
MATH. SCAND. 107 (2010), 150–160

CONNECTEDNESS IN SOME TOPOLOGICAL
VECTOR-LATTICE GROUPS

OF SEQUENCES

LECH DREWNOWSKI and MAREK NAWROCKI∗

Abstract
Let η be a strictly positive submeasure on N. It is shown that the space ω(η) of all real sequences,
considered with the topology τη of convergence in submeasure η, is (pathwise) connected iff η
is core-nonatomic. Moreover, for an arbitrary submeasure η, the connected component of the
origin in ω(η) is characterized and shown to be an ideal. Some results of similar nature are also
established for general topological vector-lattice groups as well as for the topological vector groups
of Banach space valued sequences with the topology τη .

1. Introduction

By a topological vector-lattice group (tvlg) we mean a real vector lattice
E equipped with a Hausdorff topology τ such that (E,+; τ) is a topolo-
gical lattice group (with uniformly continuous lattice operations). In other
words, (E,+; τ) is required to be a topological group with a base of zero-
neighborhoods consisting of solid (hence also balanced) subsets of E. In par-
ticular,E is then a (locally balanced) topological vector group (tvg). For more
information (and references) on tvg’s, see [2] and [4]; for topological vector
lattices (tvl) (or locally solid Riesz spaces), see [1].

The topology of a metrizable tvlg E can always be defined (in the usual
manner) by a monotone FG-norm, that is, a functional ‖·‖ : E → [0,∞]
such that: ‖x‖ = 0 iff x = 0; ‖x + y‖ � ‖x‖ + ‖y‖; ‖sx‖ � ‖tx‖ whenever
|s| � |t |; and ‖x‖ � ‖y‖ whenever |x| � |y|. For a tvg E, we denote

v(E) = {x ∈ E : (τ )-lim
t→0

tx = 0},
c(E) = the connected component of the origin in E.

Then v(E) is the largest topological vector subspace of E, v(E) ⊂ c(E), and
both v(E) and c(E) are closed vector subspaces of E (cf. [2, Rem. 2.4], and
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the proof of Theorem 2.2 below). IfE is a tvlg then, obviously, v(E) is a tvl
and an ideal in E and, as we show in this paper, also c(E) is an ideal in E.

In general, connectedness type properties of a tvg may differ very much
from those of a tvs. Let it suffice to mention that a ‘genuine’ tvg E may have
a lot of discrete vector subspaces and that the spaces v(E) ⊂ c(E) ⊂ E may
be drastically different. Thus, e.g., if N is the Nevanlinna class over the unit
disc in C, then v(N) is the Smirnov class, and v(N) �= c(N) �= N (see [8]).

In this paper, our main object of interest are the metrizable tvlg’s ω(η) =
(ω, τη), whereω is the vector lattice of all real sequences, η is a strictly positive
submeasure on (all subsets of) N, and τη is the topology of convergence in
submeasure η. The spaces ω(η) have recently been introduced in [4], but
most of the attention was paid to their largest topological vector subspaces,
λ0(η) = v(ω(η)).

For a general metrizable tvlg E that is nestedly complete (see Section 2),
we give in Theorem 2.2 a description of c(E) in terms of ε-chainability, and
prove that c(E) is a closed ideal in E. Next, in Theorem 2.3, we show that
various types of connectedness forE are mutually equivalent; this is very close
to a result of H. Weber [10, Th. 5.10]. For the special case of E = ω(η), we
give in Theorem 3.3 a description of c(ω(η)), and in Theorem 3.4 we prove
that ω(η) is (pathwise) connected iff η is core-nonatomic (see Section 3).
Furthermore, in Theorem 3.5 we characterize those submeasures η for which
λ0(η) = c(ω(η)). In Section 4, we give some relevant examples. Finally, in
Theorem 5.1, we give an extension of Theorem 3.4 to the tvg’s ω(X, η) of
vector-valued sequences.

We owe our original inspiration to the paper of J. W. Roberts [8], but the
only trace of it that remained can now be seen in Remark 2.4. The final shape
of our results has been influenced very much by the work of H. Weber [10],
where connectedness type properties were studied for general uniform lattices.
In particular, it prompted us to state some of our original results for ω(η) as
results concerning general metrizable tvlg’s in Section 2.

We thank Professor Hans Weber for calling our attention to his paper, and
for a very nice (and simple) argument showing that the core-nonatomicity of η
is necessary forω(η) to be connected. We used his idea, in somewhat modified
forms, in the proofs of Theorems 3.3, 3.4, and 5.1.

2. General results

We recall that, given ε > 0, a subset A of a metric space (M, ρ) is called
ε-chainable if for every pair of points x, y ∈ A there exists an ε-chain in A
from x to y, i.e., a finite sequence v0, . . . , vk in A such that x = v0, y = vk ,
and ρ(vi, vi+1) < ε for 0 � i < k. IfA is connected, then it is ε-chainable for
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every ε > 0; cf. [10, Lemma 5.6]. (Given x ∈ A, the set of those y ∈ A that
are ε-chainable with x is closed and open.) The converse is easily seen to hold
when A is compact. For basic facts about connected spaces and sets, we refer
to [6]. In particular, let us note that a Hausdorff space is pathwise connected
iff it is arcwise connected [6, 6.3.12].

In all of this section, E is a metrizable tvlg with the topology defined by a
monotone FG-norm ‖·‖ (actually, E could be any metrizable topological lat-
tice group). We shall say thatE is nestedly complete if, whenever ([xn, yn])n∈N

is a decreasing sequence of order intervals in E with yn − xn → 0, there is a
(unique) point z such that z ∈ [xn, yn] for all n. Evidently, z is then the limit
of either of the sequences (xn) and (yn), as well as the sup of the xn’s, and the
inf of the yn’s.

Clearly, if E is σ -Dedekind complete or (topologically) intervally norm
complete, then it is nestedly complete. It is important to note that the nested
completeness is strictly weaker than what is known in the literature as the
(σ -)interpolation property (see [11, Ch. 20, §146]). E.g., C[0, 1] is nestedly
complete but does not have the interpolation property. We refer the reader to
[3] for more information on the nested completeness.

A crucial result for what follows is Proposition 2.1 below or, more specific-
ally, the straightforward construction presented in its proof. It is used in a more
or less direct way to derive all the other results of the paper. In particular, it
is a basic ingredient of the proof of Theorem 2.3 which is a somewhat refined
version of a result due to H. Weber [10, Th. 5.10] (although we chose not to
state it in the full generality of that paper). Formally, the refinement is minor,
being just a replacement of the assumption of the interpolation property of E
by its nested completeness. However, it makes our Theorem 2.3 applicable,
e.g., to all intervally complete tvlg’sE which was not the case for the original
result.

Proposition 2.1. Let w, x ∈ E, w < x, be such that for any ε > 0
there is an ε-chain in E from w to x. Then for any pair of points y, z with
w � y < z � x and any ε > 0 there is a strictly increasing ε-chain from y to
z.

Moreover, if E is nestedly complete, then for any pair y, z as above there
exists a strictly increasing continuous function ϕ : [0, 1] → E with ϕ(0) = y

and ϕ(1) = z.

Proof. Fix ε > 0. We first show, following [10, Lemma 5.7], that there
is an increasing ε-chain v0, . . . , vk from w to x. By assumption, there is an
ε-chain w0, . . . , wk from w to x. Let v′

i = (wi ∨w)∧ x and vi = sup0�j�i v
′
j

(0 � i � k). Then, by Birkhoff’s inequalities (see [1]), |vi+1 − vi | � |v′
i+1 −

v′
i | � |wi+1 − wi |, and the vi’s are as required. Let now w � y < z � x and
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ui = (vi + y − w) ∧ z. Then u0, . . . , uk is an increasing ε-chain from y to z,
and we can make it strictly increasing by deleting every term that is equal to
an earlier term.

We now prove the second assertion. Fix a sequence (εn) of positive numbers
with εn → 0. Applying inductively the first part, we find for each n ∈ N a
strictly increasing εn-chain Cn = {vn,0, vn,1, . . . , vn,kn} from y to z so that
Cn ⊂ Cn+1. The latter inclusion means that for each 0 � i < kn there is a
segment vn+1,p, vn+1,p+1, . . . , vn+1,q (p < q) of the εn+1-chainCn+1 that joins
vn,i and vn,i+1. Next, for each n choose a sequence Tn = {0 = tn,0 < tn,1 <

· · · < tn,kn = 1} in [0, 1] so that for i and p < q as above, tn,i = tn+1,p <

· · · < tn+1,q = tn,i+1. Clearly, this can be done so that the union T of all the
Tn’s is dense in [0, 1]. For each n denote δn := min{tn,i+1 − tn,i : 0 � i < kn}.

Define a function ψ : T → E by ψ(tn,i) = vn,i for n ∈ N and 0 � i � kn.
Clearly, ψ is strictly increasing. Moreover, if t, t ′ ∈ T and |t − t ′| < δn, then
‖ψ(t) − ψ(t ′)‖ < 2εn. (Assume that t < t ′ and observe that there is i such
that either tn,i � t < t ′ � tn,i+1 or tn,i−1 � t < tn,i < t ′ � tn,i+1.)

Finally, extend ψ to a function ϕ : [0, 1] → E as follows: Let s ∈ [0, 1].
For every n, let tn be the largest point in Tn that is � s, and t ′n be the smallest
point in Tn that is � s. Then the sequences (tn) and (t ′n) in T are, respectively,
increasing and decreasing, and t ′n− tn → 0. Hence also ‖ψ(t ′n)−ψ(tn)‖ → 0.
Making use of the nested completeness, we now let ϕ(s) = supn ψ(tn) =
limn ψ(tn). Then ϕ is as required.

Theorem 2.2. c(E) is a closed vector sublattice of E. Moreover, if E is
nestedly complete, then c(E) consists of all elements x ∈ E such that for each
ε > 0 there is an increasing ε-chain in E from 0 to |x|, and c(E) is an ideal
in E.

In consequence, if E is nestedly complete, so is c(E).

Proof. Since the closure of a connected set is again connected, c(E) is
closed. The rest of the first assertion follows from the continuity of the maps
(x, y) → x + y, x → tx (t ∈ R) and x → |x|.

If x ∈ c(E), then also |x| ∈ c(E). Since c(E) is connected, for each ε > 0
there is an ε-chain from 0 to |x| which, by Proposition 2.1, can be chosen to
be increasing.

Now, assume that E is nestedly complete. If x satisfies the required condi-
tion, y ∈ E and |y| � |x| then, by Proposition 2.1 again, there are continuous
curves joining 0 with y+, and 0 with y−. It follows that y ∈ c(E), in particular,
x ∈ c(E).
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Theorem 2.3. IfE is nestedly complete, then the following are equivalent.

(a) Whenever w, x ∈ E and w < x, then for each ε > 0 there is a strictly
increasing ε-chain v0, v1, . . . , vk from w to x.

(b) Whenever y, z ∈ E and y < z, then there exists a strictly increasing and
continuous function ϕ : [0, 1] → E with ϕ(0) = y and ϕ(1) = z.

(c) Every order interval in E is pathwise connected.

(d) Every solid subset of E is pathwise connected.

(e) E is connected.

In consequence, if E is connected, then all the balls in E are pathwise con-
nected.

Proof. By Proposition 2.1, (a) implies (b), and (e) implies (a). The im-
plications (b) implies (c), (c) implies (d), and (d) implies (e) are easy (or
trivial).

Remark 2.4. For the case where E is norm complete, it is worth pointing
out an alternative and somewhat simpler argument (inspired by [8]) proving that
if (a) holds, then every order interval inE is connected. It is enough to show that
for any z ∈ [w, x] ⊂ E there is a continuum K such that w, z ∈ K ⊂ [w, x].
Assume, as we may, that w < z, and let the sequence (εn) and the εn-chains
Cn be as in the proof of Proposition 2.1 for y = w. Let

K =
⋃

n

Cn and Dn =
kn−1⋃

i=0

[vn,i , vn,i+1] (n ∈ N).

Note that every order interval [vn,i , vn,i+1] is of diameter < εn. Moreover,
Cn ⊂ Dn and Dn+1 ⊂ Dn for every n. It follows that K ⊂ ⋂

n Dn, whence K
is totally bounded. Since K is also closed, it is compact, and it is easily seen
to be ε-chainable for each ε > 0. Hence K is a continuum, and w, z ∈ K ⊂
[w, z] ⊂ [w, x].

3. The special case of ω(η)

Let P(N) denote the family of all subsets of N. A function η : P(N) → [0,∞]
is called a submeasure on N if η(∅) = 0, η(A) � η(B) whenever A ⊂ B, and
η(A∪B) � η(A)+η(B) (A,B ∈ P(N)). It is said to be (strongly) nonatomic
if for every ε > 0 there is a finite cover (or partition) A1, . . . , Ak of N such
that η(Ai) � ε for each i. Note that then η(A) = 0 for all finite sets A ⊂ N.

A submeasure η on N is said to be core-nonatomic if for every ε > 0 there is
a finite cover (or partition) A0, A1, . . . , Ak of N such that A0 is a finite set and
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η(Ai) � ε for i = 1, . . . , k. (See [4] for more details; also see Example 4.1
below.)

In all of this section, η is a strictly positive submeasure on N (that is, one
with η(A) > 0 whenever A �= ∅), and ω(η) = (ω, τη) is the tvlg associated
to η that was already defined in the Introduction. A convenient monotone FG-
norm defining the topology τη is given by

‖x‖η := inf{ε > 0 : η(s(x, ε)) � ε} for x = (x(j)) ∈ ω,
where

s(x, ε) = {j : |x(j)| > ε} (ε � 0);
s(x) = s(x, 0) is the support of x. Let τp denote the topology of coordinate-
wise convergence in ω. Since (ω, τp) is complete and τη is stronger than τp,
ω(η) is nestedly complete. Hence, in particular, all the results of the preceding
section are applicable to ω(η).

We recall that if η is lower semicontinuous, that is, η(An) ↑ η(A)whenever
An ↑ A, then ω(η) is complete (see [4, Fact 7.3]); in general, ω(η) need not
even be intervally complete, see Example 4.3. Clearly,

λ0(η) = v(ω(η)) = {
x ∈ ω : lim

t→0
‖tx‖η = 0

}

is an ideal in ω. For the following description of λ0(η), see [4, Fact 7.4].

Proposition 3.1. If x ∈ ω, then x ∈ λ0(η) iff η(s(x, r)) → 0 as r → ∞.

It is also worth noting thatω(η) = λ0(η) iff τη = τp iffη is order continuous,
i.e., η(An) → 0 whenever An ↓ ∅ (cf. [4], Th. 7.16(a) and its proof).

In order to state our results in a concise form, we associate with η another
submeasure η◦ on N by defining, for everyA ⊂ N, η◦(A) as the infimum of all
those ε > 0 for which there is a finite cover (or partition)B1, . . . , Bk ofA such
that η(Bi) � ε for each i. Equivalently, η◦(A) = inf max{η(B1), . . . , η(Bk)},
where the infimum is taken over all finite covers (or partitions) of A. We
collect some simple observations concerning η◦ in the proposition below,
where we also use a strictly positive submeasure η· on N defined by η·(A) =
supn∈A η({n}).

Proposition 3.2. The following hold.

(a) η· � η◦ � η and η·(A) = η◦(A) for all finite sets A ⊂ N.

(b) η◦(A ∪ B) = max{η◦(A), η◦(B)} for all A,B ⊂ N; likewise for η·.
(c) (η◦)◦ = η◦.

(d) If η is order continuous, then η◦ = η·.
(e) η is core-nonatomic iff η◦ is order continuous, and in that case η◦ = η·.
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For a setA ⊂ N, we let eA denote the characteristic function ofA, viewed as
a sequence of zeros and ones. The main result of this section is the following
characterization of c(ω(η)), very much like that of λ0(η) given in Proposi-
tion 3.1.

Theorem 3.3. The connected component c(ω(η)) of the origin in the tvlg
ω(η) consists of all x ∈ ω such that η◦(s(x, r)) → 0 as r → ∞; that is,
c(ω(η)) = λ0(η

◦).

Proof. In view of Theorem 2.2, c(ω(η)) is a closed ideal in ω(η).
Let x ∈ c(ω(η)). Then also |x| ∈ c(ω(η)), and we may assume that x � 0.

Fix any ε > 0. By Theorem 2.2, there is an increasing ε-chain v0, v1, . . . , vk
from 0 to x. Let ui = vi − vi−1 for i = 1, . . . , k. Then, for each i, ui � 0 and
‖ui‖η < ε so that writing Bi = s(ui, ε) one also has η(Bi) < ε; moreover,
x = u1 +· · ·+uk . If j ∈ N � (B1 ∪ · · · ∪Bk), then 0 � x(j) = u1(j)+· · ·+
uk(j) � kε. It follows that η◦(s(x, kε)) < ε.

To prove the converse direction, we may again assume that x > 0. Fix any
ε > 0, and let r > 0 be such that η◦(s(x, r)) < ε. DenoteB0 = N�s(x, r) and
choose a partition B1, . . . , Bk of s(x, r) so that η(Bi) < ε for each 1 � i � k.
Denote zi = xeBi for 0 � i � k. Then ‖zi‖η � η(s(zi)) < ε for 1 � i � k,
while z0 ∈ l∞ ⊂ λ0(η). Hence, choosing m ∈ N large enough one has
‖m−1z0‖η < ε. Set zi = m−1z0 for i = k + 1, . . . , k + m = n. Then the
elements v0 = 0, vi = z1 + · · · + zi for i = 1, . . . , n, form an increasing
ε-chain from 0 to x. By Theorem 2.2, x ∈ c(ω(η)).

Our next two results are easy consequences of the theorem above.

Theorem 3.4. The tvlg ω(η) is connected (and hence has all the other
properties listed in Theorem 2.3) if and only if η is core-nonatomic.

Proof. If η is core-nonatomic, then η◦ is order continuous so that the con-
dition in Theorem 3.3 is satisfied for every x ∈ ω. Conversely, if c(ω(η)) = ω

then, in particular, x = (j)j∈N ∈ c(ω(η)). Hence, by Theorem 3.3, η◦({n, n+
1, . . .}) → 0 as n → ∞. Thus η◦ is order continuous or, equivalently, η is
core-nonatomic.

Theorem 3.5. λ0(η) = c(ω(η)) iff η satisfies the following condition.

(∗) Whenever (An) is a sequence of subsets of N withAn ↓ ∅ and η◦(An) →
0, then also η(An) → 0.

Proof. Assume that λ0(η) = c(ω(η)), and let a sequence (An) be as spe-
cified above. Define x = (x(j)) ∈ ω by x(j) = n for j ∈ An �An+1 (n ∈ N).
Then, by Theorem 3.3, x ∈ c(ω(η)). Hence, by the assumption, x ∈ λ0(η)

and, by Proposition 3.1, η(An) = η(s(x, n− 1)) → 0.
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Conversely, let η satisfy condition (∗). If x ∈ c(ω(η)) and An = s(x, n)

for each n ∈ N then, by Theorem 3.3, the sequence (An) is as required in (∗),
hence η(An) → 0. It follows that x ∈ λ0(η).

Remarks 3.6. (a) It is fairly obvious that a submeasure η is core-nonatomic
and satisfies condition (∗) iff it is order continuous iff λ0(η) = c(ω(η)) = ω.

(b) For a core-nonatomic submeasure η, it is easy to see that solid sets are
pathwise connected also in the space ω(η) of complex sequences.

(c) It is worth pointing out that for no strictly positive submeasure η on N is
the associated Fréchet-Nikodym metric space (P(N), η) connected. (Simply
note that the family of sets containing 1 is closed-open.)

4. Examples

Example 4.1. A very large class of core-nonatomic strictly positive submeas-
ures on N can be obtained as follows: Take any sequence F = (Fn) of finite
nonempty sets with union N such that |{n : |Fn| = k}| � 2λk for some λ � 0
and all k ∈ N, and put

d̄F(A) = sup
n

|A ∩ Fn|
|Fn| , dF(A) = lim sup

n→∞
|A ∩ Fn|

|Fn| for A ⊂ N.

Then dF is a nonatomic submeasure (see [5, Th. 2.1]), and d̄F is a core-
nonatomic submeasure (cf. [4, Fact 4.3])). Moreover, d̄F is strictly positive
and lower semicontinuous, but it is not order continuous. In consequence, the
tvlg ω(d̄F) is complete and λ0(d̄F) �= c(ω(d̄F)) = ω (by Theorem 3.4). In
the ‘classical’ case, i.e., when Fn = {1, . . . , n}, we denote the corresponding
submeasures simply by d̄ and d.

Examples 4.2. (a) Let a functionf : N → (0,∞) be such that lim supn f (n)
> 0. Then the submeasure σf on N defined by σf (A) = sup f (A) satisfies
(∗) (in fact, (σf )◦ = σf ) but is not core-nonatomic. Therefore, λ0(σf ) =
c(ω(σf )) �= ω.

(b) Let η0(A) = 1 when A �= ∅, η0(∅) = 0. Also, let N0 denote the set
of even integers in N, and N1 = N � N0. Then the submeasure η given by
η(A) = η0(A ∩ N0)+ d̄(A ∩ N1) is not core-nonatomic and does not satisfy
(∗). Therefore, λ0(η) �= c(ω(η)) �= ω.

Note that both σf and η are lower semicontinuous.

Example 4.3. Here we give a class of core-nonatomic submeasures η for
which the space λ0(η) (and, a fortiori, ω(η)) is not even intervally complete.

Let μ be any nonatomic submeasure on N with μ(N) = 1, and let ν be a
submeasure on N defined by ν(A) = supn∈A an, where an > 0 and

∑
n an <
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∞. Then η = max{μ, ν} is a core-nonatomic strictly positive submeasure on
N and, obviously, it is not order continuous. Therefore, λ0(η) �= c(ω(η)) = ω.
Now, consider the sequence (en) of standard unit vectors in ω. Since ‖en‖η �
η(s(en)) = η({n}) = an, the series

∑
n en is Cauchy in ω(η) = (ω, ‖·‖η).

Suppose it converges in ω(η). Then it also converges coordinate-wise so that
its sum has to be eN (the constant 1 sequence). Therefore, letting zn = eN −∑

i�n ei , we have ‖zn‖η → 0. However, for any 0 < ε < 1, η(s(zn, ε)) �
μ(s(zn, ε)) = 1 so that ‖zn‖η = 1 for every n; a contradiction. We have thus
shown that the order interval [0, eN] ⊂ λ0(η) is not complete.

Let us additionally observe that if μ = dF, where F = (Fn) is as in Ex-
ample 4.1, and the an’s above are chosen so that an � d̄F({n}) for each n,
then η � d̄F. Moreover, if (An) is any sequence in P(N) with An ↓ ∅, then
η(An) → 0 iff d̄F(An) → 0 (cf. [4, Fact 3.5]). Therefore, λ0(η) = λ0(d̄F) �=
c(ω(η)) = c(ω(d̄F)) = ω.

5. An extension to vector sequences

Let X = (X, ‖·‖) be a nonzero Banach space, and let ω(X, η) denote the
tvg ω(X) of all X-valued sequences with the topology τη of convergence
in submeasure η. The same formula as in the scalar case (with an obvious
modification) gives anFG-norm ‖·‖η defining τη. Clearly, ifx = (xj ) ∈ ω(X),
then ‖(xj )‖η = ‖(‖xj‖)‖η.

Theorem 5.1. Let η be a lower semicontinuous strictly positive submeasure
on N. Then the following are equivalent.

(a) η is core-nonatomic.

(b) Every open ball in ω(X, η) is pathwise connected.

(c) ω(X, η) is connected.

Proof. Since η is lower semicontinuous, the closed balls B(0, r) (r > 0)
in ω(X, η) are easily seen to be closed in the topology τp of coordinate-wise
convergence. Moreover, (ω(X), τp) is complete and τp � τη. Hence ω(η) is
complete (cf. [4, Fact 7.3]).

(a) implies (b). We start with an observation. Consider an open ballK(y, r)
in ω(X, η). Take any z ∈ K(y, r) and fix any ε > 0. By (a), there is a partition
A0, A1, . . . , Ak of N with A0 finite and η(Ai) < ε for 1 � i � k. Then the
ε-chain v0, v1, . . . , vk from y to z, constructed as in the proof of Theorem 3.3,
is such that ‖y − vi‖η � ‖y − z‖η for each i. (In the construction, one may
assume y = 0.)

Now, let K(w, r) be an open ball in ω(X, η). Fix any x ∈ K(w, r) and
a sequence (εn)n�0 of positive numbers such that ‖w − x‖η + ∑

n εn =:
r ′ < r . Using the observation made above and proceeding as in the proof of
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Proposition 2.1, one constructs εn-chainsCn = {vn,0, vn,1, . . . , vn,kn} fromw to
x so thatCn ⊂ Cn+1 and, additionally, ‖w−v‖η � ‖w−x‖η+(ε0+· · ·+εn−1)

for each v ∈ Cn.
Next, define the sets Tn and T , the constants δn, and the functionψ as in the

proof just mentioned. Then, as easily seen, ‖ψ(t)−ψ(t ′)‖η < 2(εn+1+εn+2 +
· · ·) whenever t, t ′ ∈ T and |t − t ′| < δn. Thus ψ is uniformly continuous on
T , and its range is contained in the closed ball B(w, r ′). To finish, extend ψ
by continuity to all of [0, 1]. In consequence, K(w, r) is pathwise connected.

That (b) implies (c) is obvious. To verify that (c) implies (a), take any
sequence x = (x(j)) with ‖x(j)‖ → ∞. By (c), given ε > 0, there is
an ε-chain v0, . . . , vk from 0 to x. Define ui , Bi and A0 as in the proof of
Theorem 3.3. Then x = u1 + · · · + uk , η(Bi) < ε, and ‖x(j)‖ � ‖u1(j)‖ +
· · · + ‖uk(j)‖ � kε for each j ∈ A0. It follows that A0 is finite, and by
disjointizing the Bi’s we conclude that (a) is satisfied.

Remark 5.2. The implication (a) implies (b) remains valid when X =
(X, ‖·‖) is anF -space (see [7]), and so does (c) implies (a) provided thatX ad-
mits an equivalent F -norm, say ‖·‖′, which is unbounded, i.e., supx∈X ‖x‖′ =
∞. We do not know however if (and how) one could prove that (c) implies
(a) without that assumption (which is the case, e.g., for the F -space L0 of all
measurable functions on [0, 1], with the topology of convergence in Lebesgue
measure, see [9, 9.2.2]).

REFERENCES

1. Aliprantis, C., and Burkinshaw, O., Locally Solid Riesz Spaces with Applications to Eco-
nomics, 2nd ed., Math. Surveys and Monographs 105, Amer. Math. Soc., Providence, RI
2003.

2. Drewnowski, L., Topological vector groups and the Nevanlinna class, Funct. Approx. Com-
ment. Math. 22 (1994), 25–39.

3. Drewnowski, L., On nestedly complete topological vector lattices, in preparation.
4. Drewnowski, L., and Labuda, I., Solid sequence F -spaces of L0-type over submeasures on

N, Illinois J. Math. 53 (2009), 623–678.
5. Drewnowski, L., and Łuczak, T., On nonatomic submeasures on N, Arch. Math. (Basel) 91

(2008), 76–85.
6. Engelking, R., General Topology, Monogr. Mat. 60, PWN – Polish Sci. Publ., Warszawa

1977.
7. Kalton, N. J., Peck, N. T., and Roberts, J. W., AnF -space sampler, London Math. Soc. Lecture

Note 89, Cambridge Univ. Press, Cambridge 1984.
8. Roberts, J. W., The component of the origin in the Nevanlinna class, Illinois J. Math. 19

(1975), 553–559.
9. Rolewicz, S., Metric Linear Spaces, PWN – Polish Scientific Publishers & D. Reidel Pub-

lishing Co., Warszawa & Dordrecht 1984.
10. Weber, H., On modular functions, Funct. Approx. Comment. Math. 24 (1996), 35–52.



160 lech drewnowski and marek nawrocki

11. Zaanen, A. C., Riesz spaces II, North-Holland Math. Library 30, North-Holland, Amsterdam
1983.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
A. MICKIEWICZ UNIVERSITY
UMULTOWSKA 87
61-614 POZNAŃ
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