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DECOMPOSABLE PROJECTIONS RELATED TO THE
FOURIER AND FLIP AUTOMORPHISMS

S. WALTERS∗

Abstract
In this paper we classify Fourier invariant projections g in the irrational rotation C*-algebra that
can be decomposed in the form

g = f + σ(f )+ σ 2(f )+ σ 3(f )

for some Fourier orthogonal projection f , where σ is the Fourier transform automorphism. The
analogous result is shown for the flip automorphism as well as the existence of flip-orthogonal
projections. Both classifications are achieved by means of topological invariants (given by un-
bounded traces) and the canonical trace. We also show (in both the flip and Fourier cases) that
invariant projections h are subprojections of orthogonal decompositions g for some projection f
such that τ(f ) = τ(h) (where τ is the canonical trace).

1. Introduction and Main Results

Our setting is the irrational rotation C*-algebraAθ generated by unitariesU,V
enjoying the commutation relationVU = λUV where λ = e(θ) := e2πiθ . The
flip automorphism on Aθ is the canonical automorphism φ given by φ(U) =
U−1, φ(V ) = V −1 and the Fourier transform is the canonical automorphism
defined by σ(U) = V, σ(V ) = U−1. The flip automorphism was extensively
studied in [1], [2], and [3]; it prompted research interest in the other three
canonical automorphisms of the rotation C*-algebra.

Definition 1.1. A projection f is flip-orthogonal if f φ(f ) = 0. A pro-
jection f is σ ∗-orthogonal if f, σ (f ), σ 2(f ), σ 3(f ) are mutually orthogonal
projections (so that their sum is a Fourier invariant projection).

A quick rundown of the results of this paper are as follows:

(1) Aθ contains flip-orthogonal projections (Theorem 1.2);

(2) topological classification of flip invariant projections in Aθ that can be
decomposed asf+φ(f ) for some flip orthogonal projectionf (Theorem
1.3);
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(3) topological classification of Fourier invariant projections that can be
decomposed as

(1.1) f + σ(f )+ σ 2(f )+ σ 3(f )

for some σ ∗-orthogonal projection f (Theorem 1.7);

(4) we generalize the result in [18] that the Fourier transform on a corner
algebra of Aθ is conjugate to the tensor product of respective Fourier
transforms onMq and another rotation algebra (Theorem 1.5), which in
[18] was proved for a dense Gδ set of θ ’s and specialized rationals p/q
– strict conditions that we remove. (Theorem 1.5 is used to prove (3).)

(5) We show in both the flip and Fourier cases that invariant projections are
subprojections of an orthogonal decomposition such as (1.1) for some
f . (See Theorems 1.4 and 1.8 for more precise statements.)

Phillips’ notion of tracial Rokhlin property [9] involves projections that are
approximately orthogonal, a property he showed to hold for the canonical
finite order automorphisms (including the flip and Fourier) of the irrational
rotation algebra.

For any positive integer q, define

q̃ = 1
2 (q − r)

where r ∈ {1, 2} is such that q ≡ r mod 2.

Standing Hypothesis. In the statements of Theorems 1.2–1.8 below, let
θ > 0 be irrational and p/q be a positive rational (in reduced form, q > 0)
such that 0 < q|qθ − p| < 1. For example, any convergent of θ satisfies this
inequality.

Theorem 1.2. For each k ≤ q̃ there exists a smooth flip-orthogonal pro-
jection in Aθ of trace k|qθ − p|.

It would seem that in view of this, and the fact that this is the case also
for the Fourier transform (see Theorem 1.6 below or [16]), that projections
orthogonal with respect to the hexic and cubic transforms exist also. One of
the advantages of getting such projections lies in their use in constructing
basic building blocks (of type I) in Aθ that are invariant and approximate Aθ
– such as is shown in [17] where two orthogonal matrix algebras over the unit
circle are mapped onto each other by an order 4 automorphism quite similar
to the Fourier transform (which is in fact approximately unitarily equivalent to
the Fourier transform). In fact, since the latter inductive limit automorphism is
equal to the Fourier transform on the K-theory ofAθ , by Elliott’s Classification
Theorem [6] they are approximately unitarily equivalent.
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Next, we determine when a flip invariant projection g in Aθ can be decom-
posed as g = e+φ(e) for some flip orthogonal projection e. This is not always
possible, even if g has “even” trace, because a necessary condition for such a
decomposition to hold is that the topological invariants of g, given by the un-
bounded traces φij , all vanish. (These maps are defined in the Preliminaries.)
Henceforth by “topological invariants” we will mean the quantized numbers
given by the unbounded traces on projections (as they are indeed quantized).
For indeed, if eφ(e) = 0 then one has φij (e) = φij (ee) = φij (φ(e)e) = 0, and
by the φ-invariance of φij one necessarily has φij (g) = 0. To see that this latter
equality is not always the case for flip invariant projections one calculates the
φij on the flip invariant Rieffel projections in [14] (Lemma 2.1), and finds that
they are not all zero.

The following theorem shows that the topological invariants given by the
unbounded tracesφij (along with the canonical trace) are the only (topological)
obstructions for such decomposition.

Theorem 1.3. For each flip invariant projection g in Aθ with vanishing
topological invariants and of “even” trace τ(g) = 2k|qθ − p|, where k ≤ q̃,
there is a flip orthogonal projection f in Aθ such that

(1.2) g = f + φ(f ).

By consequence of these results we obtain the following result that shows
that invariant projections are related to flip orthogonal projections in a natural
way.

Theorem 1.4. Let g be a flip invariant projection in Aθ of trace τ(g) =
k|qθ −p| where k ≤ q̃. Then there exists a flip orthogonal projection f in Aθ
such that

τ(f ) = τ(g) and g ≤ f + φ(f ).

We obtain the analogous results for the Fourier transform (Theorems 1.6,
1.7, 1.8), but in order to accomplish this we will need to prove the following
result (which will occupy our attention).

Theorem 1.5. Let σ be the Fourier transform on Aθ . Then there exists a
Fourier invariant smooth projection e in Aθ of trace τ(e) = q|qθ − p| and a
smooth *-isomorphism

(1.3) η : eAθe → Mq ⊗ Aθ ′ such that ησ = (
 ⊗ σ ′)η

where
 and σ ′ are Fourier transform automorphisms onMq andAθ ′ , respect-
ively, given by

(1.4) 
(u) = v, 
(v) = u∗, σ ′(a) = b∗, σ ′(b) = a,
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where Mq = C∗(u, v) and u, v are order q unitary matrices with vu =
e
(
p

q

)
uv, and Aθ ′ is generated by unitaries a, b with ba = e(θ ′)ab, where θ ′ is

some irrational in the GL(2, Z) orbit of θ . The isomorphism η is “smooth” in
that it induces an isomorphism of the canonical smooth algebras eA∞

θ e and
Mq ⊗ A∞

θ ′ .

In [18] we constructed the projection e of Theorem 1.5 but obtained the
commutative equality (1.3) with the automorphism
⊗σ ′ only under the very
specialized case that θ belongs to a dense Gδ set of irrationals and has an
infinite sequence of rational approximants p/q such that p is a perfect square
and q ≡ 0 mod 4. Theorem 1.5 does away with all these restrictions, and
allows us to obtain the following more general results.

By analogy with q̃, for any positive integer q, we define

(1.5) q̂ = 1
4 (q − r) ∈ Z

where r ∈ {1, 2, 3, 4} is such that q ≡ r mod 4.

Theorem 1.6. For each k ≤ q̂ there exists a σ ∗-orthogonal projection in
Aθ of trace k|qθ − p|.

These results are used in proving the following two theorems.

Theorem 1.7. Let g be a Fourier invariant projection inAθ with vanishing
topological invariants and of “quartic” trace τ(g) = 4k|qθ − p|, where
k ≤ q̂. Then there exists a σ ∗-orthogonal projection f in Aθ such that g has
the orthogonal decomposition

(1.6) g = f + σ(f )+ σ 2(f )+ σ 3(f ).

Theorem 1.8. Let g be a Fourier invariant projection inAθ of trace τ(g) =
k|qθ − p| where k ≤ q̂. Then there exists a σ ∗-orthogonal projection f in Aθ
and Fourier invariant projections g1, g2, g3, mutually orthogonal and with g,
such that

τ(f ) = τ(g) = τ(gj ), g + g1 + g2 + g3 = f + σ(f )+ σ 2(f )+ σ 3(f )

and T4[gr ] = �−rT4[g], where � = (1; i, i; −1,−1,−1).

The Connes-Chern character invariant T4 is defined near the end of the
Preliminaries (in terms of canonical and unbounded traces).

We conjecture that if the projection g in Theorem 1.7 is approximately
central, then the projection f could be chosen to be so as well.

Presumably, the same decomposition results hold for the cubic and hexic
transforms of Aθ studied in [4]. (The converse of Theorem 1.7 is trivial.)
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Remark 1.9. In all that follows we assume that θ is a fixed irrational num-
ber, with 0 < θ < 1, thatp/q is any rational number such that 0 < q(qθ−p) <
1 (and q > 0). The reason it suffices to assume that q(qθ − p) > 0 in the
proofs even though in the statements of theorems we assume q|qθ − p| < 1,
is that if qθ − p < 0, then p − qθ = q(1 − θ)− (q − p) > 0 and the results
can be applied to 1 − θ and the rational (q − p)/q. Consequently, our results
apply to any convergent of θ since they all enjoy the inequality q|qθ−p| < 1.

Acknowledgements. The author is indebted to the referee for making
several helpful suggestions and for careful reading of this manuscript. This
research was partly supported by a grant from the Natural Science and Engin-
eering Council of Canada.

2. Preliminaries

Convention 2.1. It will be convenient to introduce projective equality “X �
Y ,” for matrices or operators X, Y , to mean that X = cY for some complex
number c with |c| = 1. Unless the contrary is stated, we write m ≡ n for
congruence mod q (q being fixed in the process). We write δkd for the di-
visor δ-function given to be 1 when d|k and 0 otherwise. We clearly have∑n−1
j=0 e(mj/n) = nδmn .

Let p/q be a positive rational number in lowest terms and set λ0 = e(p/q).
Let u, v be any two unitaries inMq = Mq(C) of order q such that vu = λ0uv.
Such unitaries generate Mq (as ujvk form a basis, j, k = 0, 1, . . . , q − 1). If
u′, v′ is any other pair of order q unitaries satisfying v′u′ = λ0u

′v′, then there
is a unique automorphism of Mq such that u 
→ u′, v 
→ v′.

It is easy to check the equation

(2.1) (vmun)k = λ
−mnk(k−1)/2
0 vmkunk.

There is a natural homomorphism α : SL(2, Z) → Aut(Mq) sending the
matrix X = [

a b
c d

]
to the automorphism αX given by

(2.2) αX(v) = λ
ac(q−1)/2
0 vauc, αX(u) = λ

bd(q−1)/2
0 vbud,

where we write λt0 := e(pt/q) for any real t .
Using (2.1) it is easy to check that these unitaries have order q and satisfy

the same relation vu = λ0uv, so that the automorphism αX exists, and that
αXαY = αXY .

If an automorphism μ of Mq has the generic form

(2.3) μ(v) � vauc, μ(u) � vbud
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we will refer toX = [
a b
c d

]
as “its matrix” (which is unique mod q); and if this

matrix is chosen in SL(2, Z) then μ(v) � αX(v), μ(u) � αX(u).
We denote by SL(2, Zq) the group of 2 by 2 matrices with entries in the com-

mutative ring Zq = Z/qZ whose determinant is 1 mod q. There is a canonical
map SL(2, Z) → SL(2, Zq).

Lemma 2.2. The canonical group homomorphism SL(2, Z) → SL(2, Zq)
is surjective.

Proof. Fix a matrix
[
a b
c d

]
such that ad − bc = 1 + xq for some integer

x. Without loss of generality one may assume that b, d are relatively prime.
(This is because (b, d) has order q in Zq ⊕ Zq and any such element has
integer representatives that are relatively prime.) Pick integers k, 
 such that
kb + 
d = 1. Then one has (a − x
q)d − b(c + xkq) = 1 and the matrix[
a−x
q b
c+xkq d

]
is a preimage in SL(2, Z).

In this paper we will use the Rieffel framework that we have set up in [18]
– which was based on Rieffel’s equivalence bimodule construction in [12] –
the essentials of which we recollect here for our calculations below.

Let M be a locally compact Abelian group and dm the Haar measure on
M . In the case of finite discrete M , each point has Haar measure 1/

√|M|.
When M = R, dm is the usual Lebesgue measure. (Recall that these Haar
measure normalizations ensure that two iterations of the Fourier transform of
f (t) is equal to f (−t).) We will be interested in the case whenM is self-dual:
M̂ ∼= M . In this case there is a canonical pairing 〈m,m′〉 : M × M → T
(where T is the unit circle). For m,m′ ∈ Zq and s, t ∈ R the pairings are
〈m,m′〉 = e(mm′/q) and 〈s, t〉 = e(st).

If f is a continuous complex function of compact support onM , the Fourier
transform is given by f̂ (m′) = ∫

M
f (m)〈m,m′〉 dm. Letting G = M × M̂ ,

the Heisenberg projective unitary representation is given by

(2.4) π : G → U(L2(M)), [π(m,s)f ](n) = 〈n, s〉f (n+m),

form, n ∈ M , s ∈ M̂ . The canonical Heisenberg cocycle onG is given by the
“first-and-last” pairing

(2.5) �((m, s), (m′, s ′)) = 〈m, s ′〉.
One has

(2.6) πxπy = �(x, y)πx+y, π∗
x = �(x, x)π−x

for x, y ∈ G. If D is a lattice in G, then its dual lattice is

D⊥ = {y ∈ G : �(x, y)�(y, x) = 1, ∀x ∈ D}.
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Rieffel’s Theorem 2.15 in [12] states that the Schwartz space S (M) onM can
be completed into is an equivalence bimodule with the twisted convolution C*-
algebrasC∗(D, �) andC∗(D⊥, �) acting on the left and the right, respectively.
The C*-algebra C∗(D, �) is generated by the unitaries πx , for x ∈ D, while
C∗(D⊥, �) is the opposite algebra of the C*-algebra generated by the unitaries
π∗
y , for y ∈ D⊥. Thus, C∗(D, �) = C∗(πx : x ∈ D) and C∗(D⊥, �) =
C∗(π∗

y : y ∈ D⊥)opp. (To make matters clearer, we may use “•” to denote the

opposite multiplication of C∗(D⊥, �) – thus x • y = yx.)
On S (M) there are C*-valued inner products given by

〈f1, f2〉D = |G/D|
∑
w∈D

〈f1, f2〉D(w)πw(2.7)

= |G/D|
∑
w∈D

〈f1, πwf2〉L2(M)πw

〈f1, f2〉D⊥ =
∑
z∈D⊥

〈f1, f2〉D⊥(z)π∗
z(2.8)

=
∑
z∈D⊥

〈πzf2, f1〉L2(M)π
∗
z

having the module properties

(2.9) 〈f1, f2〉∗D = 〈f2, f1〉D, 〈f1, f2〉∗D⊥ = 〈f2, f1〉D⊥

(2.10) a • 〈f1, f2〉D⊥ • b = 〈f1a
∗, f2b〉D⊥

for a, b ∈ C∗(D⊥, �) and f1, f2 ∈ S (M).
Using Rieffel’s equivalence bimodule construction, applied to a suitably

chosen lattice, in [18] we constructed a Fourier invariant smooth projection e
in Aθ of trace q(qθ − p) and an isomorphism

(2.11) μ : eAθe → Mq ⊗ Aθ ′ such that μσ = (σ1 ⊗ σ2)μ

where σ1 and σ2 are automorphisms of Mq and Aθ ′ (respectively) given by

(2.12) σ1(x) = W ∗
0 σ

′(x)W0 (x ∈ Mq)

where W0 is some unitary in Mq , where σ2 = σ ′ on Aθ ′ , and σ ′ is the Fourier
automorphism of Mq ⊗ Aθ ′ given by

(2.13) σ ′(V1) = V2, σ ′(V2) = V ∗
1 , σ ′(V3) = V4, σ ′(V4) = V ∗

3
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where Mq = C∗(V3, V4), Aθ ′ = C∗(V1, V2), and the unitaries here satisfy the
relations
(2.14)

V1V2 = e(θ ′)V2V1, V3V4 = e
(
p

q

)
V4V3, VjVk = VkVj , V

q

k = I,

(using the usual multiplication of operators on the underlying Hilbert space)
for j = 1, 2 and k = 3, 4, where θ ′ is in the standard GL(2, Z) orbit of θ . In
the notation of the beginning of this section, v = V3, u = V4 and σ ′ � αJ
where J = [ 0 −1

1 0

]
.

With τ and τ ′ being the canonical traces on Aθ andMq ⊗Aθ ′ , respectively,
from [18] (Sections 2 and 4) their Morita equivalence yields the equation1

(2.15) τ (μ−1(y)) = q(qθ − p)τ ′(y)

for all y in Mq ⊗ Aθ ′ . (The trace on Mq being the usual q−1 times the sum of
the diagonal entries.) Note that y = 1 gives τ(e) = q(qθ − p).

Further, the unitary W0 ∈ Mq has the Hilbert module inner product form
W0 = 〈ϕ, ϕ̂〉D⊥

0
where

(2.16) ϕ(n,m) = 1√
q
e
(

1
q

[an2 + bnm+ γm2]
)
,

for some integer constantsa, b, γ (to be shortly specified), and ϕ̂ is its (discrete)
Fourier transform. In our construction [18] we realized the matrix algebraMq

as twisted group C*-algebras Mq
∼= C∗(D0, �) and Mq

∼= C∗(D⊥
0 , �) (as in

Rieffel [12]) with respect to the groups M0 = Zq × Zq , G0 = M0 × M̂0 =
M0 ×M0. We took the lattice D0 in G0, and its complement D⊥

0 , with bases:

(2.17)

D0 :

[
ε1

ε2

]
=

[
p1 p2 p3 p4

−p3 −p4 p1 p2

]
,

D⊥
0 :

[
δ3

δ4

]
=

[
p2 −p1 −p4 p3

p4 −p3 p2 −p1

]

where, by Lagrange’s theorem, one can write p = p2
1 + p2

2 + p2
3 + p2

4 as a
sum of four integer squares. Here, V3, V4 are realized as order q unitaries such
that Vk � π−δk (in terms of the Heisenberg unitaries).

1 In [18] we had the trace relation τ(〈f, g〉D) = q(qθ − p) τ ′(〈g, f 〉D⊥ ) for a suitable lattice
subgroup D and it’s complement D⊥, and upon using the isomorphism μ, which is given by
μ−1(y) = 〈ξy, ξ〉D for y ∈ Mq ⊗ Aθ ′ , where 〈ξ, ξ〉D⊥ = 1, one obtains (2.15).
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In [18] we had the following notation

(2.18)

r1 = −p1 − 2γp3 + bp4,

r2 = p2 + 2ap4 − bp3,

r3 = p3 − 2γp1 + bp2,

r4 = −p4 + 2ap2 − bp1,

s1 = p1 − 2ap3 − bp4,

s2 = p2 − 2γp4 − bp3,

s3 = p3 + 2ap1 + bp2,

s4 = p4 + 2γp2 + bp1.

Then

(2.19) � := r1r4 − r2r3 = s1s4 − s2s3.

We showed that there exist integers a, b, γ such that � is relatively prime to
q (Proposition 3.1 of [18]), that 〈ϕ, ϕ〉D0 = I , and 〈ϕ, ϕ〉D⊥

0
= I (both being

the identity matrix of Mq). (We note that the covolume here is |G0/D0| = 1.)
The algebraC∗(D⊥

0 , �) ∼= Mq is generated by the unitaries V3, V4 as above.
On each of these algebras we have respective Fourier transforms σ0(πx) =
�(x, x)πR0x for x ∈ D0, and σ ′

0(πy) = �(y, y)πR0y for y ∈ D⊥
0 , where

R0(u; v) = (−v; u) for u, v ∈ M0. They satisfy the properties

(2.20) σ0(〈φ1, φ2〉D0) = 〈φ̂1, φ̂2〉D0 , σ ′
0(〈φ1, φ2〉D⊥

0
) = 〈φ̂1, φ̂2〉D⊥

0
.

If τ0, τ
′
0 are the canonical normalized traces on C∗(D0, �) and C∗(D⊥

0 , �),
respectively, then τ0(〈φ1, φ2〉D0) = τ ′

0(〈φ2, φ1〉D⊥
0
), for φj ∈ S (M0) (all com-

plex functions on M0, which in the general case is Schwartz space), since we
have |G0/D0| = 1.

We have the following formulas that we will take the liberty of using below.

(2.21) b̂f = σ0(b)f̂ , f̂a = f̂ σ ′
0(a),

(2.22) τ0(〈f1, f2〉D0〈f3, f4〉D0) = τ ′
0(〈f4, f1〉D⊥

0
〈f2, f3〉D⊥

0
)

for f , fj ∈ S (M0), a ∈ C∗(D0, �), b ∈ C∗(D⊥
0 , �̄).

We also have

(2.23) σ ′(W0) = σ ′
0(W0) = W ∗

0

which easily follows from (2.20), the definition of W0, ̂̂ϕ = ϕ, and (2.9).
Further, note that we have σ ′ � σ ′

0 � αJ on Mq .
In the later sections of [18] we confined ourselves to the special case that θ

is in a denseGδ set of irrationals with the property that there are infinitely many
rationals p/q such that |q(qθ − p)| < 1 where p = p2

1 is a perfect square
and q is divisible by 4. This helped to simplify the calculation of W0 and its
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relation with V3, V4, since it enabled us to take a = γ = 0 and b = 1 so that
we could take ϕ(n,m) = q−1/2e

(
1
q
nm

)
, making the automorphism σ1 equal

to the inverse of σ ′. However, without making such restrictions, and allowing
for general constants a, b, γ , and for arbitrary p, one cannot in general expect
exact equality of σ1 with the inverse of σ ′. The best one can say is that σ1 is
conjugate to the inverse σ ′ (which we prove in this paper), and this will meet
our purposes.

Finally, we recollect the unbounded trace functionals that give us the topo-
logical invariants in both the flip and Fourier cases.

For the flip automorphism case the unbounded traces are given on generic
vectors UmV n by (see [14] or [13])

(2.24) φij (U
mV n) = λ−mn/2δi−m2 δ

j−n
2

for (i, j) = (0, 0), (0, 1), (1, 0), (1, 1), m, n ∈ Z, and δkd is the divisor func-
tion (where VU = λUV ). These define linear functionals on the canonical
smooth *-subalgebraA∞

θ . They areφ-invariant and satisfy theφ-trace property
φij (xy) = φij (φ(y)x) for all x, y in A∞

θ . Clearly, on the fixed point subal-
gebra of A∞

θ under the flip they are traces. On the crossed product C*-algebra
Aθ �φ Z2 they induce densely defined trace functionals given by

(2.25) Tij (a + bW) = φij (b)

where a, b ∈ A∞
θ and W is the (order 2) canonical unitary of the crossed

product. It was shown in [13] that these traces and the canonical trace induce
an injective homomorphism on K0:

(2.26) K0(Aθ �φ Z2) → R5, x 
→ (τ (x); T00(x), T01(x), T10(x), T11(x))

(see Proposition 3.2 of [13]). By transforming the situation to the fixed point al-
gebra (using the canonical Morita equivalence between the fixed point algebra
and the crossed product) one easily sees that we have the injective homomorph-
ism on K0(A

φ
θ ):

(2.27) T2 : K0(A
φ
θ ) → R5,

T2(x) = (τ (x);φ00(x), φ01(x), φ10(x), φ11(x)).

For the Fourier case we have the twisted trace maps

(2.28) ψ20(U
mV n) = λ−mn/2δm2 δ

n
2 , ψ10(U

mV n) = λ(m−n)2/4δm−n
2 ,

(2.29) ψ21(U
mV n) = λ−mn/2δm−1

2 δn−1
2 , ψ11(U

mV n) = λ(m−n)2/4δm−n−1
2 ,

(2.30) ψ22(U
mV n) = λ−mn/2 δm−n−1

2 ,
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where ψ1j are σ -invariant σ -traces and ψ2j are σ -invariant σ 2-traces. By the
same token as the flip case one has the associated injective group homomorph-
ism

T4 : K0(A
σ
θ ) → C6,

T4(x) = (τ (x);ψ10(x), ψ11(x);ψ20(x), ψ21(x), ψ22(x))

This map was shown to be injective in [15] for a dense Gδ set of θ ’s (that
includes the rationals), but since by [5] or [10] one has K0(A

σ
θ )

∼= Z9 for all
θ the map is injective for all irrational θ . By the cancellation theorem for Aσθ
(see Proposition 5.2 of [8]) one knows that two projections a and b in Aσθ are
unitarily equivalent by a unitary in Aσθ if and only if T4(a) = T4(b).

3. The Flip Case

From the Preliminaries we have a Fourier invariant projection e in Aθ of trace
q(qθ − p) and an isomorphism

μ : eAθe → Mq ⊗ Aθ ′

satisfying μσ = (σ1 ⊗ σ2)μ where σ1 and σ2 are automorphisms of order 4
onMq and Aθ ′ , respectively, given by (2.12) and (2.13) (note σ2 = σ ′ on Aθ ′ ).
From this intertwining relation one has μσ 2 = (σ 2

1 ⊗ σ 2
2 )μ or

(3.1) μφ = (φ1 ⊗ φ2)μ

where φ1 is the flip u 
→ u−1, v 
→ v−1 on Mq and φ2 the flip on Aθ ′ . Note
that σ 2

1 = φ1 follows from (2.23). Indeed, from (2.12) and (2.23) one has

(3.2)
σ 2

1 (x) = W ∗
0 σ

′(W ∗
0 σ

′(x)W0)W0 = W ∗
0 σ

′(W ∗
0 )σ

′2(x)σ ′(W0)W0

= σ ′2(x) = φ1(x).

From (3.1) one can obtain flip-orthogonal projections in eAθe (and hence
in Aθ , since e is flip invariant) from φ1-orthogonal projections in Mq .

We can faithfully represent the unitaries u, v by the standard matrices

(3.3) u =

⎡
⎢⎢⎣

1 0 · · · 0
0 λ0 · · · 0
...

...
. . . 0

0 0 · · · λ
q−1
0

⎤
⎥⎥⎦ , v =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦
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(vu = λ0uv where λ0 = e2πip/q) and the flip automorphism φ1 can be repres-
ented by Adw = w( )w∗ where w is the order 2 unitary

(3.4) w = [
δi+jq

]q−1
i,j=0 =

⎡
⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 0 0 · · · 1
...

...
...

. . .
...

0 0 1 · · · 0
0 1 0 · · · 0

⎤
⎥⎥⎥⎥⎦ .

Remark 3.1. We can now quickly see that flip-orthogonal projections exist
in Aθ . Pick any column unit vectors a and b (in Cq) such that wa = a and
wb = −b (as the linear transformation v → wv has eigenvalues ±1). Let
y = 1√

2
(a + b). Then it is clear that y∗wy = 0, so that yy∗wyy∗ = 0, and the

projection f ′ = yy∗ inMq is such that f ′φ1(f
′) = 0. Thus f = μ−1(f ′ ⊗ 1)

is a non-zero projection in Aθ such that f φ(f ) = 0.

We now turn to the proof of Theorem 1.2.

It is easy to obtain the dimensions of the eigenspaces of eigenvalue 1 and
−1 for w. Suppose a = [a0, a1, . . . , aq−1]T (transpose of a row vector) is an
eigenvector of w of eigenvalue 1: wa = a. Then since

(3.5) wa = [a0, aq−1, aq−2, . . . , a2, a1]T

one has aq−j = aj for j = 1, 2, . . . , q − 1 and a0 is arbitrary. The eigendi-
mensions will depend on the parity of q.

If q is even, then aq/2 is the midpoint of the sequence a1, . . . , aq−1. Hence

(3.6) a = [a0, a1, . . . , aq/2−1, aq/2, aq/2−1, . . . , a1]T

so that the (+1)-eigenspace is 1 + q

2 dimensional. Consequently, the (−1)-
eigenspace will be q

2 − 1 dimensional.
If q is odd, then the sequence a1, . . . , aq−1 has no midpoint but becomes

a1, . . . , a(q−1)/2, a(q−1)/2, . . . a1,

so it contains 1
2 (q−1) independent parameters. Thus the (+1)-eigenspace has

dimension 1 + 1
2 (q − 1) = 1

2 (q + 1), and the (−1)-eigenspace is 1
2 (q − 1)

dimensional.
Using our notation for q̃, in either parity case the (−1)-eigenspace ofw has

dimension q̃ and the (+1)-eigenspace has dimension q − q̃ which is at least
q̃. (Note 2q̃ < q.)

Now fix k ≤ q̃. One picks an orthonormal set of k (column) vectors
a1, . . . , ak in the (+1)-eigenspace of w and an orthonormal set of k vectors
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b1, . . . , bk in the (−1)-eigenspace of w. Let yj = 1√
2
(aj + bj ). Then y∗

j y
 =
δj
, so that yjy∗

j are mutually orthogonal projections of rank 1, and y∗
j wyk = 0

for all j, k, so that yjy∗
j wyky

∗
k = 0. Letting f ′ = y1y

∗
1 + . . .+ yky∗

k ∈ Mq one
has a projection of rank k such that f ′φ1(f

′) = 0. This yields the projection
f = μ−1(f ′ ⊗1) inAθ has trace k(qθ−p) and is flip-orthogonal. This proves
Theorem 1.2.

We now turn to the proof of Theorem 1.3, and begin with a flip-invariant
projection g in Aθ whose topological invariants vanish and has “even” trace
τ(g) = 2k(qθ − p), where k ≤ q̃. Thus,

T2(g) = (2k(qθ − p); 0, 0, 0, 0).

Since k ≤ q̃, Theorem 1.2 gives us a flip-orthogonal projection f whose trace
is k(qθ−p). As we noted above, since f is flip-orthogonal one has φjk(f ) = 0
for all j, k, so that the projection h = f +φ(f ) is flip-invariant, has vanishing
topological invariants, and trace 2k(qθ − p). That is, T2(h) = T2(g). Since
the fixed point C*-algebra Aφθ has cancellation by Corollary 5.6 of [13], it
follows that g is unitarily equivalent to h = f + φ(f ) by a unitary that is flip
invariant. Therefore, g = z + φ(z) where z is a flip-orthogonal projection.
This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.5

In this section we prove the following Proposition which proves Theorem 1.5
in view of the setup of the Preliminaries.

Proposition 4.1. The automorphism σ1(x) = W ∗
0 σ

′(x)W0 of Mq =
C∗(V3, V4) is conjugate to σ ′−1 in Aut(Mq).

Proof. We consider instead the automorphism η(x) = W0σ
′(x)W ∗

0 , and
observe that η is conjugate to σ1. Indeed, this follows from the equality σ ′η =
σ1σ

′. Therefore, the Proposition follows once we show that η is conjugate to
σ ′−1.

Fix j = 3, 4 and for simplicity, let x = V −

4 V −k

3 where k, 
 are arbitrary.
Since W0 = 〈ϕ, ϕ̂〉D⊥

0
, and using (2.10) and (2.20), we have

τ ′(W0VjW
∗
0 · V −


4 V −k
3 ) = τ ′(〈ϕ, ϕ̂〉D⊥

0
Vj 〈ϕ̂, ϕ〉D⊥

0
x)(4.1)

= τ ′(x • 〈ϕ̂, ϕ〉D⊥
0

• Vj • 〈ϕ, ϕ̂〉D⊥
0
)

= τ ′(〈ϕ̂x∗, ϕVj 〉D⊥
0
〈ϕ, ϕ̂〉D⊥

0
)

= τ(〈ϕVj , ϕ〉D0〈ϕ̂, ϕ̂x∗〉D0)

= τ(〈ϕVj , ϕ〉D0σ0(〈ϕ, ϕy〉D0)(4.2)
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where y is such that σ ′
0(y) = x∗, i.e. y = V −k

4 V 
3 � π−
δ3+kδ4 .
Since Vj and y are generic unitaries, this calculation shows that we need

to compute inner products of the form 〈ϕ, ϕπδ〉D0 = 〈ϕ, πδ(ϕ)〉D0 for general
δ ∈ D⊥

0 . This we do now, where, as in [18] (Lemma 4.1), ϕ is given by (2.16)
(and the integer constants a, b, γ satisfy the constraint that � is relatively
prime to q).

We have

〈ϕ, πδ(ϕ)〉D0(mε1 + nε2)

= 〈ϕ, πδ(ϕ)〉D0(mp1 − np3,mp2 − np4;mp3 + np1,mp4 + np2)

= 1

q

q−1∑
r,s=0

ϕ(r, s)πδ(ϕ)(r +mp1 − np3, s +mp2 − np4)

· e(− 1
q

[r(mp3 + np1)+ s(mp4 + np2)]
)
.

Writing δ = (c1, c2; c3, c4) ∈ D⊥
0 one has

ϕ(r, s)πδ(ϕ)(r + α, s + β)

= 1

q
e
(

1
q

[ar2 + brs + γ s2]
)
e
(− 1

q
[c3(r + α)+ c4(s + β)]

)
· e(− 1

q
[a(r + α + c1)

2 + b(r + α + c1)(s + β + c2)+ γ (s + β + c2)
2]

)
= 1

q
e
(− 1

q
[Rr + Ss + C]

)
where

R = c3 + 2a(α + c1)+ b(β + c2)(4.3)

S = c4 + 2γ (β + c2)+ b(α + c1)(4.4)

C = c3α + c4β + a(α + c1)
2 + b(α + c1)(β + c2)+ γ (β + c2)

2(4.5)

are independent of r, s and

(4.6) α = mp1 − np3, β = mp2 − np4.

Thus,

〈ϕ, πδ(ϕ)〉D0(mε1 + nε2)

= 1

q2

q−1∑
r,s=0

e
(− 1

q
[Rr + Ss + C]

)
e
(− 1

q
[r(mp3 + np1)+ s(mp4 + np2)]

)
= δR+mp3+np1

q δS+mp4+np2
q e

(−C
q

)
.
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Here, note that

R +mp3 + np1 = s3m+ s1n+ c3 + 2ac1 + bc2

S +mp4 + np2 = s4m+ s2n+ c4 + 2γ c2 + bc1

where the sj are given by (2.18).
As the coefficent matrix of the system in m, n

(4.7)

[
s4 s2
s3 s1

] [
m

n

]
≡

[ −c4 − 2γ c2 − bc1

−c3 − 2ac1 − bc2

]

has determinant� = s1s4 − s2s3 relatively prime to q, it has a unique solution
for m, n mod q. This means that the inner product 〈ϕ, πδ(ϕ)〉D0 is a generic
unitary, i.e.

(4.8) 〈ϕ, πδ(ϕ)〉D0 � πmε1+nε2

where m, n is the unique solution of (4.7) modulo q. From this one gets

(4.9) 〈ϕVj , ϕ〉D0 = 〈ϕ, ϕV ∗
j 〉D0 � 〈ϕ, πδj (ϕ)〉D0 � πmjε1+nj ε2

where mj, nj satisfy (4.7) for δj , j = 3, 4. For j = 3 one has δ3 = (p2,−p1;
−p4, p3) (mod q class) so that the system (4.7) becomes

(4.10)

[
s4 s2
s3 s1

] [
m3

n3

]
≡

[ −r3
−r4

]

for some integers m3, n3 (where the rj are given in (2.18)). Similarly, for
δ4 = (p4,−p3;p2,−p1) there are integers m4, n4 such that

(4.11)

[
s4 s2
s3 s1

] [
m4

n4

]
≡

[ −r1
−r2

]
.

Now in the above we had y � π−
δ3+kδ4 = πδ where

(4.12) δ = −
δ3 + kδ4 = (kp4 − 
p2,−kp3 + 
p1; kp2 + 
p4,−kp1 − 
p3)

and where k, 
 are arbitrary at this point. Its associated system is

s4m+ s2n ≡ (kp1 + 
p3)− 2γ (−kp3 + 
p1)− b(kp4 − 
p2)(4.13)

s3m+ s1n ≡ −(kp2 + 
p4)− 2a(kp4 − 
p2)− b(−kp3 + 
p1)(4.14)
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or

s4m+ s2n ≡ −(−p1 − 2γp3 + bp4)k + (p3 − 2γp1 + bp2)
(4.15)

≡ −r1k + r3


s3m+ s1n ≡ −(p2 + 2ap4 − bp3)k + (−p4 + 2ap2 − bp1)
(4.16)

≡ −r2k + r4


or

(4.17)

[
s4 s2
s3 s1

] [
m

n

]
≡

[ −r1 r3
−r2 r4

] [
k




]

the m, n solution of which gives

(4.18) 〈ϕ, ϕy〉D0 � 〈ϕ, π−
δ3+kδ4(ϕ)〉D0 � πmε1+nε2

hence

(4.19) σ0(〈ϕ, ϕy〉D0) � σ0(πmε1+nε2) � π−nε1+mε2 .

Combining these with (4.2) one gets

τ ′(W0VjW
∗
0 V

−

4 V −k

3 ) = τ(〈ϕVj , ϕ〉D0σ0(〈ϕ, ϕy〉D0))(4.20)

� τ(πmj ε1+nj ε2π−nε1+mε2)

� τ(π(mj−n)ε1+(nj+m)ε2)(4.21)

� δ
mj−n
q δ

nj+m
q(4.22)

which is non-zero if and only if

(4.23)

[
m

n

]
≡

[ −nj
mj

]
.

These show that

(4.24) W0VjW
∗
0 � V k3 V



4

for j = 3, 4 where (k, 
) is the unique solution of (4.17) associated with
(m, n) ≡ (−nj ,mj ). For j = 3,

(4.25)

[
m

n

]
≡

[ −n3

m3

]
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so that (4.17) becomes

(4.26)

[
s4 s2
s3 s1

] [ −n3

m3

]
≡

[ −r1 r3
−r2 r4

] [
k3


3

]

for some unique k3, 
3. Similarly, for j = 4 one has integers k4, 
4 such that

(4.27)

[
s4 s2
s3 s1

] [ −n4

m4

]
≡

[ −r1 r3
−r2 r4

] [
k4


4

]
.

We thus have

(4.28) W0V3W
∗
0 � V

k3
3 V


3
4 , W0V4W

∗
0 � V

k4
3 V


4
4 .

This gives

(4.29) η(V3) � V
k4

3 V

4

4 , η(V4) � V
−k3

3 V
−
3

4

so that η has matrix

[
k4 −k3


4 −
3

]
= KJ where K, J are defined below in

(4.31).
The congruences (4.26) and (4.27) can be combined together by writing

(4.30) SJM ≡ RK

where

(4.31)

S =
[
s4 s2
s3 s1

]
, R =

[ −r1 r3
−r2 r4

]
, M =

[
m3 m4

n3 n4

]
,

K =
[
k3 k4


3 
4

]
, J =

[
0 −1
1 0

]
.

Also, (4.10) and (4.11) can be expressed by the congruence

(4.32) SM ≡ −
[
r3 r1
r4 r2

]
= −RJ.

We now eliminate M by substituting it from (4.32) into (4.30). To do this
note that S is in GL(2, Zq) since its determinant � is relatively prime to q.
(It’s inverse S−1 in GL(2, Zq) has determinant congruent to�′, where�′� ≡
1 mod q.) Thus we have M ≡ −S−1RJ , and (4.30) gives

(4.33) K ≡ −R−1SJS−1RJ.
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The matrix of η is therefore (since J 2 = −I )
(4.34)


1 :=
[
k4 −k3


4 −
3

]
= KJ ≡ R−1SJS−1R = (R−1ST ) · J−1 · (R−1ST )−1

whereT = [ −1 0
0 1

]
and the matrixR−1ST is in SL(2, Zq). (Note: T J−1T = J .)

From this we see that 
1 is in SL(2, Zq) and is conjugate to J−1 in SL(2, Zq).
By Lemma 2.2 we may lift the matrix R−1ST to a matrix Q in SL(2, Z),

so that 
 := QJ−1Q−1 is a preimage in SL(2, Z) for 
1.
From Q−1
Q = J−1, and in view of the canonical homomorphism α :

SL(2, Z) → SL(2, Zq) mentioned in the Preliminaries, we see that η is con-
jugate to the automorphism α−1

Q ηαQ =: η′ which has the form

(4.35) η′(V3) = μV −1
4 , η′(V4) = νV3

for some phase constants μ, ν. Now it is easy to see that η′ is conjugate to
αJ−1 = σ ′−1, the (inverse) Fourier transform on Mq (with respect to the pair
V3, V4). Since η2 is just the flip (Vj 
→ V −1

j , j = 3, 4) the same is the case
for (η′)2, which means that μ = ν = ±1. If μ = ν = 1 we are done.
If μ = ν = −1 the automorphism ζ(V3) = −V4, ζ(V4) = V −1

3 satisfies
ζη′ = αJ−1ζ so that η′ is still conjugate to αJ−1 = σ ′−1.

This proves that η, and hence σ1, is conjugate to σ ′−1 (the inverse Fourier
transform on Mq) in Aut(Mq).

The proof of Theorem 1.5 now follows:
From the Preliminaries we have the isomorphism μ : eAθe → Mq ⊗ Aθ ′

satisfying μσ = (σ1 ⊗ σ ′)μ. By Proposition 4.1, σ1 = βσ ′−1
β−1 for some

automorphism β ofMq . Letting η = (β−1 ⊗ id)μ and
 the Fourier transform
of Mq given by 
(u) = v, 
(v) = u∗, we obtain ησ = (
 ⊗ σ ′)η, which
is (1.3), and proves Theorem 1.5. (The smoothness of η follows directly from
that of μ, which is smooth by its construction in [18].)

5. The Fourier Case

We are now ready to prove Theorem 1.7 (as well as Theorem 1.6), and so we
begin with a Fourier invariant projection g in Aθ whose (Fourier) topological
invariants vanish, and has “quartic” trace τ(g) = 4k(qθ − p), where k ≤ q̂.

Recall: q̂ = 1
4 (q − r) ∈ Z where r ∈ {1, 2, 3, 4} is such that q ≡ r mod 4.

By hypothesis, we have T4(g) = (4k(qθ−p); 0, 0; 0, 0, 0). The proof will be
complete once we have established the existence of a σ ∗-orthogonal projection
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f such that τ(f ) = k(qθ −p). For then, one has the Fourier invariant projec-
tion ε = f + σ(f )+ σ 2(f )+ σ 3(f ) such that T4(ε) = T4(g), so that ε and
g are unitarily equivalent by a Fourier invariant unitary (by the last paragraph
of the Preliminaries). Hence g has the form asserted by Theorem 1.7.

We now claim, thanks to Theorem 1.5, that the existence of such σ ∗-
orthogonal projection f arises from σ ′∗-orthogonal projections in Mq .

To show this, we use the isomorphism η : eAθe → Mq ⊗ Aθ ′ satisfying
the intertwining relation (1.3). From the latter, if f1 is a projection in Mq that
is 
∗-orthogonal, then η−1(f1 ⊗ 1) is a σ ∗-orthogonal projection in Aθ . Thus
we need to construct a 
∗-orthogonal projection f1 in Mq of rank k (where
k ≤ q̂). To do this, we use the matrix representation (3.3) for u, v with respect
to which 
 is given by AdL where L is the order 4 unitary

(5.1) L = 1√
q

[
λ
ij

0

]q−1
i,j=0 = 1√

q

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 λ0 λ2

0 · · · λ
q−1
0

1 λ2
0 λ4

0 · · · λ
2(q−1)
0

...
...

...
. . .

...

1 λ
q−1
0 λ

2(q−1)
0 · · · λ

(q−1)2

0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

One has the commutation relations Lv = u−1L, Lu = vL, L2 = w (and w is
the symmetry matrix in (3.4)). Therefore, the action of 
 on u, v is the same
as the action of AdL = L( )L∗ on u, v, respectively.

From [7] (Section 5) the dimension of each of the eigenspaces of L (of
eigenvalues ±1,±i) is at least q̂. In fact, q̂ is the smallest of their dimensions
and corresponds to eigenvalue −i or i.

Since k ≤ q̂, there exists an orthonormal set of k vectors v1(t), . . . , vk(t)

(viewed as column vectors in Cq of our matrix representation) in the eigenspace
of L of eigenvalue t ∈ {±1,±i}. Let

yj = 1
2

[
vj (−i)+ vj (i)+ vj (−1)+ vj (1)

]
for j = 1, . . . , k. Then y∗

j y
 = δj
 so that {yjy∗
j }kj=1 are mutually orthogonal

projections of rank 1 and their sum

f1 := y1y
∗
1 + · · · + yky

∗
k

is a rank k projection such that f1Lf1 = 0 and f1L
2f1 = 0, since y∗

j Ly
 =
y∗
j L

2y
 = 0 for all j, 
. This means that f1 is orthogonal to
(f1) and
2(f1).
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Using (2.15) the trace is

(5.2)
τ (f ) = τ(η−1(f1 ⊗ 1)) = q(qθ − p)τ ′(f1)

= q(qθ − p) · k
q

= k(qθ − p),

as required. This completes the proof of Theorem 1.7, and the existence of the
projection f proves Theorem 1.6.

It now remains to prove Theorems 1.4 and 1.8 of the Introduction. But first
we need a lemma.

Lemma 5.1. If ω4 = 1 and θ is irrational, there are smooth elements
x1, . . . , xn in Aθ such that

(5.3) σ (xj ) = ωxj and
n∑
j=1

x∗
j xj = 1

The analogous result holds for the flip automorphism φ and ω = ±1.

Proof. The proof is essentially Rieffel’s normalization trick in Proposi-
tion 2.1 of [11], except that we have in addition the σ -covariance condition in
(5.3), so we detail it out for our situation carefully. LetE = {x ∈ Aθ : σ(x) =
ωx}.

First, let us show that if there are elements x1, . . . , xn in Aθ such that (5.3)
holds (here n is fixed), then by approximating each xj by a smooth element
we obtain (5.3) with smooth xj . Given x ∈ E and ε > 0 pick a smooth
element x ′ ∈ Aθ such that ‖x − x ′‖ < ε, so that also ‖ωjx − σ j (x ′)‖ < ε.
Letting y = x ′ +ω−1σ(x ′)+ω−2σ 2(x ′)+ω−3σ 3(x ′) one checks that y ∈ E,
‖y−4x‖ < 4ε, and clearly y is smooth. Hence y/4 is within ε of x. Therefore,
given x1, . . . , xn in Aθ enjoying (5.3), we can approximate xj by a smooth
element x ′

j ∈ E such that the corresponding sum
∑n
j=1(x

′
j )

∗x ′
j = a is a

smooth positive element inAσθ close to 1 and is therefore invertible. This gives∑n
j=1(x

′
j a

−1/2)∗(x ′
j a

−1/2) = 1 where x ′
j a

−1/2 is a smooth element in E, so
that (5.3) holds with smooth elements.

Therefore, it suffices to show (5.3) without requiring that the elements xj
be smooth. Let J be the set of finite sums

∑
j x

∗
j yj where xj , yj ∈ E. Clearly

J ⊆ Aσθ and is easily seen to be a two-sided ideal in Aσθ which, since θ is
irrational and Aσθ is simple, is therefore a dense ideal in Aσθ . Hence there are
elements xj , yj ∈ E (i, j = 1, . . . , n for some n) such that

∑
j x

∗
j yj = d is

close to 1, and hence is an invertible element inAσθ . Replacing yj by yjd−1 ∈ E
we may assume

∑
j x

∗
j yj = 1 where xj , yj ∈ E. Writing the elements of

En = E ⊕ · · · ⊕E as column n× 1 matrices, and setting X = (x1, . . . , xn)
T
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and Y = (y1, . . . , yn)
T (transposes), we can express the preceding sum as

X∗Y = 1, the identity of Aθ , where X, Y ∈ En. The matrix P = YX∗ is
clearly an idempotent inMn(A

σ
θ ). We can with no loss of generality assume P

is a projection. (This is becauseP is similar to a projectionQ, sayP = SQS−1

for some invertible S inMn(A
σ
θ ), and upon making the substitutionsX1 = S∗X

and Y1 = S−1Y one gets X∗
1Y1 = 1, Y1X

∗
1 = Q, and X1, Y1 ∈ En.) Now as

X∗X and Y ∗Y are positive elements in Aσθ we can write X∗X = a∗a and
Y ∗Y = bb∗ for some a, b ∈ Aσθ . Letting Z = Xb ∈ En one has ZZ∗ = P

and Z∗Z = c∗c where c = ab ∈ Aσθ . To check the first of these, note that
P = P ∗ = XY ∗ so that we have

ZZ∗ = Xbb∗X∗ = (XY ∗)(YX∗) = PP = P.

For the second, Z∗Z = b∗X∗Xb = b∗a∗ab = c∗c. The condition X∗Y = 1
gives 1 = X∗YX∗Y = X∗PY = X∗ZZ∗Y = X∗Xbb∗X∗Y = a∗abb∗ =
a∗cb∗. As the C*-algebra Aθ is finite (where xy = 1 ⇒ yx = 1) this implies
c∗c = b∗(a∗c) = 1. Therefore, Z∗Z = 1 and Z is in En so that we obtain
(5.3).

Proof of Theorem 1.4. By Lemma 5.1, there are smooth elements
x1, . . . , xn in Aθ such that

φ(xj ) = −xj and
n∑
j=1

x∗
j xj = 1.

Consider the matrix projection Q = [xigx∗
j ]ni,j=1 in Mn(A

φ
θ ) (and which is

smooth if g is smooth). Clearly this projection has the same (canonical) trace
as that of g. Its topological invariants given by a φ-trace φk
 (defined on A∞

θ

where k, 
 = 0, 1) are

φk
(Q) =
∑
i

φk
(xigx
∗
i ) = −

∑
i

φk
(x
∗
i xig) = −φk
(g).

This means that φk
(g ⊕ Q) = 0 for all φ-traces so that its Connes-Chern
character is T2(g ⊕Q) = (2τ(g); 0, 0, 0, 0).

Since by hypothesis k ≤ q̃, Theorem 1.2 gives us a smooth flip orthogonal
projection z of trace τ(z) = k(qθ − p) = τ(g). Hence T2(g ⊕Q) = T2(z+
φ(z)). Since T2 is injective on K0(A

φ
θ ) and Aφθ has the cancellation property,

it follows that there exists a unitary w in Mn+1(A
φ
θ ) such that

w(g ⊕Q)w∗ = (z+ φ(z))⊕ On
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(where On is the zero n by nmatrix). Since any subprojection of the right hand
side is of the form e′ ⊕ On for some subprojection e′ of z + φ(z), there are
orthogonal subprojections e1, e2 of z+ φ(z) such that

w(g⊕ On)w
∗ = e1 ⊕ On, w(0 ⊕Q)w∗ = e2 ⊕ On, e1 + e2 = z+ φ(z).

The first of these says that g and e1 give the same class in K0(A
φ
θ ), so that

again by cancellation there is a unitary v in Aφθ such that

g = ve1v
∗ ≤ v(z+ φ(z))v∗ = f + φ(f )

where f = vzv∗ is a flip orthogonal projection satisfying the stated properties.

Proof of Theorem 1.8. By Lemma 5.1, for r = 0, 1, 2, 3, there are
smooth elements xr1, . . . , xrnr in Aθ such that

(5.4) σ (xrj ) = irxrj and
nr∑
j=1

x∗
rj xrj = 1

(where i = √−1 ). (Of course, for r = 0 we take n0 = 1 and x01 = 1.)
Consider the matrix projectionQr = [xrjgx∗

rk]
nr
j,k=1 inMnr (A

σ
θ ) (and which

is smooth if g is smooth). By (5.4) this projection has the same (canonical)
trace as that of g. Its topological invariants, given by the σ s-trace ψs
 (defined
on A∞

θ where s = 1, 2), are

ψs
(Qr) =
∑
j

ψs
(xrjgx
∗
rj ) =

∑
j

ψs
(σ
s(x∗

rj )xrj g)

= i−rs
∑
j

ψs
(x
∗
rj xrj g) = i−rsψs
(g)

which gives

T4[Qr ]

= (τ (g);ψ10(Qr), ψ11(Qr);ψ20(Qr), ψ21(Qr), ψ22(Qr))

= (τ (g); i−rψ10(g), i
−rψ11(g); (−1)rψ20(g), (−1)rψ21(g), (−1)rψ22(g))

= �−rT4[g]

where� = (1; i, i; −1,−1,−1) (and we used coordinatewise multiplication).
Adding over r = 1, 2, 3, gives

T4([g ⊕Q1 ⊕Q2 ⊕Q3]) = (4τ(g); 0, 0; 0, 0, 0).
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Now since τ(g) = k(qθ − p) and k ≤ q̂, by Theorem 1.6 there exists a
σ ∗-orthogonal projection h such that τ(h) = τ(g), so that

T4([h+ σ(h)+ σ 2(h)+ σ 3(h)]) = (4τ(g); 0, 0; 0, 0, 0)

= T4([g ⊕Q1 ⊕Q2 ⊕Q3]).

By injectivity of T4 on K0(A
σ
θ ), and the cancellation property of Aσθ , there is

a unitary W in Mm+1(A
σ
θ ) such that

W(g ⊕Q1 ⊕Q2 ⊕Q3)W
∗ = (h+ σ(h)+ σ 2(h)+ σ 3(h))⊕ Om

where m = n1 + n2 + n3. Since any subprojection of the right hand side is of
the form e′ ⊕Om for some subprojection e′ of h+σ(h)+σ 2(h)+σ 3(h) inAσθ ,
there are mutually orthogonal Fourier invariant subprojections e0, e1, e2, e3 of
h+ σ(h)+ σ 2(h)+ σ 3(h) such that

W(g ⊕ O ⊕ O ⊕ O)W ∗ = e0 ⊕ Om

W(0 ⊕Q1 ⊕ O ⊕ O)W ∗ = e1 ⊕ Om

W(0 ⊕ O ⊕Q2 ⊕ O)W ∗ = e2 ⊕ Om

W(0 ⊕ O ⊕ O ⊕Q3)W
∗ = e3 ⊕ Om.

The first of these says that the projections g and e0 of Aσθ are stably equivalent
so that again by cancellation they are unitarily equivalent, g = w∗e0w, by a
unitary w in Aσθ . Thus we have

wgw∗ + e1 + e2 + e3 = h+ σ(h)+ σ 2(h)+ σ 3(h)

or
g + g1 + g2 + g3 = f + σ(f )+ σ 2(f )+ σ 3(f )

where gj = w∗ejw are Fourier invariant and f = w∗hw is σ ∗-orthogonal.
Clearly, T4[gr ] = �−rT4[g].

REFERENCES

1. Bratteli, O., Elliott, G. A., Evans, D. E., and Kishimoto, A., Non-commutative spheres I,
Internat. J. Math. 2 (1991), 139–166.

2. Bratteli, O., Elliott, G. A., Evans, D. E., and Kishimoto, A., Non-commutative spheres II:
rational rotations, J. Operator Theory 27 (1992), 53–85.

3. Bratteli, O., Kishimoto, A., Non-commutative spheres III: Irrational rotations, Comm. Math.
Phys. 147 (1992), 605–624.

4. Buck, J., and Walters, S., Connes-Chern characters of hexic and cubic modules, J. Operator
Theory 57 (2007), 35–65.



fourier and flip decomposable projections 197

5. Echterhoff, S., Lück, W., Phillips, N. C., and Walters, S., The structure of crossed products
of irrational rotation algebras by finite subgroups of SL2(Z), J. Reine Angew. Math. 639
(2010), 173–221.

6. Elliott, G., On the classification of C∗-algebras of real rank zero, J. Reine Angew. Math. 443
(1993), 179–219.

7. Farsi, C., and Watling, N., Quartic algebras, Canad. J. Math. 44 (1992), 1167–1191.
8. Jeong, J. A., and Osaka, H., Extremally rich C*-crossed products and cancellation property,

J. Austral. Math. Soc. (A) 64 (1998), 285–301.
9. Phillips, N. C., Crossed products by finite cyclic group actions with the approximate Rokhlin

property, preprint (2002).
10. Polishchuk, A., Holomorphic bundles on 2-dimensional noncommutative toric orbifolds,

pp. 341–359 in: C. Consani and M. Marcolli (eds.), Noncommutative Geometry and Num-
ber Theory, Aspects Math. E37, Vieweg 2006 (Wiesbaden).

11. Rieffel, M., C∗-algebras associated with irrational rotations, Pacific J. Math. 93 (1981),
415–429.

12. Rieffel, M., Projective modules over higher-dimensional non-commutative tori, Canad. J.
Math. 40 (1988), 257–338.

13. Walters, S. G., Projective modules over the non-commutative sphere, J. London Math. Soc.
(2) 51 (1995), 589–602.

14. Walters, S. G., Inductive limit automorphisms of the irrational rotation algebra, Comm. Math.
Phys. 171 (1995), 365–381.

15. Walters, S., K-theory of non commutative spheres arising from the Fourier automorphism,
Canad. J. Math. 53 (2001), 631–672.

16. Walters, S., On Fourier orthogonal projections in the rotation algebra, J. London Math. Soc.
(2) 68 (2003), 193–205.

17. Walters, S., On the inductive limit structure of order four automorphisms of the irrational
rotation algebra, Internat. J. Math. 17 (2006), 107–117.

18. Walters, S., The AF structure of non commutative toroidal Z/4Z orbifolds, J. Reine Angew.
Math. 568 (2004), 139–196.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NORTHERN B.C.
PRINCE GEORGE, B.C. V2N 4Z9
CANADA
E-mail: walters@unbc.ca


