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A NOTE ON THE DIOPHANTINE EQUATION
|ax − by| = c

BO HE, ALAIN TOGBÉ and SHICHUN YANG

Abstract
Let a, b, and c be positive integers. We show that if (a, b) = (Nk − 1, N), where N, k ≥ 2,
then there is at most one positive integer solution (x, y) to the exponential Diophantine equation
|ax − by | = c, unless (N, k) = (2, 2). Combining this with results of Bennett [3] and the first
author [6], we stated all cases for which the equation |(Nk ± 1)x − Ny | = c has more than one
positive integer solutions (x, y).

1. Introduction

Let a, b, x, and y be positive integers and c an integer. The Diophantine equa-
tion

(1) ax − by = c

has a very rich history. It has been studied by many authors (see for examples
[2], [3], [5], [6], [7], [9], [10], [13], [14], [15], [16], [17], [19], [20]). This
Diophantine equation has some connections with Group Theory [1] and with
Hugh Edgar’s problem (i.e., the number of solutions (m, n) of pm − qn = 2h)
[4]. In 1936, Herschfeld [7] proved that equation (1) has at most one solution
in positive integers x, y if (a, b) = (3, 2) and c is sufficiently large. The
same year, Pillai [13], (see also [14]) extended Herschfeld’s result to any
a, b with gcd(a, b) = 1, a > b ≥ 2, and |c| > c0(a, b), where c0(a, b) is a
computational constant depending on a and b. Moreover, Pillai has conjectured
that if a = 3 and b = 2 then c0(3, 2) = 13. In 1982, this conjecture was proved
by Stroeker and Tijdeman [19]. For more information about the history of this
Diophantine equation, one can see for example [2], [15], [16], [19].

In this paper, we consider the exponential Diophantine equation

(2) |ax − by | = c.

There are infinitely many pairs (a, b) such that the equation (2) has at least
two solutions. For example, let r and s be positive integers with r �= s and
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max{r, s} > 1. If a = (br + bs)/2 and c = |a − br |, then (x, y) = (1, r) and
(1, s) both satisfy equation (2).

In 2003, Bennett [3] proved the following result.

Theorem 1.1. If N and c are positive integers with N ≥ 2, then the
Diophantine equation

|(N + 1)x − Ny | = c

has at most one solution in positive integers x and y, unless

(N, c) ∈ {(2, 1), (2, 5), (2, 7), (2, 13), (2, 23), (3, 13)}.
In the first two of these cases, there are precisely 3 solutions, while the last
four cases have 2 solutions apiece.

Very recently, the first author [6] extended Theorem 1.1 to obtain:

Theorem 1.2. If (a, b) = (Nk + 1, N) with min{N, k} ≥ 2, then equation
(2) has at most one solution, except (N, k, c) ∈ {(2, 2, 3), (2, 2, 123), (2, t,

2t − 1)} (t ≥ 3). In the first case, there are precisely 3 solutions, while the last
two cases have 2 solutions.

The aim of this paper is to study the number of solution of the equation

(3) |(Nk − 1)x − Ny | = c

and to prove the following result:

Theorem 1.3. If (a, b) = (Nk − 1, N) with min{N, k} ≥ 2 and (N, k) �=
(2, 2), then equation (2) has at most one positive integer solution (x, y).

Naturally, from Theorems 1.1–1.3 we state

Corollary 1.4. If (a, b) = (Nk ± 1, N) with N ≥ 2, then equation (2)
has at most one solution, unless

(a, b, c) or (b, a, c) ∈ {(2, 3, 1), (2, 3, 5), (2, 3, 7), (2, 3, 13), (2, 3, 23),

(3, 4, 13), (2, 5, 3), (2, 5, 123), (2, 2t + 1, 2t − 1) (t ≥ 3)}.
These cases having more than one solution are listed here:

3 − 2 = 22 − 3 = 32 − 23 = 1

23 − 3 = 32 − 22 = 25 − 33 = 5

5 − 2 = 23 − 5 = 27 − 53 = 3



a note on the diophantine equation |ax − by | = c 163

and
32 − 2 = 24 − 32 = 7

24 − 3 = 28 − 35 = 13

33 − 22 = 25 − 32 = 23

53 − 2 = 27 − 5 = 123

(2t + 1) − 2 = 2t+1 − (2t + 1) = 2t − 1.

The organization of this paper is as follows. In Section 2, we prove some
useful results and recall a result due to Mignotte [11]. The proof of Theorem 1.3
will be given in Section 3 by the means of lower bounds for linear forms in
two logarithms.

2. Preliminary work

Let p be a prime and let ordp(n) denote the highest exponent of p in the prime
factorization of an integer n. We define the number νp(n) by νp(n) = p− ordp(n).
(This corresponds to |n|p defined on pages 200–201 of [12]). Moreover
logp(1 + n) denotes the p-adic logarithm of n. The p-adic logarithm satis-
fies the identity logp(1 + n) = ∑∞

r=1(−1)r+1 nr

r
.

We have the following result.

Lemma 2.1. Let x, y, N , and k be positive integers with N ≥ 2. If

(4) Ny ≡ 1 (mod (Nk − 1)x),

then d | y, where
(5)

d =
{

k(Nk − 1)x−1, if 2 | N or x = 1 or Nk ≡ 1 (mod 4),

21−ord2(N
k+1)k(Nk − 1)x−1, otherwise.

Proof. As Nk − 1 | Ny − 1, we get k | y. So there exists a positive integer
z such that y = kz. The congruence (4) gives N2y ≡ 1 (mod 2(Nk −1)x). Let
p be a divisor of Nk − 1. If p = 2, then we have N2kz ≡ 1 (mod 4) and if p

is odd, then we have N2kz ≡ 1 (mod p). Also we know that νp(N2kz − 1) =
νp(logp(N2kz)), see Mordell [12]. Then we obtain

νp(2(Nk − 1)x) ≥ νp(N2kz − 1) = νp(z logp(N2k))

= νp(z)νp(logp(N2k)) = νp(z)νp(N2k − 1)

= νp(z)νp(Nk − 1)νp(Nk + 1).
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Thus we have

(6) ordp(2(Nk − 1)x−1) ≤ ordp(z) + ordp(Nk + 1).

When p is odd, as p | Nk − 1 we get p � Nk + 1, i.e., ordp(Nk + 1) = 0. If
2 | N , then p and any divisor of Nk + 1 are both odd. By inequality (6), we
get the first case. If 2 � N , then we need to consider p = 2, then from (6) we
have

(7) 1 + ord2((N
k − 1)x−1) ≤ ord2(z) + ord2(N

k + 1).

We put z = 2αz′, 2 � z′ and Nk − 1 = 2βμ, 2 � μ, then applying inequality (6)
we get μx−1 | z′. Similarly applying inequality (7) with 2α and 2β , we have
1+β(x−1) < α+ord2(N

k +1). Thus we obtain 21−ord2(N
k+1)(Nk −1)x−1 | z,

so the remaining cases are proved.

We can prove the following lemma using a similar argument.

Lemma 2.2. Let x, y, N , and k be positive integers with N ≥ 2, y ≥ k ≥ 2.
If

(8) (Nk − 1)x ≡ 1 (mod Ny),

then τNy−k | x, where τ =
{

1, if N is even,

2, if N is odd.

Proof. Let p be a divisor of N . It is easy to see that 2 | x. If p = 2, then
we have (Nk − 1)x ≡ 1 (mod 4). Otherwise, if p is odd, thus (Nk − 1)x ≡ 1
(mod p). We know νp((Nk − 1)x − 1) = νp(logp((Nk − 1)x)). This and
condition (8) imply

νp(Ny) ≥ νp(x/2)νp(Nk − 2)νp(Nk).

Thus we obtain

ordp(Ny−k) ≤ ordp(x/2) + ordp(Nk − 2).

In the case 2 � N , we don’t need to consider p = 2. We immediately get the
result. If 2 | N , since k ≥ 2, this implies Nk ≡ 0 (mod 4). Then we have
ordp(Nk − 2) = 1. So we obtain ordp(Ny−k) ≤ ordp(x).

Now we recall the following result on linear forms in two logarithms due
to Mignotte (see [11], Corollary of Theorem 2, page 110). For any non-zero
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algebraic number γ of degree d over Q, whose minimal polynomial over Z is
a

∏d
j=1(X − γ (j)), we denote by

h(γ ) = 1

d

(
log |a| +

d∑
j=1

log max(1, |γ (j)|)
)

its absolute logarithmic height.

Lemma 2.3. Consider the linear form

� = b1 log α1 − b2 log α2,

where b1 and b2 are positive integers. Suppose that α1, α2 are multiplicatively
independent. Put

D = [Q(α1, α2) : Q]/[R(α1, α2) : R]

and let ρ, λ, a1 and a2 be positive real numbers with ρ ≥ 4, λ = log ρ,

ai ≥ max{1, (ρ − 1) log |αi | + 2Dh(αi)}, (i = 1, 2)

and
a1a2 ≥ max{20, 4λ2}.

Further suppose h is a real number with

h ≥ max

{
3.5, 1.5λ, D

(
log

(
b1

a2
+ b2

a1

)
+ log λ + 1.377

)
+ 0.023

}
,

χ = h/λ, υ = 4χ + 4 + 1/χ . Then we have the lower bound

(9) log |�| ≥ −(C0 + 0.06)(λ + h)2a1a2,

where

C0 = 1

λ3

{(
2 + 1

2χ(χ + 1)

)

·
(

1

3
+

√
1

9
+ 4λ

3v

(
1

a1
+ 1

a2

)
+ 32

√
2(1 + χ)3/2

3v2√a1a2

)}2

.
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3. Proof of Theorem 1.3

Suppose that the equation

|(Nk − 1)x − Ny | = c > 0

has two solutions (xi, yi) (i = 1, 2) with 1 ≤ x1 ≤ x2 satisfying the condition

(10) N ≥ 2, k ≥ 2 and (N, k) �= (2, 2).

Proposition 3.1. The equation

(11) (Nk − 1)x1 + (Nk − 1)x2 = Ny1 + Ny2

has no solution (x1, x2, y1, y2) with the condition (10).

Proof. We rewrite equation (11) into the form

(Nk − 1)x1((Nk − 1)x2−x1 + 1) = Nmin{y1,y2}(N |y2−y1| + 1).

Since gcd(Nk−1, N) = 1, we have N |y2−y1|+1 ≡ 0 (mod Nk−1). Therefore,
there exist positive integers p, q such that |y2 − y1| = pk + q, for 0 ≤ q < k.
Then we obtain

−1 ≡ N |y2−y1| ≡ Npk+q = (Nk)pNq ≡ Nq (mod Nk − 1).

Thus we get Nq + 1 ≡ 0 (mod Nk − 1). This implies Nk − 1 ≤ Nq + 1. But
as q < k, we get Nk − 1 ≤ Nk−1 + 1. It follows that Nk−1(N − 1) ≤ 2. This
is impossible when (N, k) �= (2, 2). So Proposition 3.1 is proved.

Let us consider the equation

(12) (Nk − 1)x1 − Ny1 = (Nk − 1)x2 − Ny2 = ±c, c > 0,

with x1 < x2 and y1 < y2. Taking equation (12) modulo N , we have

(−1)x1 ≡ (−1)x2 (mod N).

If N > 2, it follows that

(13) x1 ≡ x2 (mod 2).

We rewrite equation (12) into the form

(14) (Nk − 1)x1((Nk − 1)x2−x1 − 1) = Ny1(Ny2−y1 − 1).

Since x2 − x1 is even, so Nk | (Nk − 1)x2−x1 − 1. Thus Nk divides the right
side of equation (14). As gcd(Ny2−y1 − 1, N) = 1, we have y1 ≥ k.
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From Lemma 2.1, we have k | y1 ⇔ k | y2. It is easy to show that the
special case k | y1 or k | y2 can be solved by Theorem 1.1. In fact, if k | yi

(i = 1, 2) then there exist positive integers t1 and t2 such that y1 = t1k and
y2 = t2k. Let us put M = Nk − 1, thus the equation

|(M + 1)X − MY| = c

have the solutions (X, Y ) = (x1, t1) and (x2, t2). From Theorem 1.1, we have
M ≤ 3. Thus we get Nk − 1 ≤ 3 which contradicts the condition (10).
Therefore, using equation (14), we will consider

(15) y1 > k and k � yi (i = 1, 2).

Assume N = 2. Considering equation (12) modulo 2k gives

(−1)x1 − 2 ≡ (−1)x2 (mod 2k).

Using condition (10), we get k ≥ 3. This leads to 2 | x1 and 2 � x2.

Proposition 3.2. If the equation

(16) (Nk − 1)x1 − Ny1 = (Nk − 1)x2 − Ny2 = c > 0

has solutions (x1, x2, y1, y2) with the condition (10), then Nk − 1 < 24379.

Proof. Either y1 > k or 2 | x1 implies x1 ≥ 2. We set

� = x2 log(Nk − 1) − y2 log(N).

Then we have

0 < � < e� − 1 = c

Ny2
<

(Nk − 1)x1

Ny2
.

On the other hand, using equation (14) we get Ny2−y1 ≡ 1 (mod (Nk − 1)x1).
Then from Lemma 2.1 with x1 ≥ 2 and Nk − 1 ≥ 23 − 1 > 22.8, we have

y2 − y1 ≥ k

(
Nk − 1

2

)x1−1

≥ k

(
Nk − 1

2

)0.5x1

> k(Nk − 1)0.32x1 .

Thus we obtain
� <

((y2 − y1)/k)3.125

Ny2
<

y2
3.125

Ny2
.

We know that � < ((y2 − y1)/k)3.125/Ny2 ≤ (y2/2)3.125/2y2 . The function
(y/2)3.125/2y is a maximum when y is between 4 and 5, so � < 0.548. Now
we apply Lemma 2.3 to �. We take

(17) D = 1, α1 = Nk − 1, α2 = N, b1 = x2, b2 = y2
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and

(18) a1 = (ρ + 1) log(Nk − 1), a2 = (ρ + 1) log N.

Since N ≥ 4 with k = 2 or N ≥ 2 with k ≥ 3, we choose ρ = 4.8. It satisfies
a1a2 ≥ max{20, 4λ2}. The fact � > 0 implies

x2

log N
>

y2

log(Nk − 1)
.

We take
h = max

{
8.56, log

(
x2

log N

)
+ 0.82

}
.

First we suppose

h = log

(
x2

log N

)
+ 0.82,

then x2

log N
≥ 2299.

We obtain C0 < 0.627, then we have

log |�| > −23.12

(
log

(
x2

log N

)
+ 2.389

)2

log(Nk − 1) log N.

We have

x2

log N
= y2

log(Nk − 1)
+ �

log(Nk − 1) log N
<

y2

log(Nk − 1)
+ 0.407.

Combining this and bounds of �, we have

x2

log N
< 0.407 + 3.125 log y2

log(Nk − 1) log N
+ 23.12

(
log

(
x2

log N

)
+ 2.389

)2

< 1.698 + 2.317 log

(
x2

log N

)
+ 23.12

(
log

(
x2

log N

)
+ 2.389

)2

.

We get
x2

log N
< 2415.

Next we suppose h = 8.56, then we have also

x2

log N
< e8.56−0.82 ≤ 2299 < 2415.
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Since y2/ log(Nk − 1) < x2/ log N , thus

(19) y2 < 2415 log(Nk − 1).

Using (15), (19), and Lemma 2.1, we obtain

(20) Nk − 1 < k

(
Nk − 1

2

)x1−1

+ y1 < y2 < 2415 log(Nk − 1).

This implies Nk − 1 < 24397.

Proposition 3.3. If the equation

(21) Ny1 − (Nk − 1)x1 = Ny2 − (Nk − 1)x2 = c > 0

has solutions (x1, x2, y1, y2) with the condition (10), then Nk − 1 < 42455.

Proof. We will use a similar method to that of Proposition 3.2. We set
again

� = x2 log(Nk − 1) − y2 log(N).

Then we obtain

(22) 0 < −� < e−� − 1 = c

(Nk − 1)x2
<

Ny1

(Nk − 1)x2
.

The fact that the left side of equation (21) is positive implies y1 > k. From
equation (14), we get (Nk − 1)x2−x1 ≡ 1 (mod Ny1). So Lemma 2.2 gives
x2 − x1 ≥ Ny1−k . Therefore, as Nk ≥ 8, then we obtain

−� <
Nk

Nk − 1
· Ny1−k

(Nk − 1)x2−1
<

1.15(x2 − x1)

(Nk − 1)x2−1
≤ 1.15(x2 − 1)

(Nk − 1)x2−1
.

From congruence (13), we have x2 − 1 ≥ x2 − x1 ≥ 2 and x2 − 1 ≥ 2x2/3.
Then we obtain

(23) −� <
0.77x2

(Nk − 1)2x2/3
.

Again, by x2 ≥ 3 and Nk ≥ 8 we get −� < 0.05. Thus we have
(24)

x2

log N
<

y2

log(Nk − 1)
<

x2

log N
+ 0.05

log(N) log(Nk − 1)
<

x2

log N
+ 0.038.

Now we apply Lemma 2.3 to −�. We take the same parameters as those in
(17), (18) and we choose ρ = 4.1. Here we have

h = max

{
9.10, log

(
y2

log(Nk − 1)

)
+ 0.81

}
.
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First we suppose

h = log

(
y2

log(Nk − 1)

)
+ 0.81,

then

(25)
y2

log(Nk − 1)
> 3983.

We have C0 < 0.859 and thus

log | − �| > −23.91

(
log

(
y2

log(Nk − 1)

)
+ 2.22

)2

log(Nk − 1) log N.

On the other hand, by inequality (23) we get

log | − �| < −0.27 + log x2 − 2

3
x2 log(Nk − 1).

The upper and lower bounds imply

x2

log N
<

1.5 log x2 − 0.405

log(Nk − 1) log N
+ 35.87

(
log

(
y2

log(Nk − 1)

)
+ 2.22

)2

.

Using this and the middle terms of (24), we get

y2

log(Nk − 1)
< 1.12 log

(
y2

log(Nk − 1)

)

+ 35.87

(
log

(
y2

log(Nk − 1)

)
+ 2.22

)2

.

It results y2

log(Nk − 1)
< 3969.

This contradicts inequality (25).
Next, we suppose h = 9.10. Then we have

y2

log(Nk − 1)
< e9.10−0.81 < 3984.

Since x2/ log N < y2/ log(Nk − 1), thus

(26) x2 < 3984 log N.

By (15), (26) and Lemma 2.2, we get

(27) Ny1−k ≤ x2 − x1 < x2 < 3984 log N ≤ 3984 log(Ny1−k).
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This implies Ny1−k < 42455. If y1 − k ≥ k, we have Nk < 42455.
Otherwise, suppose that y1 − k ≤ k − 1. From equation (21) we have

(Nk − 1)x1 < Ny1 . Then we obtain

(Nk − 1)x1 < N2k−1.

If x1 ≥ 2, then we have N2k −2Nk < N2k−1. This implies that Nk−1(N −1) <

2, which is impossible. It remains x1 = 1. Now from (22) and y1 ≤ 2k − 1,
we have

(28)

∣∣∣∣ log(Nk − 1)

log N
− y2

x2

∣∣∣∣ <
1

x2(Nk − 1)x2−2 log N
.

Using x2 ≥ 3 and Nk = 8, we get (Nk − 1)x2−2 log N > 2x2. Thus we obtain∣∣∣∣ log(Nk − 1)

log N
− y2

x2

∣∣∣∣ <
1

2x2
2

.

Thus y2/x2 is a convergent in the simple continued fraction expansion to
log(Nk − 1)/ log N . It is known that (see [8]), if pr/qr is the r’th such con-
vergent, then ∣∣∣∣ log(Nk − 1)

log N
− pr

qr

∣∣∣∣ >
1

(ar+1 + 2)q2
r

,

where ar+1 is the (r + 1)st partial quotient to log(Nk − 1)/log N . In the con-
tinued fraction expansion

log(Nk − 1)

log N
= [k − 1, 1, a2, . . .],

by direct computation, one gets q2 = a2 + 1 and

(Nk − 1) log N − 1 < a2 < Nk log N − 1.

Let y2/x2 = pr/qr for some nonnegative integer r . From inequality (26) we
have qr ≤ x2 < 3984 log N . If Nk − 1 > 3984, then q2 − 1 = a2 > (Nk −
1) log N −1 ≥ 3894 log N −1 > qr −1. This implies r < 2. But q0 = q1 = 1
such that x2 = 1, which is impossible. Then we have Nk − 1 ≤ 3984. This
completes the proof of Proposition 3.3.

Finally, running a Maple scripts by Scott and Styer [18], we found all
solutions of the equation

ax − by = c

in the range 1 < a, b < 53000, which are listed in [17]. This helps us to check
the remaining cases stated in Propositions 3.2 and 3.3. We found no solution
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(x, y) satisfying (a, b) = (Nk − 1, N) with condition (10). Combining this
with Proposition 3.1 completes the proof of Theorem 1.3.
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