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ADVANTAGES OF THE HAUSDORFF CENTERED
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(Dedicated to Professor Pertti Mattila on the occasion of his 60th birthday)

Abstract
In this paper we study Hausdorff centered measures, a useful tool in fractal geometry. The definition
of Hausdorff centered measure is based on efficient coverings centered at the given set, playing
a dual role to packing measures. We show that, at least in the self-similar setting, it has some
advantages, from a computational point of view, over other measures based on coverings, such as
the Hausdorff measure or the Hausdorff spherical measure. We also extend our results to general
Hausdorff centered measures with gauge functions for which the measures scale.

1. Introduction

Sets with fractal dimension occur naturally in the investigation of many phe-
nomena in pure and applied mathematics, prime among them the understanding
of the chaotic behaviour of complex and real dynamical systems. The proper-
ties of such sets require the understanding of measures of fractal dimensions.
The prototypical example of fractal measures are the Hausdorff measures Hs

for s > 0. For a Borel set A ⊂ Rn

H s(A) = lim
δ→0

[
inf

{∑
|Ui |s : |Ui | ≤ δ,

Ui are convex sets such that E ⊂ ∪Ui

}]
,

where |U | stands for the diameter of U .
An obstacle for the computation of Hs(E) is that the infimum is taken over

a very large class of sets.
Packing measures P θ where introduced by Sullivan [27], Tricot [29] and

Taylor and Tricot [28]. In [24], Saint Raymond and Tricot, introduced the
so-called Hausdorff centered measures Cθ . The packing measure has been

∗ This research has been supported by the Ministerio de Educación y Ciencia, research project
MTM2006-02372. M. LL. was also supported by the research project CCG06-UAM/HUM-0335.

Received 4 September 2008, in final form 28 October 2008.



104 marta llorente and manuel morán

extensively studied in the later years. In a self-similar setting, the packing
measure may be easier to handle than the Hausdorff measure [23], however,
it is not, in a general setting, equivalent to the Hausdorff measure in the sense
that a set of null s-dimensional Hausdorff measure may well have an infin-
ite s-dimensional packing measure. Moreover, the behaviour of the packing
measure under natural operations such as projections or intersections is very
irregular unlike the one of the Hausdorff (see, for example, [6], [7], [8], [9],
[12], [13], [16], [19], [20].)

Much less is known about the Hausdorff centered measure, although it has
attracted some attention recently (for works on the Hausdorff centered measure
(= covering measure) see [3], [4], [5], [21], [25], [30], [31]). But remarkably,
opposite to the packing measure, it differs by at most a constant factor from
the Hausdorff measure (see (10)), so it may be used in the computation of the
Hausdorff dimension.

The aim of this note is to show that the Hausdorff centered measure Cθ is
easier to handle than the Hausdorff or Hausdorff spherical measure, at least
in the self-similar setting. This makes it a more natural candidate to investig-
ate covering-measure properties of classical fractal objects, as the Sierpinski
gasket or the Koch curve. We recall that the exact Hausdorff measure of these
fractal sets remains still unknown due to the complexity of the computational
procedures.

Let us start with the definition given by Saint Raymond and Tricot in [24].

Definition 1. Let θ be a continuous increasing function such that

(1) lim
r→0+

θ(r) = 0 and lim sup
r→0+

θ(2r)

θ(r)
< ∞.

For A ⊂ Rn we define

(2) Cθ
0 A = lim

δ→0
inf

{ ∞∑
i=1

θ(|Bi |)
}
,

where the infimum is taken over all coverings {Fi} of A by balls with diameter
smaller than δ and centers at A.

The Hausdorff centered measure Cθ of a set A ⊂ Rn is defined as

(3) CθA = sup
{
Cθ

0 F : F ⊂ A, F closed
}
.

We will discuss first the classical case where θ(r) = (2r)s , denoting the
corresponding measure by Cs . Later we will analyze for which other gauge
functions θ our results extend.
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The first step in Definition 1 gives hope that this measure is easier to compute
than the Hausdorff measure since we take infima over a considerably smaller
family of sets. On the negative side is that we need two limiting procedures in
the construction. This is due to the fact that we are taking optimal coverings
by centered balls and hence the resulting set function, Cs

0 (premeasure), is
not monotone (see Example 4). This reminds of the behaviour of the packing
premeasure (see (7) for a definition). Recall that the set function P s

0 , defined
in a similar, dual, way to Cs

0, by replacing optimal coverings with maximal
packings, is subadditive and monotone, but not σ -subadditive. Thus we must
add an extra step to get a measure. However, Feng showed in [10] that if
K ⊂ Rn is a compact set with finite packing measure, then the extra step is no
longer needed.

It would be desirable to extend Feng’s result to Cs . But Example 4 shows
that the behavior of Cs differs from the packing measure as it is not possible
to get such an extension for general compact sets. Surprisingly, as Theorem 3
shows, on compact subsets of self similar sets satisfying the open set condition
(OSC), we are able to show that the second step is not needed. The proof of
Theorem 3 is based on the self-similar tiling principle proved by the second
author in [23].

In [3], Edgar analyzes the properties of the Hausdorff centered measure (=
covering measure) Cθ in general metric spaces for general gauge functions
(= Hausdorff functions) θ . He shows that often Cθ can be defined as a fine
variation. That is, taking the infimum over all fine covers β of the supremum
over all packings π ⊆ β of the sum

∑
(x,r)∈π |B(x, r)|s . But this interesting

result does not help in computing the exact value of a given set.
In this work (Theorem 5) we elaborate an alternative definition of the Haus-

dorff centered measure in the self similar setting. The point of view is entirely
different from Edgar’s and instead it follows the lines of [23] where similar
expressions are obtained for the Hausdorff and packing measures. We first
show that the Hausdorff centered measure Cs(E) of a self-similar set E coin-
cides with its premeasure Cs

0(E), making unnecessary the second step in its
definition above. Then we show that the exact value of the Hausdorff centered
measure in fact can be found by searching a centered ball of minimal density.
Notice that the fact that the centers of the balls belong to E makes easier the
search of the ball of minimal density in comparison with the related result
for the Hausdorff spherical measure. For the Hausdorff spherical measure the
optimal balls could be centered anywhere in Rn [23]. The computation of the
ordinary Hausdorff measure implies a greater degree of complexity, since it
requires the search of a convex set of minimal density.

Now we turn to the issue of the general gauge function. Notice that for
other metric measures when we replace θ(r) = (2r)s in the definition with an
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arbitrary gauge function θ(r), the properties of the resulting measure might
be entirely different. For example, in [2] Csörnyei constructed a doubling
function and a compact set for which the packing measure and premeasure do
not coincide and in [25] Schechter gave an example of a gauge function of
the form θ(x, r) = rtν(B(x, r))q where the equivalence between Hausdorff
centered and spherical measure fails to hold.

In the last section we consider the general measure Cθ and characterize
the gauge functions for which Theorems 3 and 5 extend. This extension relies
on the scaling properties of Cθ . We say that a measure μ scales (is a scaling
measure) if for all c > 0 and A ⊂ Rn

(4) μ(cA) = csμ(A).

In [1] Csörnyei and Mauldin characterize those gauge functions for which
the corresponding Hausdorff and packing measures scale. We prove that for
the same class of gauge functions Cθ scales as well (Lemma 7). Then, we give
a class of gauge functions so that Theorem 3 and 5 hold.

The paper is organized as follows. In Section 2 we review the needed nota-
tion and facts from fractal geometry used in the rest of the paper. In Section 3 we
prove the main theorems for Cs , recalling first the self-similar tiling principle.
In this section we include also an example showing that for general compact
sets the two steps in the definition of Cs are needed. Section 4 is devoted to
the study of Cθ for general gauge functions.

2. General facts and notations

2.1. Self-similar sets

We analyze the behavior of the Hausdorff centered measure and premeasure on
a self-similar set E generated by a system � = {f1, f2, . . . , fm} of similitudes
of Rn such that:

A1: � satisfies the open set condition (OSC), i.e., there exists an open set
O ⊂ Rn such that fi(O ) ⊂ O for all i ∈ M := {1, 2, . . . , m} and
fi(O ) ∩ fj (O ) = ∅ for i, j ∈ M with i �= j .

A2: m ≥ 2 and Rn is the smallest linear manifold that contains E.

Denoting by S� the set mapping defined by

S�(X) =
⋃
i∈M

fi(X)

we can write E = S�(E).
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AssumptionA1 ensures that the Hausdorff dimension ofE, dimH E, is given
by the unique real number s such that

∑m
i=1 rs

i = 1, where ri is the contraction
ratio of the similarity fi , i ∈ M (see [11]). Moreover, the Hausdorff measure
of E is finite and positive. From now on we keep this notation.

Assumption A2 avoids the case when the self-similar set reduces to a
singleton and ensures that the smooth (n−1)-dimensional manifolds intersect
E in sets of null Hausdorff measure [17].

We now introduce the basic notation used below. We write M for the set of
finite sequences of indices in M plus the empty sequence i0. Let fi0 = id. For
i = i1i2 . . . ik ∈ M, we write fi for the similitude fi1 ◦fi2 ◦· · ·◦fik and, for A ⊂
Rn and i ∈ M, Ai denotes the set fi(A) and ri the contraction ratio of fi. For a
given q < k, i|q denotes the truncation of i to the q-th place, i|q = i1i2 . . . iq .
Given two sequences i = i1i2 . . . ik and j = j1j2 . . . jp in M we write i ∧ j for
the sequence i1i2 . . . ik ∈ M with k = max {l : ik = jk, 1 ≤ k ≤ l} if i1 = j1

and i ∧ j = i0 if i1 �= j1. We denote by i ∨ j the sequence i1i2 . . . ikj1j2 . . . jp

and, for I , J ⊂ M, we write I ∨J for the set of indices {i ∨ j : i ∈ I , j ∈ J }.
Lastly, for I ⊂ M and A ⊂ Rn, I A denotes the union

⋃
i∈I Ai.

We recall some basic properties of self-similar sets satisfying the open set
condition which are used in our arguments.

In Euclidean spaces, the OSC is equivalent to the strong open set condition
[26]. This means that we may assume that O ∩ E �= ∅. Furthermore, if ∂

denotes the boundary topological operator on Rn, it may be proved (see [22],
Theorem 3.3) that the Hausdorff dimension of E ∩ ∂O is strictly smaller than
s, and therefore, Hs(E ∩ ∂O ) = 0. It is easy to see that E ⊂ Ō [11].

A useful measure on a self-similar set is the sometimes called natural prob-
ability measure, or Hausdorff normalized measure μ, defined on the ring
of cylinder sets by μ(Ei) = rs

i , and then extended to Borel subsets of E.
This is a probability measure which scales on cylinder sets, and therefore
Hs�E = Hs(E)μ. Here Hs�E means the restriction of the measure Hs to
the set E, Hs�E(A) := Hs(E ∩ A). We shall keep this notation for the re-
striction of a measure. It is easy to see that the open set condition implies
Hs(Ei ∩ Ej) = 0 for any pair i, j ∈ M with i �= j , and from this it follows
that Hs(Ei ∩ Ej) = 0 for i, j ∈ M such that i ∧ j /∈ {i, j}. The same is true for
any measure multiple of Hs and in particular for μ.

2.2. Densities and measures on a self-similar set

Next, we recall the definition of Hausdorff type measures obtained by means
of a Carathéodory’ s process. In what follows for A ⊂ Rn, |A| stands for the
diameter of A.
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Let θ be a continuous, increasing function such that limx→0+ θ(x) = 0 and

(5) lim sup
x→0

θ(2r)

θ(r)
< +∞.

Let C be a family of closed subsets of Rn such that for any δ > 0 there exists
some F ∈ C with θ(|F |) ≤ δ and C provides δ-coverings of every set E ⊂ Rn,
that is, countable coverings {Fk} of E with sets Fk ∈ C and |Fk| < δ for all k.

For 0 < δ ≤ ∞ and A ⊂ Rn

Hθ
C (A) = lim

δ→0
HC ,δ(A) where HC ,δ(A) = inf

{ ∞∑
i=1

θ(|Fi |)
}
,

where the infimum is taken over all countable coverings {Fi} of A by subsets
of C with diameter smaller than δ (see [18] or [30] for details). If we take
C as any of the classes of open subsets, closed subsets or convex subsets of
Rn and θ : R+ → R+ is a non-decreasing function with θ(0) = 0, we get the
Hausdorff θ measure Hθ . By taking C as the class of Euclidean balls of Rn, we
get the Hausdorff spherical θ measure Hθ

shp. When we choose C as the class
of Euclidean balls centered in A, we get the Hausdorff centered θ premeasure
(see Definition 1).

The packing measure is defined in a similar way by replacing coverings
with packings. For completeness we recall the definition here.

For A ⊂ Rn we define

(6) P θ
0 A = lim

δ→0
sup

{ ∞∑
i=1

θ(|Bi |)
}

where the supremum is taken over all δ-packings of A, i.e., countable collec-
tions {Bi} of disjointed balls centered at A and with diameter smaller than δ. As
mentioned in the introduction, the problem that arises when changing optimal
coverings by maximal packings is that the limit in (6) fails to be a measure,
since P θ

0 is subadditive and monotone, but not σ -subadditive [30].
We define the θ -packing measure as

(7) P θA = inf

{ ∞∑
i=1

P θ
0 (Fi)

}
,

where the infimum is taken over all countable coverings {Fi} of A by closed
sets.

If θ(t) = (2t)s , we obtain the classical s-dimensional Hausdorff, spherical,
centered and packing measures, denoted by Hs , Hs

shp, Cs and P s , respectively.
It is clear that Hs ≤ Hs

shp ≤ 2sH s , Cs
0 ≤ 2sH s

sph and that Hs ≤ Cs ≤ 2sH s .
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In [30, Theorem 1, p. 16] Tricot notes the following relations between the
Hausdorff centered measure and the upper densities.

For any positive finite Borel measure ν in Rn, let d̄θ
ν (x) = lim sup

r→0

ν(B(x,r))

θ(2r)

be the upper θ -density of ν at a point x ∈ Rn. Then

(8) Cθ (E) inf
x∈E

d̄θ
ν (x) ≤ ν(E)

and

(9) ν(E) ≤ Cθ(E) sup
x∈E

d̄θ
ν (x) ,

provided Cθ(E) < ∞. If we replace d̄θ
ν (x) with dθ

ν (x) in (8) and (9) we
obtain analogous expressions for the packing measure (see [30]). Notice that
Theorem 5 and 10 state that for self-similar sets we can get the Hausdorff
centered measure as a minimum (infimum) of the inverse density functions
fs(x, r) = (

ν(B(x,r))

θ(2r)

)−1
.

Observe that for classical gauge functions satisfying (5) we have that
Hθ(E) ≤ Cθ(E) ≤ (

lim supt→0
θ(2t)

θ(t)

)
Hθ(E) and therefore

Hθ(E) = 0 ⇐⇒ Cθ(E) = 0(10)

Hθ(E) < ∞ ⇐⇒ Cθ(E) < ∞.

When we restrict our attention to subsets of E, it is easy to see that, if two
Borel measures μ1 and μ2 satisfy the scaling property for cylinder sets (i.e.,
if μi(Ej) = rs

j μi(E), i = 1, 2, j ∈ M, and 0 < μ2(E) < ∞), then μ1 = λμ2

with λ = μ1(E)

μ2(E)
. The measures Hs , Hs

sph, P s and Cs defined above are scaling
under similitudes and therefore they are, on subsets of E, multiples λμ of the
Hausdorff normalized measure μ. The constant λ equals to the corresponding
measure of the set E.

3. Main results for Cs

The next lemma states the self-similar tiling principle which provides the main
tool for the results in this paper. From now on E will be a self-similar set in
Rn satisfying the OSC.

In this section we will refer a measure ν as scaling if it is scaling under
similitudes fi , i ∈ M . Observe that all the scaling measures (see (4)) that
appear in this note are scaling under similitudes fi , i ∈ M . This is due to the
invariance properties of these measures.

Lemma 3.2 (Lemma 4 in [23]). Let ν be a scaling measure and μ be
the natural probability measure on E. Let F ⊂ E be a closed set such that
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μF = c > 0 and let U be an open set. Then there exists a subset of indices
J ⊂ M such that

J F ⊂ U and νU = νJ F = μU

μF
νF.

Furthermore,
∑

i∈J rs
i = μU

μF
holds, and given any δ > 0, we may require that

|Ei| < δ for all i ∈ J .

If U and F are as in Lemma 3.2 we write J ∈ U : F and say that J is a
tiling of U by F . Moreover, if we require that |Ei| < δ for all i ∈ J , we call
J a δ-tiling of U by F .

Recall that, given any open set U ⊂ E, there exists a set of indices I ⊂ M

such that U = ∪i∈I Ei. By deleting the redundant cylinders, we may select I

in such a way that the collection of cylinders {Ei}i∈I is almost disjoint, i.e.,
ν(Ei ∩ Ej) = 0 for all i, j ∈ I , i �= j and for any scaling measure ν.

In [10] it is proved that for any compact set K ⊂ Rn with finite packing
measure, the extra step in the definition of the packing measure is not needed as
P sK = P s

0 K . Next theorem shows that the same result holds for the Hausdorff
centered measure in the self-similar setting. However, Example 4 shows that
the Hausdorff centered measure does not behave as the packing measure, since
there is no equivalent result outside the self-similar setting for Cs .

Theorem 3. Let A be either a closed or an open subset of E. Then Cs
0A =

CsA.

Proof. First we show that it is enough to extend the result of Lemma 3.2 to
the premeasure Cs

0. Let U, F ⊂ E be an open and a closed set with μF > 0,
respectively. Suppose that

(11) Cs
0U = μU

μF
Cs

0F

and let A ⊂ E be closed. Now, observe that if we apply (11) first with E \A as
open set, and then with E as an open set, we obtain Cs

0(E \ A) = μ(E\A)

μF
Cs

0F

and Cs
0E = μE

μF
Cs

0F . Using these equalities and the subadditiviness of Cs
0, we

get

(12) Cs
0A ≥ Cs

0E − Cs
0(E \ A) = μA

μF
Cs

0F.

In particular, if F ⊂ A, (12) implies that

Cs
0A ≥ μA

μF
Cs

0F ≥ Cs
0F.
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This also holds for closed subsets F ⊂ A with μF = 0 since then Cs
0F = 0.

Thus, by definition of Cs , we get Cs(A) ≤ Cs
0A, and the opposite inequality

is trivial. This proves the lemma for closed subsets of E.
If A is an open subset of E, then by (11) and Lemma 3.2 applied to Cs ,

(13) Cs
0A = μACs

0E = μACsE = CsA.

Therefore, it is enough to show that (11) holds. To do so, we consider first
the case when F ⊂ O and then we extend (11) to general closed sets. We start
by repeating the construction of Lemma 4 in [23] to get a δ-tiling J ∈ U : F

from the δ-tilings I ∈ U : E and K ∈ (E \ F) : E. For k ∈ N+, set
Jk+1 = Jk ∨ K with J0 = I . Noting that

U = J0E = J0F ∪ J0(E \ F) = J0F ∪ (J0 ∨ K )E

= J0F ∪ J1F ∪ (J1 ∨ K )E = . . . =
( k⋃

p=0

JpF

)
∪ Jk+1E

and setting J = ⋃∞
k=0 Jk , we obtain a δ-tiling of U by F such that J F ⊂ U

and

(14) ν(U) = ν(J F) =
∑
i∈J

rs
i νF =

∞∑
k=0

μU(1 − νF )kνF = μU

μF
νF

for any scaling measure ν and any closed set F ⊂ E with μF > 0 (see the
proof of Lemma 4 in [23]). Observe that the first equality in (14) shows that
J F is dense in U .

Let ε > 0. The convergence of the sum in (14) implies that, for p big
enough and ν = Cs ,

(15)
∑
i∈J

rs
i C

s
0F ≤

∑
i∈Tp

rs
i C

s
0F + ε,

where Tp := ⋃p

k=0 Jk .
Note that from the hypothesis F ⊂ O and μF > 0 it follows that Fi∩Fj = ∅

for any i, j ∈ Tp with i �= j. To see this, take t > m and let i = (i1, . . . , im) and
j = (j1, . . . , jt ) ∈ Tp. If i ∧ j = i0, then, as F ⊂ O , Fi ∩ Fj ⊂ Oi1 ∩ Oj1 = ∅.
If i ∧ j = i|q with q < m, then Fi ∩ Fj ⊂ fi|q (Oiq+1 ∩ Ojq+1) = ∅. If m = q,
i ∈ Jl and j ∈ Jk with l �= k, then i ∧ j = i ∈ Jl and j̄ =: (jm+1, . . . , jt ) ∈
K ∨. . .∨K , therefore Fj̄ ⊂ E\F . This implies that Fi ∩Fj = fi(F ∩Fj̄) = ∅.
Finally, the case m = q with l = k is not possible by construction since this
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would imply the existence of sequences i, j either in I or in K such that
i ∧ j = i and this is not possible because I and K are almost disjoint tilings.

Thus, for a sufficiently small δ any covering of J F by balls centered in
J F and with diameter smaller that δ provides admissible disjointed coverings
of all the copies Fi, i ∈ Tp. Hence, Cs

0J F ≥ ∑
i∈Tp

Cs
0Fi. Now, as Cs

0 is a
scaling premeasure and by (15) we have

Cs
0J F ≥

∑
i∈Tp

Cs
0Fi =

∑
i∈Tp

rs
i C

s
0F ≥

∑
i∈J

rs
i C

s
0F − ε.

Letting ε go to zero we get Cs
0J F ≥ ∑

i∈J rs
i C

s
0F . The opposite inequality

holds because Cs
0 is σ -subadditive. Hence,

(16) Cs
0J F =

∑
i∈J

Cs
0Fi.

Now, using that J F is dense in U , (16) and (14) we obtain that

(17) Cs
0U ≥ Cs

0J F =
∑
i∈J

rs
i C

s
0F = μU

μF
Cs

0F.

Moreover, since Cs
0 is σ -subadditive it turns out that

(18) Cs
0U ≤ Cs

0J F + Cs
0(U \ J F) = μU

μF
Cs

0F.

The last equality holds because Cs
0 ≤ P s (see [30, Theorem 1]) and P s is a

scaling measure verifying (14) and therefore Cs
0(U \J F) ≤ P s(U \J F) = 0.

Thus, (17) together with (18) conclude the case F ⊂ O .
For the general case, consider a sequence {Fk} of closed subsets of E with

Fk ⊂ F ∩ O for all k ∈ N+ and
⋃∞

k=1 Fk = F ∩ O . Let U ⊂ E be an open
set. Then, by subadditiveness,

Cs
0U = μU

μFk

Cs
0Fk ≥ μU

μFk

(
Cs

0F − Cs
0((F ∩ O ) \ Fk) − Cs

0(F \ O )
)

for all k ∈ N+. As Cs
0(F \O ) = 0 and Cs

0((F ∩O )\Fk) tends to zero as k tends
to infinity, we get that Cs

0U ≥ μU

μF
Cs

0F . As Cs
0 is subadditive then, the chain

(18) also holds in this case if we replace the last equality with the inequality
≤. Therefore Cs

0U ≤ μU

μF
Cs

0F and (11) is proved.

In [30] Tricot gave an example to show the lack of monotonicity for the
premeasure Cs

0. The same example can be used to show that Theorem 3 cannot
be extended to the non-selfsimilar case.
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Example 4 ([30, p. 18]). Let S be the self-similar set obtained as the
invariant set of three similarities {f1, f2, f3} of contraction ratio r1 = r2 =
r3 = 1/3, each sending the equilateral triangle into three smaller triangles (see
Figure 1).

Figure 1. S is the invariant set for the similarities f1(x, y) = 1
3 (x, y),

f2(x, y) = 1
3 (x, y) + (

2
3 , 0

)
, f3(x, y) = 1

3 (x, y) + (
1
3 , 1√

3

)
.

This invariant set is a Sierpinski triangle of dimension s = 1. Let N be the set
of all centers of the hexagons of each generation. In [30] it is shown that

C0(S ∪ N) < C0(S).

Therefore, if we let F = S ∪ N and we apply Theorem 3 to S, we get

(19) CsF = CsS = Cs
0S > Cs

0F.

Observe that the first equality in (19) holds trivially since N , as countable, is
a null set for C1.

In [23], the self-similar tiling principle has been used to give the exact value
of Hausdorff-type scaling measures on E by means of the minimal inverse
density in the class of covering sets. In [14] it is proved that under strong
separation condition (SSC) these optimal values are attained. We say that the
self-similar set E satisfies the strong separation condition (SSC) if the union
E = ⋃n

i=1 fi(E) is disjoint. The ideas in [23] and [14] together with Theorem 3
gives readily the value of the Hausdorff centered measure.
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Theorem 5. Let E be the invariant set of the system � satisfying the open
set condition with dimH E = s and |E| = R and let μ be the Hausdorff
normalized measure on E. Then

(20) CsE = inf

{
(2r)s

μ(B(x, r))
: x ∈ E, r > 0

}
=: D−1

C

Moreover, if � satisfies the SSC then

(21) CsE = min

{
(2r)s

μ(B(x, r))
: x ∈ E and c ≤ r ≤ R

}

where c := mini,j∈M,i �=j (fiE, fjE) and R := |E|.
Remark 6. We denote by B(x, r) the closed ball centered at x ∈ Rn and

with radius r > 0. One difficulty that we need to overcome stems from the
fact that the balls in E as a metric subspace of Rn,

BE(x, r) := B(x, r) ∩ E = {y ∈ E : d(x, y) ≤ r} ,

are not invariant under similitudes fi , i ∈ M . Here d is the euclidean distance.
The inclusion fiBE(x, r) ⊂ BE(xi, rir) always holds, but it may be strict
because fi restricted to E is not a surjective mapping. In [14, Remark 3.2] it
is noted that

(22) B(x, r) ∩ E = fi(B(f −1
i (x), r/ri) ∩ E)

whenever B(x, r)∩E ⊂ Ei . Hence for any pair (x, r) satisfying that B(x, r)∩
E ⊂ Ei , we have that

(23)
(2r)s

μB(x, r)
= (2r1)

s

μB(x, r1)

where r1 = r
ri

and x1 = f −1
i (x0) (see Theorem 3.3 in [14]).

Proof. First we are going to show the inequality CsE ≤ D−1
C . Let ε > 0

and B =: B(x, r) be a closed ball centered in E with radius r > 0 and such
that |B|s

μ(B)
≤ D−1

C + ε. Note that if, for any such B, we can find a subset

K ⊂ E satisfying that Cs
0E ≤ Cs

0K ≤ |B|s
μ(B)

, then Theorem 3 implies that

CsE = Cs
0E ≤ Cs

0K ≤ D−1
C + ε and the inequality is proved.

Let {δk} be a sequence of positive numbers tending to zero. For k ∈ N let
Jk ∈ E : (B ∩ E) be a δk-tiling of E by B ∩ E. We define K =:

⋂
k JkB.



advantages of the hausdorff centered measure 115

Let k ∈ N. Observe that μB > 0 and that Cs is a scaling measure. Hence we
can apply Lemma 3.2 to Cs�E, giving that Cs(E \JkB) = Cs

0(E \JkB) = 0.
Moreover, it follows from Lemma 3.2 that

∑
i∈Jk

rs
i = μE

μB
= 1

μB
.

Hence

(24)
∑
i∈Jk

|Bi|s =
∑
i∈Jk

rs
i |B|s = |B|s

μB
.

Noticing that, for any k ∈ N, JkB provides a δk-covering of E, we obtain

Cs
0(K) ≤ lim

k→∞

{∑
i∈Jk

|Bi|s
}

= |B|s
μB

.

Recall that Cs
0 is not a measure since it is not monotone. However, as it is

σ -subadditive and we know that Cs
0(E \ JkB) = 0, we have

Cs(E) = Cs
0(E) ≤ Cs

0(E \ K) + Cs
0(K) = Cs

0

(
E \

∞⋂
k=1

JkB

)
+ Cs

0(K)

= Cs
0

( ∞⋃
k=1

(E \ JkB)

)
+ Cs

0(K) ≤
∞∑

k=1

Cs
0(E \ JkB) + Cs

0(K)

= Cs
0(K).

So the first inequality is proved.
In order to show the reverse inequality, take any countable covering {Wk}

of E by closed balls centered at E. Let ki , i = 1, 2, 3, . . . be the sequence of
subindices corresponding to the sets in {Wk} with positive μ measure. Then

∞∑
k=1

|Wk|s ≥
∞∑
i=1

|Wki
|s =

∞∑
i=1

|Wki
|s

μ(Wki
)
μ(Wki

) ≥ D−1
C

∞∑
i=1

μ(Wki
)

≥ D−1
C μ

( ∞⋃
i=1

Wki

)
= D−1

C .

Therefore, CsE ≥ Cs
0E ≥ D−1

C and (20) is proved.
The proof of (21) follows from (23) as in [14, Theorem 3.3] where an

analogous result is proved for the Hausdorff, packing and Hausdorff spherical
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measures. Denote by

c := min
i,j∈M,i �=j

(fiE, fjE).

By definition of c, it is clear that for any (x, r) ∈ E × (0, c) there exists i ∈ M

such that B(x, r) ⊂ Ei and thus, we can apply (23) to get (2r)s

μB(x,r)
= (2r1)

s

μB(x,r1)

where r1 = r
ri

and x1 = f −1
i (x0). We want to show that

inf
E×(0,∞)

(2r)s

μ(B(x, r))
= inf

E×[c,R]

(2r)s

μ(B(x, r))
.

Suppose that there exists (x0, r0) ∈ E × (0, c) satisfying that

(2r0)
s

μ(B(x0, r0))
< inf

E×[c,R]

(2r)s

μ(B(x, r))
.

Let i ∈ M∞ be the address of x0 and k ∈ N. Let xk = f −1
i(k)(x0) and rk = r0

ri(k)
.

Then, for some k0 ∈ N, we have rk0 ≥ c, rk0−1 ≤ c and xk0 ∈ E. Thus, we can
apply (23) repeatedly to get that

(25)
(2r0)

s

μ(B(x0, r0))
= (2rk0)

s

μ(B(xk0 , rk0))
.

So r0 ≥ c.
Finally, if r0 > R then (2r0)

s

μ(B(x0,r0))
= (2r0)

s > (2R)s . So then, r0 ∈ [c, R]
and the theorem is proved.

4. General Hausdorff centered measure Cθ

In this section we are going to extend Theorem 3 and Theorem 5 to general
Hausdorff centered measures Cθ associated to suitable gauge functions θ . The
key property of θ is that the corresponding Cθ scales. In the next lemma we
characterize the gauge functions with this property.

Lemma 7. Let n be a positive integer. Let θ be a continuous increasing
function defined on R+ such that θ(0) = 0 and θ(t)/tn is a decreasing function
of t . Then

(26) lim
t→0

θ(ct)

θ(t)
= cs ∀c > 0 ⇔ Cθ(cA) = csCθ (A) ∀c > 0, A ⊂ Rn.

The proof of this lemma is inspired by [1, Theorems 2 and 3]. There,
Csörnyei and Mauldin, completely characterized the gauge functions θ for
which the measures Hθ and P θ scale with exponent s. They proved that under
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the conditions of Lemma 7 the left part in (26) is equivalent to the following
statements

(a) Hθ(cA) = csHθ(A) ∀c > 0, A ⊂ Rn

(b) P θ(cA) = csP θ (A) ∀c > 0, A ⊂ Rn.

In other words, the packing and Hausdorff measures Hθ and P θ scale if and
only if θ(t) = t sL(t), where L is a slowly varying function in the sense of
Karamata. We say that L : R → R is a slowly varying function if for every
c > 0 it holds that

lim
x→∞

L(cx)

L(x)
= 1.

More precisely, (a) and (b) follow from the following theorem.

Theorem 8 (Csörnyei and Mauldin [1], Theorem 2). For every function
f : R → R+, the following are equivalent:

(i) Hθ(cA) ≤ f (c)Hθ(A) ∀c > 0, A ⊂ Rn;

(ii) P θ(cA) ≤ f (c)P θ (A) ∀c > 0, A ⊂ Rn;

(iii) lim supt→0
θ(ct)

θ(t)
≤ f (c) ∀c > 0.

Analogously, for every function g : R → R+, the following are equivalent:

(iv) Hθ(cA) ≥ g(c)Hθ(A) ∀c > 0, A ⊂ Rn;

(v) P θ(cA) ≥ g(c)P θ (A) ∀c > 0, A ⊂ Rn;

(vi) lim inf t→0
θ(ct)

θ(t)
≥ g(c) ∀c > 0.

The proof of Lemma 7 is given at the end of the section. First, we are going
to see that Theorem 3 extends precisely to those gauge functions described in
Lemma 7.

Theorem 9. Let n be a positive integer. Let θ be a continuous increasing
function defined on R+, such that θ(0) = 0 and θ(t)/tn is a decreasing function
of t verifying that limt→0

θ(ct)

θ(t)
= cs ∀c > 0. Let F ⊂ E be a subset of E either

closed or open. Then Cθ
0 F = CθF .

Proof. Replace Cs with Cθand Cs
0 with Cθ

0 , respectively, in the proof of
Theorem 3. Observe that the only property of Cs and Cs

0 used in the proof
of this theorem is that these measures are scaling, and this is provided by
Lemma 7. Note that, to prove (26), we have got first the results for Cθ

0 and then
for Cθ by taking the supremum. So, in particular, Cθ

0 scales.

In contrast with Theorem 9, for the extension of Theorem 5 to general meas-
ures, the scaling properties of Cθ and Cθ

0 are not enough. Here the application
of the self-similar tiling principle requires some additional conditions in the
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gauge function. In particular L(t) must be, in addition to slowly varying, non
decreasing.

Theorem 10. Let E be the invariant set of the system � satisfying the open
set condition with dimH E = s and |E| = R, μ be the Hausdorff normalized
measure on E and θ(t) = t sL(t) where L(t) is a non decreasing slowly varying
function. Then

(27) CθE = inf

{
θ(2r)

μ(B(x, r))
: x ∈ E, r > 0

}
=: D−1

C

Moreover, if � satisfies the SSC then

(28) CθE = min

{
θ(2r)

μ(B(x, r))
: x ∈ E and c ≤ r ≤ R

}

where c := mini,j∈M,i �=j (fiE, fjE) and R := |E|.
Proof. To show (27), replace Cs and Cs

0 with Cθ and Cθ
0 , respectively,

in the proof of Theorem 5 and apply Theorem 9 instead of Theorem 3. Then
observe that, in order to get the inequality CθE ≥ D−1

C , the chain (24) should
be replaced with

∑
i∈Jk

θ(|Bi|) =
∑
i∈Jk

rs
i θ(|B|)L(|Bi|)

L(|B|) ≤
∑
i∈Jk

rs
i θ(|B|) = θ(|B|)

μB
.

Here we are using that L(t) is a non decreasing function. The rest of the proof
is the same.

To get (28) note that, whenever B(x, r) ∩ E ⊂ Ei , (22) implies

θ(2r)

μB(x, r)
= Hs(E)θ(2r)

H s(E ∩ B(x, r))
= Hs(E)θ(2r)

rs
i H

s(E ∩ B(x1, r1))

= Hs(E)θ(2r1)

H s(E ∩ B(x1, r1))

L(2r1)

L(2r)
≥ θ(2r1)

μB(x, r1)
.

Therefore, the same arguments used in the proof of (21) are valid in this case
by replacing the equality (25) with

θ(2r0)

μ(B(x0, r0))
≥ θ(2rk0)

μ(B(xk0 , rk0))

Finally, since θ(t) is increasing, if r0 > R then θ(2r0)

μ(B(x0,r0))
= θ(2r0) > θ(2R).
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Now we turn to the proof of Lemma 7. Our aim is to follow Csörnyei and
Mauldin’s strategy for the Hausdorff centered measure. Thus, we need to show
that statement (iii) in Theorem 8 is equivalent to

(29) Cθ (cA) ≤ f (c)Cθ(A) ∀c > 0, A ⊂ Rn

and that (vi) is equivalent to

(30) Cθ (cA) ≥ g(c)Cθ(A) ∀c > 0, A ⊂ Rn.

A modification of the proof given in [1] works also in this case. Namely,
we will need to modify their construction since we need to keep control on
the centers of the covering balls. We are going to describe only these changes,
referring the reader to [1] for the complete argument.

Proof of Lemma 7. Following [1], we just need to show that (iii) implies
(29) and (30) implies (vi). The first part is equivalent to the proof of (iii)
implies (i) in [1] by changing the coverings by centered coverings (so we get
Cθ

0 (cA) ≤ f (c)Cθ
0 (A)) and then passing to the supremum to obtain (29). The

main changes are needed in the proof of “(30) implies (vi)”.
Take c > 0 and choose z1 > z2 > · · · → 0 such that

lim
n→∞

θ(czn)

θ(zn)
= lim inf

t→0

θ(ct)

θ(t)

It is enough to show that for all ε > 0, there exists a set K , a probability
measure μ, a positive finite number M and an ε-covering of K by balls centered
in K , Gε , such that

(1) μ(K) = 1

(2) θ(diam A) ≥ Mμ(A) for all A ⊂ Rn

(3)
∑

B∈Gε
θ(diam B) → M as ε → 0

(4) diam(B) ∈ {z1, z2, . . .} for all B ∈ Gε .

To see that we can reduce to this construction, we refer the interested reader
to [1]. There is a minor modification needed due to the two step definition of
the Hausdorff centered measure, but it can be done by standard arguments.

Thus, we just need to construct K , μ and Gε verifying (1)–(4). The main
difference between the Hausdorff and the Hausdorff centered measure stands
on the nature of the coverings, in our case the balls in Gε must be centered in
K . As K is given by (31) and, for each ε > 0, Gε will be given in terms of⋃Mn

i=1 Bin, then to change the nature of the coverings we need to modify the set
K . Also note that, since we are just interested in the Euclidean case, we take
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n-dimensional cubes instead of the regular bricks considered in by Csörnyei
and Mauldin.

In what follows, we will explain the basic steps and changes needed for this
construction.

For all n ∈ N choose a finite set

Cn = {C1n, . . . , CMnn}
of cubes of size xn ∈ {z1, z2, . . .}, such that ∪Cn+1 ⊂ ∪Cn and there is Mn+1

Mn

cubes of generation n + 1 inside each Cjn. Let Bjn be the ball of diameter xn

such that Bjn ⊂ Cjn. The diameters xn and the constants Mn and M are taken
such that {xn} is a subsequence of {zn} (so xn → 0) and Mnθ(xn) → M .

Suppose xn and Cn has been defined, xn+1 and Cn+1 are defined in the
following way. Put a regular grid N × N × · · · × N onto each of the cubes
Cjn and choose those small cubes determined by the grid that are inside Bjn.
Observe that if N is an odd number then, one of the chosen cubes must be
centered in the center of Bjn. To get Cn+1 we need to shrink the chosen cubes.
In this way, Cn+1 is the set of smaller cubes with the same midpoints as the
chosen cubes and of size xn+1 (in [1] one can see that xn+1 must be much
smaller than xn

N
, to be precise, xn+1 = εn

xn

N
, where εn is “small enough”)

The measure μ is taken as the unique probability measure verifying that
μ(Cin) = 1

Mn
,

(31) K =
∞⋂

n=1

Mn⋃
i=1

Bin

and Gε = {B1n, B2n, . . . , BMnn} with n = n(ε) big enough so |Bin| ≤ ε for
all i = 1, . . . , Mn.

As noticed before, since N is an odd number, then there is always a cube in
Cn+1 centered in the center of Bjn. This, the definition of Gε and (31) ensures
that the center of any ball Bjn belongs to K and hence Gε is an admissible
covering for the Hausdorff centered measure. So then, to get our result, we
just need to take N in [1] to be odd. And this extra condition does not change
the proof, because the only property of N used in [1] is that it has to be a big
number. Hence, Cθ

0 (cA) ≥ g(c)Cθ
0 (A) for all c > 0 and A ⊂ Rn and (30)

holds by taking the supremum.
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