatures become computable.

It is of interest to observe that the second fundamental form is in no way
measuring how ill-conditioned V is.7

To assess how curved Inv(V ) is at V −1, it is also natural to look at

(11) max‖M‖F =1
‖QV −1(M)‖F .

Unfortunately, we do not know how to compute this quantity. In particular, to
assess the curvature of Inv(V ) globally, it would be very informative to know
the gap between

inf
‖V ‖F =1,V −1∈Inv(V )

max‖M‖F =1
‖QV −1(M)‖F

and
sup

‖V ‖F =1,V −1∈Inv(V )

max
‖M‖F =1

‖QV −1(M)‖F .

Observe that QV −1 vanishes at M = V −1V V −1 = V −1 ∈ V −1V V −1.

Invertible matrix subspaces have identically vanishing curvature in the fol-
lowing sense.

Theorem 3.5. A matrix subspace V of C n×n over C (or R) is invertible if and
only if the quadratic function (10) is identically zero for any V −1 ∈ Inv(V ).

Proof. If V is invertible, then WV −1W ∈ V for any invertible W ∈ V

by the fact that then WV −1W = (V −1)−1 = V holds. If W is singular, then
there exists an invertible element of V −1 arbitrarily close to W . Since V is
closed, by continuity also WV −1W ∈ V if W ∈ V is singular. Consequently,

7 A matrix is said to be ill-conditioned if its condition number is large.
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V −1WV −1WV −1 belongs to V −1V V −1 and therefore (10) vanishes at M =
V −1WV −1 for any W ∈ V .

For the converse, suppose the quadratic map (10) is identically zero. Then
for any W ∈ V there exists U ∈ V such that V −1WV −1WV −1 = V −1UV −1,
i.e., WV −1W = U ∈ V . Therefore V −1 = W−1UW−1 whenever W is
invertible. Keeping now such a W fixed and letting U vary in V , we can
conclude that Inv(V ) = W−1V W−1. Hence V is invertible.

This also explains why QV −1 vanishes at M = V −1. Let us state it as
follows.

Corollary 3.6. Let V̂ be an invertible matrix subspace of V containing
V . Then QV −1 vanishes on V −1V̂ V −1.

For example, the set of circulant matrices is an invertible matrix subspace
contained in the set of Toeplitz matrices.

In large scale numerical linear algebra, Inv(V ) is typically approximated
with its tangent space at the identity, assuming the matrix subspace V contains
the scalars. Then the tangent space is simply V and hence readily available. To
assess how possibly useful this linearization is, we want to inspect how curved
Inv(V ) is at V = 1√

n
I . This leads us to consider

(12) QV −1(M) = 2√
n
(I − PV )M2

for M ∈ V .

Example 3.7. In analyzing the resolvent operator of a matrix A ∈ C n×n,
one is concerned with Inv(V ) for the matrix subspace V = span{I, A}. At
V = 1√

n
I we need to evaluate 2√

n‖A‖2
F

(I − PV )A2 to find (11). (For M =
t0I + t1A with t0, t1 ∈ C, choose t0 = 0 and t1 = 1 for the maximum.) This
scalar can be seen to measure how far A is from being algebraic of degree two.
For the maximum curvature in terms of (11) for n > 2, take A to be the unitary
forward shift.8 Then (I − PV )A2 = A2.

Theorem 3.5 can be stated locally, in terms of the quadratic function (12),
yielding probably the simplest way of checking the invertibility of a nonsingu-
lar matrix subspace V . Here it is of use to observe that if V does not contain
the scalars, then one can consider the equivalent matrix subspace V V −1 for
an invertible V ∈ V . Clearly, V V −1 contains the scalars. It is also invertible
if and only if V is.9

8 The entries on the first subdiagonal and at the position (1, n) are ones.
9 Besides the linear map V �→ XV Y−1 with fixed X, Y ∈ GL(n, C), it is an interesting problem

to characterize maps that preserve invertibility of matrix subspaces.
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Corollary 3.8. Assume a matrix subspace V of C n×n over C (or R)
contains the scalars. Then V is invertible if and only if the quadratic function
(12) vanishes identically.

Proof. We have already shown that if V is invertible, then the quadratic
function (10) vanishes identically. Hence so does (12).

For the converse, if (12) vanishes identically, then V 2 ∈ V for every V ∈ V .
Inductively, we can conclude that all the even powers of V belong to V , in
addition to the first degree polynomials. Consequently,

(13) (V + V 2j )2 = V 2 + 2V 2j+1 + V 4j ∈ V for j = 1, 2, . . . .

Since the even powers belong to V , it follows that also all the odd powers
belong to V as well. Therefore V is polynomially closed and hence the matrix
subspace V contains the inverses of its invertible elements.

Example 3.9 ([13]). Let V ⊂ C n×n be the subspace of Toeplitz matrices
(over C) with n ≥ 2. Recall that V contains the scalars. Take V ∈ V and
denote by tj its entries on the j th diagonal, for −n + 1 ≤ j ≤ n − 1. Then
the difference between the (1, 1) and (2, 2) entries of V 2 is tn−1t−n+1 − t−1t1.
Hence V 2 /∈ V generically. Consequently, V is not invertible.

Lie and Jordan algebras are two of the most important examples of nonas-
sociative (with respect to the product) algebras [14]. Recall that the Jordan
product of two matrices V, W ∈ C n×n is defined as

(14) V • W = 1

2
(V W + WV ).

For a wealth of information on the Jordan product, see [14], [17]. (See also the
original paper [15].) A matrix subspace V over C (or R) is a Jordan subalgebra
if the Jordan product is closed in V .

Corollary 3.10. A nonsingular matrix subspace V of C n×n over C (or
R) is invertible if and only if there is a Jordan subalgebra in O(V ).

Proof. Suppose V is invertible. For an invertible element V ∈ V , consider
the matrix subspace W = V V −1. Then W ∈ O(V ) and W contains the
scalars. Since W is invertible as well, for any V, W ∈ W the powers V 2,
W 2 and (V + W)2 belong to W . Hence, by computing the difference (V +
W)2 − V 2 − W 2, we can conclude that so does the Jordan product of V and
W . Consequently, W is a Jordan subalgebra.

For the converse, suppose W ∈ O(V ) is a Jordan subalgebra. Take V = W

to conclude that W 2 ∈ W . By repeating this argument, it follows that all the
strictly even powers of W belong to W . By using (13), we can conclude that all
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the odd powers belong to W as well. Hence we obtain span{W, W 2, W 3, . . .} ⊂
W . If W is an invertible matrix, then span{I, W, W 2, . . .} contains the inverse
of W . Since

span{W, W 2, W 3, . . .} = W span{I, W, W 2, . . .},
necessarily I ∈ span{W, W 2, W 3, . . .}. Therefore also span{W, W 2, W 3, . . .}
and hence W contains the inverse of W . Thus W is invertible. Consequently,
V is invertible.

Corollary 3.11. A nonsingular matrix subspace V over C (or R) is a
Jordan subalgebra if and only if V is invertible and contains the scalars.

Consequently, for a nonsingular matrix subspace V containing the scalars,
the function (12) can also be viewed to measure how far V is from being a
Jordan subalgebra. (Finding a nearest Jordan subalgebra to V is seemingly
hard, though.)

Corollary 3.12. Suppose a nonsingular matrix subspace V over C (or
R) is a Jordan subalgebra. If V ∈ V is invertible, then V V −1 (resp. V −1V )
is a Jordan subalgebra.

As is well known, we have a Lie subalgebra once the sum operation in
(14) is replaced with the subtraction, and the resulting product is closed in V .
Unlike a Jordan subalgebra with invertible elements, a Lie subalgebra need
not be invertible.

Example 3.13. The Lie subalgebra V0 ⊂ C n×n of zero trace matrices is
nonsingular but not invertible. With V = diag(1, . . . , 1, −(n − 1)) ∈ V0,
consider V0V

−1 containing the scalars. It a simple task to come up with a
diagonal element of V0V

−1 whose square is not in V0V
−1. Using Corollary 3.8

we can conclude that V0 is not invertible.

Aside from nonassociative algebras, also in statistics a related notion of
quadratic matrix subspaces of real symmetric matrices has been introduced
in [23]. See also [22, Chapter 13]. For such a subspace V of real symmetric
matrices, the function (12) vanishes.

If V and W are nonsingular equivalent matrix subspaces with W =
XV Y−1, then the associated bijection

(15) V −1 �−→ YV −1X−1

between Inv(V ) and Inv(W ) is smooth. In terms of this map we have the
following proposition.



differential geometry of matrix inversion 279

Proposition 3.14. Assume V is a nonsingular matrix subspace over C (or
R). If X and Y are unitary, then Inv(V ) and Inv(XV Y−1) have the same
curvature at the respective points V −1 and YV −1X−1.

Proof. If X and Y are unitary matrices, then the map (15) on C n×n is
also unitary and thereby it preserves the angles between matrices, as well
as their norms. Consider the second derivative term V −1(WV −1W − U)V −1

in (7) and the second derivative term YV −1(WV −1W − U)V −1X−1 of the
curve (V + c(t))−1 after the map (15) has been applied. By unitarity, the
position between them and the respective tangent spaces V −1 Inv(V )V −1 and
YV −1 Inv(V )V −1X−1 is the same.

For instance, it is sufficient to inspect the curvature of either the set of
Toeplitz or the set of Hankel matrices considered in Examples 2.7 and 3.9, i.e.,
the sets of their inverses have the same curvature.

Example 3.15. Let V = I ⊗ V1 with a matrix subspace V1 of C n1×n1 over
C (or R). Then V is unitarily equivalent to V1 ⊗ I [11, p. 260]. Moreover, by
the properties of the Kronecker product concerning inversion, it is clear that
that the curvature of Inv(V ) determined by the curvature of V1.

Aside from the invertible case, we do not have an understanding of how the
curvature behaves in a nonunitary equivalence.

To end this section, let us note that although we have only dealt with matrix
subspaces, the concepts introduced make sense also in other applications (as
well as in a more abstract setting). In approximation theory, the underlying
algebra is typically a function space and hence commutative. For instance,
consider the set of analytic functions defined on a domain of C. Then, typically,
the finite dimensional subspaces appearing consist of polynomials or rational
functions of certain degree at most.

4. The zero fiber of Inv(V )

In algebraic geometry, the tangent cone is a classical tool to analyze singu-
larities [10], [6]. For another geometrical tool, the so-called Nash fiber at a
singular point of a variety is the set of limits of tangent spaces computed at
smooth points; see [18] and references therein.

For an analogy of the Nash fiber, assume V is a nonsingular matrix subspace
of C n×n over C (or R). Unlike a variety, Inv(V ) is not closed. Being a smooth
manifold, the set of limits of its tangent spaces can yield something of interest
only at the boundary points, as is the case for the singular points of a variety.
Since Inv(V ) is a homogeneous set, its structure is completely determined
in an arbitrarily small neighbourhood of the zero matrix. Therefore the zero
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matrix emerges as a natural boundary point to study in assessing the curvature
of Inv(V ) globally. By homogeneity, the set of limits of tangent spaces at the
zero matrix is exactly the set of tangent spaces of Inv(V ).

Definition 4.1. Assume V is a nonsingular matrix subspace over C (or R).
The union of the tangent spaces of Inv(V ) is called the zero fiber of Inv(V ).

Expressed in terms of functions, we are interested in the map

(16) span{V } �−→ V −1V V −1

from Gr1(V ) to Grk(C n×n), whenever defined, i.e., when V ∈ V is invertible.
The zero fiber of Inv(V ) consists of a single tangent space if and only if V is

invertible. (Equivalently, (16) is a constant function.) Otherwise we have a set
of subspaces whose variation can be analyzed in several ways. The maximum
angle between these subspaces would certainly be informative but it seems to
be computationally out of reach.

For one approach, set

(17) I (V ) = span Inv(V )

with the span taken over C (or R). Observe that if X, Y ∈ C n×n are invertible,
then

I (XV Y−1) = YI (V )X−1,

i.e., I (XV Y−1) and I (V ) are equivalent. The matrix subspace I (V ) can be
regarded as a global linearization of Inv(V ) by the fact that it collects the zero
fibre as follows.

Theorem 4.2. For any nonsingular matrix subspace V over C (or R) there
holds

I (V ) = spanV −1∈Inv(V ) V −1V V −1.

Proof. It is clear that I (V ) ⊂ spanV −1∈Inv(V ) V −1V V −1 since any V −1 ∈
Inv(V ) belongs to V −1V V −1 by the fact that V −1 = V −1V V −1.

For the converse inclusion, take M = ∑l
j=1 Mj , where Mj ∈ TV −1

j
Inv(V ),

i.e., Mj = V −1
j V̂jV

−1
j for Vj , V̂j ∈ Inv(V ). It suffices to prove that Mj ∈

I (V ). For this, we have

1

t
((Vj − t V̂j )

−1 − V −1
j ) = V −1

j V̂jV
−1

j + O(t)

by using the Neumann series. This proves the claim as t approaches zero by
the fact that subspaces of C n×n are closed.
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We have V ⊂ I (V ) if V contains the scalars but not necessarily otherwise.
Observe that if V is invertible, then V −1 = I (V ). Therefore, to inspect

the curvature of Inv(V ) globally, consider the difference dim I (V ) − dim V

to measure how much its tangent spaces vary in all.

Corollary 4.3. There holds dim I (V ) ≥ dim V , and

dim I (V ) = dim V

if and only if V is invertible.

This yields a natural concept for matrix subspaces. Only the case dim V ≥ 2
is of interest by the fact that the equality always holds with dim V = 1.

Definition 4.4. Let V be a nonsingular matrix subspace of C n×n over C
(or R). Then the grade of V is dim I (V ).

Bounding the grade from above is apparently nontrivial. The smallest invert-
ible matrix subspace containing V is fit for this purpose. Also, the subalgebra
generated by V obviously contains I (V ). The use of this subalgebra does not
seem to be natural since the construction misses the respective equivalence
relation (6) which we regard as fundamental.10 In all, these sets are not readily
generated and, even then, they may provide very pessimistic bounds.

Example 4.5. Let V be the matrix subspace of C n×n over C spanned by V1,
the forward unitary shift,11 and V2 = diag(1, ω, . . . , ωn−1) with ω = e2πi/n.
The subalgebra generated by the matrices V1 and V2 is C n×n.

Consequently, the subalgebra generated already by a two dimensional mat-
rix subspace V can be of dimension n2. Next we show that this is in sharp
contrast with the actual grade of V . For this, denote by deg(V ) the degree
of the minimal polynomial of V ∈ V . (The degree depends on whether V is
regarded as a matrix subspace over C or R.)

Theorem 4.6. Let V be a nonsingular matrix subspace of C n×n over C
(or R) with dim V = 2. Then the grade of V equals deg(V2V

−1
1 ) for any

V1 ∈ V ∩ GL(n, C) and V2 ∈ V spanning V .

Proof. With X = I and Y = V1 consider W = XV Y−1 = span{I, W },
where W = V2V

−1
1 . Recall that Inv(XV Y−1) = Y Inv(V )X−1 for any invert-

ible matrices X, Y ∈ C n×n. Hence, since dim I (V ) is invariant for equivalent
matrix subspaces, we can consider the grade of W . Clearly, this a matrix
subspace with commuting elements.

10 In [1] subalgebras are used to classify finite dimensional operator systems.
11 The forward unitary shift is the permutation matrix having ones on its first subdiagonal and

at the position (1, n).
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Observe first that, whenever invertible, the inverse of λI − W is a poly-
nomial in λI − W and hence a polynomial in W . Therefore I (W ) consists
of polynomials in W . It remains to show that all the polynomials in W are in
I (W ).

Clearly, any power of (λI −W)−1 is also a polynomial in W . Differentiating
the resolvent operator (λI − W)−1 gives

dj

dλj
(λI − W)−1 = (−1)j j !(λI − W)−(j+1).

Being limits of difference quotients, these derivatives belong to Inv(W ). By
the fact that W and (λI − W)−1 have the same degree, I (W ) consists of all
the polynomials in W . Thereby the dimension of I (W ) equals the degree of
W .

Example 4.7. Consider again Example 2.4. The generalized eigenvalue
problem (3) is concerned with the singular elements of the associated two di-
mensional matrix subspace V . (The singular elements determine the spectrum
of a matrix subspace [13, Section 3].) Usually the problem is converted into
an equivalent matrix subspace W = span{I, W } with commuting elements.
Being equal to the grade of V , the degree of the matrix W is independent of
the matrix Y ∈ V used in the equivalence.

By Proposition 2.5, the case Gr2(C n×n) is very exceptional by being easier
to analyze. Benefiting from commutativity, it can be dealt with, to large extent,
by using classical tools of matrix analysis for a single matrix. General results
for k > 2 are not readily given.

Observe that if V is equivalent to a nonsingular matrix subspace W with
commuting elements, then the dimension of V cannot be arbitrary. (For show-
ing the existence of such a W , see the proof of Proposition 2.5, which is
constructive.) It is bounded from above by the dimension of the nullspace of
the linear operator

(18) M �−→ WM − MW

on C n×n, for any fixed W ∈ W . The obvious reason is that the nullspace
contains W . For the dimension of the nullspace of (18), see [11, p. 275]. In
particular, if there is a nonderogatory element W in W , then all the elements
in the nullspace of (18) are polynomials in W and the grade of V equals the
degree of W . (For this, the proof of Theorem 4.6 applies.) With this, one can
readily construct matrix subspaces V satisfying

dim I (V ) − dim V = n − j

with dim V = j ≥ 2.
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5. Conclusions

Square matrix subspaces are either singular or nonsingular, with the latter prop-
erty being generic. Nonsingular matrix subspaces can, in turn, be separated
into being invertible or into those whose set of inverses has a nonvanishing
curvature. For the nonvanishing case, there are several alternatives to meas-
ure curvature. The second fundamental form of Riemannian geometry was
given and used to link invertible matrix subspaces with Jordan subalgebras.
Global measures were also suggested. Regarding Grk(C n×n), the case k = 2 is
exceptional. The noncommutativity is fundamentally present only for k > 2.

Acknowledgements. I would like to thank the referee for his/her re-
marks.
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