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ON THE WEAK DIFFERENTIABILITY OF
u ◦ f −1

STANISLAV HENCL∗

Abstract
Let p ≥ n − 1 and suppose that f : � → Rn is a homeomorphism in the Sobolev space
W

1,p
loc (�, Rn). Further let u ∈ W

1,q
loc (�) where q = p

p−(n−1)
and for q > n we also assume that u

is continuous. Then u ◦ f −1 ∈ BVloc(f (�)) and if we moreover assume that f is a mapping of
finite distortion, then u ◦ f −1 ∈ W

1,1
loc (f (�)).

1. Introduction

In this paper we address the following issue. Suppose that � ⊂ Rn is a
domain, suppose that f : � → Rn is a homeomorphism in the Sobolev
space W

1,p

loc (�, Rn) (see Preliminaries for the definition) and u is a function in
W

1,q

loc (�) for some properly chosen q = q(p, n). Under which conditions can
we then conclude that the composition satisfies u ◦ f −1 ∈ W

1,1
loc (f (�)) or that

u ◦ f −1 is weakly differentiable in some weaker sense?
Let us consider the following elementary example. Let us denote h(x) =

C(x) + x, where C(x) denotes the usual Cantor ternary function, and set
f (x1, x2, . . . , xn) = [h−1(x1), x2, . . . , xn]. It is easy to check that f is a
homeomorphism and f is Lipschitz, but f −1 fails the ACL condition and
therefore f −1 /∈ W

1,1
loc . This shows that even the composition of the identity

and an inverse of a Lipschitz mapping may not be weakly differentiable. How-
ever one may check that the inverse of this particular f is weakly differentiable
in the weaker sense, namely it has bounded variation f −1 ∈ BVloc (see Prelim-
inaries for the definition). Surprisingly we show that the composition always
satisfies u ◦ f −1 ∈ BVloc if f and u are regular enough.

Theorem 1.1. (i) Let n = 2 and suppose that f ∈ BVloc(�, R2) is a homeo-
morphism and let u ∈ W

1,∞
loc (�) be continuous. Then u◦f −1 ∈ BVloc(f (�)).

(ii) Let p ≥ n − 1, f : � → Rn be a homeomorphism and let f ∈
W

1,p

loc (�, Rn). Further assume that u ∈ W
1,q

loc (�) where q = p

p−(n−1)
and for

q > n we moreover assume that u is continuous. Then u◦f −1 ∈ BVloc(f (�)).
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Let us remind the reader that for q > n there is always a continuous rep-
resentative of u ∈ W

1,q

loc . A picking of the correct representative of u is needed
otherwise u◦f −1 is not even necessarily measurable. If p ≥ n and thus q ≤ n

then f satisfies the Lusin (N) condition (see [10]) and therefore the validity
of the result for one representative implies the result for any representative.

Moreover it is possible to show that the composition satisfies u◦f −1 ∈ W
1,1
loc

if we add the requirement that f has finite distortion. We say the homeomorph-
ism f ∈ W

1,1
loc (�, Rn) has finite distortion if Jf (x) ≥ 0 a.e. and Jf (x) = 0 ⇒

|Df (x)| = 0 a.e. (for basic properties and examples see e.g. [8]).

Theorem 1.2. Let p ≥ n − 1, f : � → Rn be a homeomorphism of finite
distortion and let f ∈ W

1,p

loc (�, Rn). Further assume that u ∈ W
1,q

loc (�) where
q = p

p−(n−1)
and for q > n we moreover assume that u is continuous. Then

u ◦ f −1 ∈ W
1,1
loc (f (�)).

Moreover for every n ≥ 2, p > n − 1 and 0 < ε < q − 1 there exists
homeomorphism of finite distortion f ∈ W 1,p((−1, 1)n, (−1, 1)n) and con-
tinuous function u ∈ W 1,q−ε((−1, 1)n), q = p

p−(n−1)
, such that u ◦ f −1 /∈

W
1,1
loc ((−1, 1)n).

Let us note that the positive part of our Theorem 1.2 was known before [14]
under additional technical assumptions while Theorem 1.1 about BV regularity
of the composition is entirely new. Moreover counterexamples in Theorem 1.2
showing sharpness are also new.

The additional requirements in [14] were that p > n−1 and that f satisfies
the Lusin (N) and (N−1) condition. In comparison with [14] we address the
limiting case p = n − 1 and q = ∞, we remove the unnecessary condition
(N) and we replace the (N−1) condition by a weaker condition that f has
finite distortion. Let us recall that any homeomorphism f ∈ W

1,1
loc which sat-

isfies Jf (x) ≥ 0 a.e. and (N−1) condition has finite distortion, but there is
homeomorphism of finite distortion which fails the (N−1) condition (see [9]).

From some recent results ([6], [12], [7], [2]) we already know that f −1 ∈
W

1,1
loc (or f −1 ∈ BVloc if we do not know that f has finite distortion) and

hence we can simplify and shorten the proof from [14]. We obtain that ui ◦
f −1 ∈ W

1,1
loc (or ui ◦f −1 ∈ BVloc), where ui are the usual smooth convolution

approximation of u. This fact comes with the uniform key estimate of the
derivative of the composition and thus we can pass to the limit in the standard
way to obtain our result.

Let us recall that for any n ≥ 3 and 0 < ε < 1 there exists a homeo-
morphism f ∈ W 1,n−1−ε such that f −1 /∈ BVloc (see [7, Example 3.1] or [4,
Example 1.3]). Therefore we cannot expect any regularity of u ◦ f −1 for any
p below the natural exponent n − 1. Moreover for every n ≥ 2, δ > 0 and
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p ∈ [1, ∞) there exists a homeomorphism of finite distortion f ∈ W 1,p such
that f −1 /∈ W

1,1+δ
loc (see [6, Example 6.1]). Therefore we cannot expect any

higher Sobolev regularity of u ◦ f −1 than W 1,1.
There are a lot of known results about the Sobolev regularity of the com-

position u ◦ g (see e.g. [3], [13], [5] and references given there) but our results
are different. We impose the condition on g−1 rather than on the function g. In
this way the assumption are easier, because we only assume some integrability
of the derivative and not the integrability of some ratio of derivative and the
jacobian. We are not aware of any result for BV regularity of u ◦ g similar to
Theorem 1.1 (ii).

2. Preliminaries

2.1. Notation

The Lebesgue measure of a set A ⊂ Rn is denoted by Ln(A). A mapping
f : � → Rn is said to satisfy the Lusin condition (N) if Ln(f (A)) = 0 for
every A ⊂ � such that Ln(A) = 0. Analogously, f is said to satisfy the Lusin
condition (N−1) if Ln(f

−1(A)) = 0 for every A ⊂ Rn such that Ln(A) = 0.
By |μ| we denote the total variation of the signed measure μ.

2.2. Functions of bounded variation

Let � ⊂ Rn be open and m ∈ N. A function h ∈ L1(�) is of bounded variation,
h ∈ BV(�), if the distributional partial derivatives of h are measures with finite
total variation in �: there are Radon (signed) measures μ1, . . . , μn defined in
� so that for i = 1, . . . , n, |μi |(�) < ∞ and

∫
�

h(x)Diϕ(x) dx = −
∫

�

ϕ(x) dμi(x)

for all ϕ ∈ C∞
0 (�). We say that f ∈ L1(�, Rm) belongs to BV(�, Rm) if the

coordinate functions of f belong to BV(�). Analogously we define the So-
bolev space: f ∈ W 1,p(�, Rm) if f ∈ Lp(�, Rm) and the distributional deriv-
atives of the coordinate functions are in Lp(�, Rn). Further, f ∈ BVloc(�, Rm)

(or f ∈ W
1,p

loc (�, Rm)) requires that f ∈ BV(�′, Rm) (or f ∈ W 1,p(�′, Rm))
for each open �′ ⊂⊂ �. For an introduction to the theory of BV and W 1,p

spaces see [1], [15]. The function h : � → Rm is said to be a representative of
g : � → Rm if h = g almost everywhere with respect to Lebesgue measure.

Let h ∈ BV((0, 1), Rn) be a continuous one to one map. Variation coincides
with the pointwise variation (see [1, Theorem 3.27]) and thus we can estimate
the measure of each interval (a, b) ⊂ (0, 1) by

|Dh|((a, b)
) ≤ CH1

(
h((a, b))

)
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and therefore

(2.1)

∫ 1

0
U(h(s)) d|Dh|(s) ≤

∫
h((0,1))

U(t) dH1(t)

for each nonnegative continuous function U : h((0, 1)) → R.

2.3. BVL and ACL condition

It is a well-known fact (see e.g. [1, Section 3.11]) that a function g ∈ L1
loc(�)

is in BVloc(�) (or in W
1,1
loc (�)) if and only if there is a representative which

has bounded variation (or is an absolutely continuous function) on almost all
lines parallel to coordinate axes and the variation on these lines is integrable.

More precisely, let i ∈ {1, 2, . . . , n}, Q0 = (0, 1)n and by πi we denote
the projection to the hyperplane perpendicular to i-th coordinate axis. For y ∈
πi(Q0) we denote gi,y(t) = g(y+tei ). Let g ∈ L1

loc(Q0). Then g ∈ BVloc(Q0)

if and only if for every i ∈ {1, . . . , n} the function gi,y(t) ∈ BV
(
(0, 1)

)
for

Ln−1 almost every y ∈ πi(Q0) and moreover
∫

πi(Q0)

|Dgi,y |
(
(0, 1)

)
dLn−1(y) < ∞.

In this case we can estimate the total variation of Dg by

(2.2) |Dg|(Q0) ≤ C

n∑
i=1

∫
πi(Q0)

|Dgi,y |
(
(0, 1)

)
dLn−1(y).

3. Regularity of the composition

We will need the following version of the coarea formula (see [14, Lemma 3.2]).

Lemma 3.1. Let p > n−1 and let f ∈ W 1,p(�, Rn) be a homeomorphism
such that f (�) = (0, 1)n. Set π(x1, . . . , xn) = [x2, . . . , xn] and S(x) =
π ◦ f (x). Then for every non-negative measurable function h we have

∫
(0,1)n−1

∫
S−1(y)

h(s) dH1(s) dLn−1(y) =
∫

�

h(x)JS(x) dx,

where JS is the square root of the sums of the squares of the determinants of
the n − 1 by n − 1 minors of the differential matrix of S.

Proof of Theorem 1.1. Let us first assume that p = n − 1 and q = ∞.
From [7, Theorem 1.1] and [2, Theorem 1] we know that any homeomorphism
in BVloc for n = 2 or in W

1,n−1
loc for n ≥ 3 satisfies f −1 ∈ BVloc. Now the
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composition of the Lipschitz function g and a BVloc mapping f −1 lies in BVloc

(see [1, Theorem 3.16]).
Further assume that p > n − 1. As before we can use [2, Theorem 1] to

conclude that f −1 ∈ BVloc. Suppose first that u is smooth. Then the function
u◦f −1 is continuous and belongs to BVloc(f

−1(�)). We are aiming for a local
estimate of the total variation of the measure D(u ◦ f −1).

Without loss of generality we will suppose that f (�) = (0, 1)n, � is boun-
ded and f ∈ W 1,p(�, Rn). Let π : Rn → Rn−1 be given by π(x1, . . . , xn) =
[x2, . . . , xn] and for each y ∈ Rn−1 let us denote λy = {[x, y] : x ∈ (0, 1)}.

Our mapping f −1 has bounded variation on λy for Ln−1 almost every
y ∈ (0, 1)n−1. Fix such a y, and denote the natural parametrization of λy by
py . Then f −1 ◦ py has bounded variation and we have the equality of the
following two measures on the interval (0, 1) (see [1, Theorem 3.96])

(3.1)
d

dt
(u ◦ f −1 ◦ py) =

n∑
j=1

∂u

∂xj

(f −1(y, t))(μy)j ,

here (μy)j denotes the distributional derivative of the j -th coordinate function
of f −1 ◦py . We estimate the right hand side of (3.1), we integrate with respect
to y, use (2.1), Lemma 3.1 and Hölder’s inequality to obtain

(3.2)

∫
(0,1)n−1

∫ 1

0
|∇u(f −1(t, y))| d|μy |(t) dLn−1(y)

≤ C

∫
(0,1)n−1

∫
f −1(λy)

|∇u| dH1 dLn−1(y)

≤ C

∫
�

|∇u(x)| |Df (x)|n−1 dx

≤ C

(∫
�

|∇u|q
) 1

q
(∫

�

|Df −1|p
) n−1

p

.

Similarly to (3.1) and (3.2) we can estimate the derivatives of u ◦ f −1 on lines
parallel to other coordinate axes. Using (2.2) we finally obtain

(3.3) |D(u ◦ f −1)|(Q0) ≤ C

(∫
�

|∇u|q
) 1

q
(∫

�

|Df −1|p
) n−1

p

.

Now let us return to the case when u is not smooth. Denote by ui the
usual convolution approximations to u. Consider two indices i and j and let
v = ui − uj . Applying (3.3) to v we easily see that D(ui ◦ f −1) forms a
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Cauchy sequence in Radon measures. It follows that ui ◦ f −1 forms also a
Cauchy sequence in L1

loc (see [1, Chapter 3.4]).
If n − 1 < p < n and thus q > n then u is continuous. Now ui converge

(locally) uniformly to u and thus ui ◦f −1 converge uniformly to u◦f −1. Since
ui ◦ f −1 is Cauchy in BV it follows that u ◦ f −1 ∈ BVloc (see [15] or [1]).

If p ≥ n then f satisfies the Lusin (N) condition [10]. Now ui converges to
u almost everywhere and thus ui ◦f −1 converges to u◦f −1 almost everywhere.
Since ui ◦ f −1 is Cauchy in L1

loc we obtain that ui ◦ f −1 converges to u ◦ f −1

in L1
loc. This and ui ◦ f −1 being Cauchy in BV implies that u ◦ f −1 ∈ BVloc

(see [15] or [1]).

Proof of the first part of Theorem 1.2. Under the additional assump-
tion of f being of finite distortion we know [2, Theorem 1.2] that f −1 ∈ W

1,1
loc .

From [1, Theorem 3.16 and Corollary 3.19] we know that the composition of
Lipschitz function and W 1,1 mapping is in W 1,1. The derivative of f −1 is now
an L1 function and not the measure and therefore similarly to the previous
proof we obtain that ui ◦ f −1 forms a Cauchy sequence in W 1,1 and therefore
analogously to the previous proof we obtain u ◦ f −1 ∈ W

1,1
loc .

4. Construction of examples

The following general construction of examples of mappings of finite distortion
was introduced in [6] (see also [5]). Here we give only the brief overview of
the construction, for details see [6, Section 5].

4.1. Canonical transformation

If c ∈ Rn, a, b > 0, we use the notation

Q(c, a, b) := [c1 − a, c1 + a] × · · ·× [cn−1 − a, cn−1 + a] × [cn − b, cn + b].

for the interval with center at c and halfedges a in the first n − 1 coordinates
and b in the last coordinate. For Q = Q(c, a, b) we set

ϕQ(y) = (c1 + ay1, . . . , cn−1 + ayn−1, cn + byn).

Let P , P ′ be concentric intervals, P = Q(c, a, b), P ′ = Q(c, a′, b′), where
0 < a < a′ and 0 < b < b′. We set

ϕP,P ′(t, y) = (1 − t)ϕP (y) + tϕP ′(y), t ∈ [0, 1], y ∈ ∂Q0.

Now, we consider two rectangular annuli, P ′ \ P ◦, and P̃ ′ \ P̃ ◦, where
P = Q(c, a, b), P ′ = Q(c, a′, b′), P̃ = Q(c̃, ã, b̃) and P̃ ′ = Q(c̃, ã′, b̃′),
The mapping

h = ϕP̃ ,P̃ ′ ◦ (ϕP,P ′)−1
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is called the canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦.

P

P ′

P̃

P̃ ′
h

Figure 1. The canonical transformation of P ′ \P ◦ onto P̃ ′ \ P̃ ◦ for n = 2.

This homeomorphism maps ∂P ′ onto ∂P̃ ′ and ∂P onto ∂P̃ linearly and the
boundaries of rectangles between P ′ and P are mapped to the corresponding
boundaries of rectangles between P̃ ′ and P̃ also linearly.

4.2. Construction of a Cantor set and a mapping

By V we denote the set of 2n vertices of the cube [−1, 1]n =: Q0. The sets
Vk = V ×· · ·×V, k ∈ N, will serve as the sets of indexes for our construction.
If w ∈ Vk and v ∈ V, then the concatenation of w and v is denoted by w∧v.
The following two results are proven in [6].

Lemma 4.1. Let n ≥ 2. Suppose that we are given two sequences of positive
real numbers {ak}k∈N0 , {bk}k∈N0 ,

a0 = b0 = 1;(4.1)

ak < ak−1, bk < bk−1, for k ∈ N.(4.2)

Then there exist unique systems {Qv}v∈⋃
k∈N Vk , {Q′

v}v∈⋃
k∈N Vk of intervals

(4.3) Qv = Q(cv, 2−kak, 2−kbk), Q′
v = Q(cv, 2−kak−1, 2−kbk−1)

such that

Q′
v, v ∈ Vk, are nonoverlaping for fixed k ∈ N,(4.4)

Qw =
⋃
v∈V

Q′
w∧v for each w ∈ Vk, k ∈ N,(4.5)

cv = 1

2
v, v ∈ V,(4.6)

cw∧v = cw +
n−1∑
i=1

2−kakviei + 2−kbkvnen,(4.7)

w ∈ Vk, k ∈ N, v = (v1, . . . , vn) ∈ V.
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Figure 2. Intervals Qv and Q′
v for v ∈ V1 and v ∈ V2 for n = 2.

In this way we construct a Cantor type set E in Rn which is a product of
one-dimensional Cantor sets Ea and Eb, that is

Ea × · · · × Ea × Eb = E =
∞⋂

k=1

⋃
v∈Vk

Qv.

Our next aim is to construct a homeomorphism which maps this Cantor type
set onto a similar Cantor type set in a natural canonical way. Then we choose
a suitable parameters of this construction to obtain a counterexample in the
second part of Theorem 1.2.

Theorem 4.2. Let n ≥ 2. Suppose that we are given four sequences of
positive real numbers {ak}k∈N0 , {bk}k∈N0 , {ãk}k∈N0 , {b̃k}k∈N0 ,

a0 = b0 = ã0 = b̃0 = 1;(4.8)

ak < ak−1, bk < bk−1, ãk < ãk−1, b̃k < b̃k−1, for k ∈ N.(4.9)

Let the systems {Qv}v∈⋃
k∈N Vk , {Q′

v}v∈⋃
k∈N Vk of intervals be as in Lemma 4.1,

and similarly systems {Q̃v}v∈⋃
k∈N Vk , {Q̃′

v}v∈⋃
k∈N Vk of intervals be associated

with the sequences {ãk} and {b̃k}. Then there exists a unique sequence {f k} of
bilipschitz homeomorphisms of Q0 onto itself such that

(a) f k maps each Q′
v\Qv , v ∈ Vm, m = 1, . . . , k, onto Q̃′

v\Q̃v canonically,

(b) f k maps each Qv , v ∈ Vk , onto Q̃v affinely.

Moreover,

(4.10) |f k − f k+1| <∼ 2−k, |(f k)−1 − (f k+1)−1| <∼ 2−k.

The sequence f k converges uniformly to a homeomorphism f of Q0 onto Q0.
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4.3. Completion of the proof of Theorem 1.2

Proof of the second part of Theorem 1.2. Setα = n−1 andγ = q−1− ε
2 .

It is easy to check that

(4.11) (n − 1)γ + α − γp > 0 and (n − 1)γ + α − α(q − ε) > 0.

Set

ak = 1

(k + 1)γ
, bk = 1

(k + 1)α
, ãk = 1

2
+ 1

(k + 1)α
, b̃k = 1

(k + 1)α
,

and use Theorem 4.2 to obtain our mapping f . Recall that due to the symmetry
of the construction (see [6, Remark 5.5]) we obtain that f −1 is given by the
same theorem applied to sequences ãk , b̃k , ak and bk .

Similarly as in [6, Section 6] or [5, Section 5] we obtain that f ∈ W 1,p(Q0,

Rn) and that

(4.12)

∫
Q0

|Df |p ∼ C
∑
k∈N

1

k1+(n−1)γ+α
kγp < ∞,

where the finiteness of the sum follows from (4.11). As a brief hint (see [6] or
[5] for details) for this let us point out that

Ln(Q
′
v \ Qv) = 1

2(k−1)n

(
an−1

k−1bk−1 − an−1
k bk

) ∼ 1

2knk1+(n−1)γ+α

for every v ∈ Vk , we have 2kn rectangular annuli like that in each step and the
derivative of fk and thus also of f on this annuli is at most

max

{
ãk−1

ak−1
,
ãk−1 − ãk

ak−1 − ak

,
b̃k−1

bk−1
,
b̃k−1 − b̃k

bk−1 − bk

}
∼ kγ .

In fact we need to show that the sequence fk is Cauchy in W 1,p but this easily
follows from the convergence of the sum in (4.12). Note that f is clearly a
mapping of finite distortion since each fk is a mapping of finite distortion and
a measure of a set where f is not equal to some fk has measure zero.

Set ˜̃ak = 1

(k + 1)γ
,

˜̃
bk = 1

2
+ 1

2(k + 1)γ

and use Theorem 4.2 for sequences ak , bk , ˜̃ak and ˜̃
bk to obtain a mapping g.

Similarly as above we use (4.11) to obtain g ∈ W 1,q−ε(Q0, Rn) since∫
Q0

|Dg|q−ε ∼ C
∑
k∈N

1

k1+(n−1)γ+α
kα(q−ε) < ∞.
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Recall (see [6, Remark 5.6]) that g ◦ f −1 can be obtained by Theorem 4.2

applied to sequences ãk , b̃k , ˜̃ak and ˜̃
bk . We claim that g ◦ f −1 does not satisfy

the ACL-condition and therefore g ◦f −1 /∈ W
1,1
loc (Q0, Q0). It is clear from the

construction in Theorem 4.2 that there are Cantor sets Ea , Eb, Eã and Eb̃ such
that g ◦ f −1 maps the Cantor set Ea × Ea × · · · × Ea × Eb onto the Cantor
set Ẽa × Ẽa × · · · × Ẽa × Ẽb. Clearly L1(Ẽa) = L1(Eb) = 0, L1(Ẽb) > 0,
L1(Ea) > 0 and it is not difficult to check that for every y ∈ [−1, 1]n−1

such that y ∈ Ea × · · · × Ea there exists ỹ ∈ Ẽa × · · · × Ẽa such that
g ◦ f −1({y} × Eb) = {ỹ} × Ẽb. It follows that g ◦ f −1(y, ·) does not satisfy
the one-dimensional Luzin condition (N) and therefore cannot be absolutely
continuous there. Since Ln−1(Ea ×· · ·×Ea) > 0 we obtain that g ◦f −1 does
not satisfy theACL-condition. Another possibility how to show g◦f −1 /∈ W 1,1

is to compute

∫
Q0

|∇g ◦ f −1| ∼ C
∑
k∈N

(
ãn−1

k−1 b̃k−1 − ãn−1
k b̃k

) ˜̃
bk−1

b̃k−1

∼
∑
k∈N

1

k1+α
kα = ∞.

For the statement of Theorem 1.1 simply pick f as above and set u = gn,
i.e., the n-th coordinate function of g.
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