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CONVERGENCE IN CAPACITY
AND APPLICATIONS

PHAM HOANG HIEP

Abstract

In this article we prove that if u;, v;, w € &(2) such thatu;, v; > w,V j > 1,and |u; —v;| = 0
in C,,-capacity, then lim;_, o (g1, ..., ©n)(ddu;)" — (dd“v;)"] = 0 in the weak-topology of
measures for all ¢, ..., om € PSHNLP (R), h € C(R™). We shall then use this result to give
some applications.

1. Introduction

Let €2 be a bounded hyperconvex domain in C", by PSH(£2) we denote the
set of plurisubharmonic (psh) functions on €2, and by PSH™(£2) the subclass
of negative functions. The complex Monge-Ampere operator (dd°)" is well
defined over the class of locally bounded psh functions, according to the fun-
damental work of Bedford and Taylor in [3], [4]. In [9], Demailly generalized
the work of Bedford and Taylor for the class of locally psh functions with
bounded values near the boundary. In [7], Cegrell then introduced a general
class &(2) of psh functions on which the complex Monge-Ampeére operator
can be defined. The aim of the present paper is to study the convergence within
the class & (£2).

In Section 2, we introduce some definitions, and known results that are
needed for our paper. Our main result is the following theorem.

THEOREM 3.1. Let uj,vj,w € &(2) be such that uj,v; > w, V j >
1. Assume that |uj — vj| — 0 in C,-capacity. Then lim;_, o ¢[(dd“u;)" —
(ddv;)"] = 0 in the weak-topology of measures for all ¢ € PSHNLY; ().

loc

Theorem 3.1 is a generalization of Theorem 1.1 in [8]. As an application
Eobtain in Theorem 3.3 that if u;, u, v € €(Q) such thatu; > v,V j > 1,
limj_, o #; < u and (dd“u;)" — w in the weak-topology of measures then

= y——ooy (ddu)",
in the weak sense of measures.
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2. Preliminaries

First we recall some elements of pluripotential theory that will be used through-
out the paper. All this can be found in [1], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [16], [17], [18], [19], and [20].

NortATION 2.1. Unless otherwise specified, €2 will be a bounded hypercon-
vex domain in C* meaning that there exists a negative exhaustive psh function
for Q.

DErFINITION 2.2. The C,-capacity in the sense of Bedford and Taylor on €2
is the set function given by

Cu(E) = Cy(E, Q) = Sup{/ (dd“¢)" : ¢ € PSH(Q), =1 < ¢ < O}
E
for every Borel set E in 2. It is known [4] that
C,(E) = / (dd”h’g’g)”.
Q

where h; o is the relative extremal psh function for E (relative to €2) defined
as the smallest upper semicontinuous majorant of i1z o

hg o(z) =sup{e(z) : ¢ € PSH (), ¢ < —1o0n E}.

The following definition was introduced in [19]: A sequence u; € PSH™ (£2)
converges to u in C, —capacity if

Co(KN{luj —ul>48}) - 0as j - +oo, VK CC 2, V5> 0.

A family of positive measures {114} on €2 is said to be uniformly absolutely
continuous with respect to C,-capacity in a set E C K if for every € > 0
there exists § > 0 such that for each Borel subset ' C E with C,(F) < & the
inequality uq (F) < € holds for all . We write u, < C, in E uniformly for
o.

DEerFINITION 2.3. The following classes of psh functions were introduced
by Cegrell in [5], [6] and [7]:

& =& (Q) = {(p € PSH™ (2)NL>(Q): lilglggo(z) = 0,/(ddc<p)" < +oo},
i Q
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F =F(Q) = {(p € PSH™ () : 3% (2) 3 ¢; \{ ¢, sup/(ddcrpj)" < +oo},
Q

Jj=1
E=&8(Q)={p e PSH () : Jpx € F(Q)
such that oy = ¢ on K, VK CC 2},
SPSHNL®(Q) ={¢ — ¥ : ¢, ¥ € PSHNL®(Q)},
§&(Q) ={p — V¥ 10, ¥ € &(Q)}.

Next we introduce some results needed for our work.

ProOPOSITION 2.4. 1) Let ¢, € §PSHNL*(Q). Then ¢y € §PSHN
L™ ().

i) Let ¢, ¥ € §&(2). Then pfr € §&,(R2).

ProOF. 1) Without loss of generality we can assume that ¢, ¥ € PSHN
L>®(R2). Set ¢ = sup{|p(2)| + |¥(2)] : z € 2}. We have

1 2 2 2, 2
90‘/f=5[(§0+1ﬁ+€) -+ —W+o +cl

Hence ¢ € 6 PSHNL* ().

ii) Without loss of generality we can assume that ¢, v € 8% (S2). Set
c = sup{le)| + | (2)| : z € Q). We prove that (¢ + ¢)?> — ¢* € ().
Indeed, we have dd“[(¢ + ¢)* — c*] = 2[(¢ + ¢)dd“p + de A d°p] > 0. Thus

/ d°[(p + 0)* — )"
Q
- / D[ + &) (ddp)" + n(g + ' 'dg A dog A (dd o))
Q
< / 2" (ddC @) + 2"ne ! / do Ado A (ddp)"!
Q Q
— / 2ncn(ddcg0)n + 2nncn—1 / —QD(ddc(p)n
Q Q

< / 2" (n + 1) (dd )" < +oo.
Q

Moreover, since lim,_ 3o[(¢ + ¢)*> — ¢?] = 0 we get (¢ + ¢)? — ¢? € &(RQ).
On the other hand, we have

@+y+?-c (@p+’=c G+’ -¢
2 2 2 ’

Y =

Hence ¢y € §&,(R).
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PROPOSITION 2.5. Let uy, ...,u, € #(Q) be such that uy, ...,u; > —1.
Then

1 1
/dd"u] A Addu, < U (dd”uk+1)"] [/ (dd"un)”] C,(B)",
B Q Q

for all Borel sets B C 2.

ProoF. For each u € &(Q2) we set
hp.u(z) = sup{p(z) : ¢ € PSH (), ¢ < u on B}.

For each open set B CC €2, by Corollary 5.6 in [7] we get

/ dd‘u; A -+ ANddCu,,
B

:/ddChB,u, A Addhg g A ddugsy A - - ddCu,
B

< / ddhp, AN---Nddhp,, ANddugiq A --- Adduy,
Q

< / (dd°hp)* Addugsq A -+ A ddu,
Q

1

< [ f (dd“hg)"}" [ / (ddfum)"]" [ f (ddcw]"
Q Q Q

1

< [ / (ddCukH)"}" [ / <dd0un)"]"[cn(3>]i.
Q Q

Hence

1

f dd°ui A -+ Addu, < [/ (ddcuk+1)":|n. .. [/ (dd“u,,)"]"[c,,(B)]ﬁ.
B Q Q

for all Borel sets B C .

PROPOSITION 2.6. Let u, v, wi, ..., w,—1 € F(RQ), s > 0 be such that
u > v. Then

/ [max(v, —s) —v]dd‘u AT < / [max2u, —s) — 2v]dd‘v A T,
Q Q

where T =dd“wy A -+ Add“w,,_1.
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Proor. By Stokes formula and Theorem 4.1 in [15] we get

/ [max(v, —s) —v]dd‘u AT = / —udd[v — max(v, —s)|A T
Q Q

/ —udd‘[v — max(v, —s)]A T
(<)

< / —udd“v AT
{v<—s}
< / —vddvAT
{v<—s}
< / [max(2v, —s) — 2v]dd“v AT
{v=—s}
< / [max(2v, —s) — 2v]ddv A T.
Q

We generalize Theorem 3.1 in [13]:

PROPOSITION 2.7. Let (2) > uj — u € PSH™ () in C,,-capacity. Assume
that (dd“u;)" — w in the weak-topology of measures. Then

w = 1{u>v}(ddc max (u, v))n’

in the weak sense of measures for all v € PSH™ NL*(K2), where 1g is the
characteristic function for the set E.

Proor. By Theorem 4.1 in [15] we get

(dduj)" = 1y, >v—1y(ddu;)"
= lyy>p-1)(dd max(u;, v — 1))"
= (dd‘ max(u;, v —1))" — 1y, <p—1)(dd® max(u;, v — 1))"
> (dd° max(u;j, v—1))" — Ly, <o—1)n{ju;—ul<1) (dd° max(u;, v—1))"
— Ly —ul>1)(dd® max(u;, v — 1))"
> (dd max(uj, v —1))" — 1<) (dd® max(u;, v — 1))"
— Ly —u>1)(dd® max(u;, v — 1))".
From the quasicontinuity of # and v (Theorem 3.5 in [4]) and from (dd“ max (u;,

v—1))" « C, in 2 uniformly for j we get

im 1<y (dd max(uj, v —1))" < ly<y(dd° max(u, v — 1))".
—00

J
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On the other hand, since u; — u in C,,-capacity and (dd“ max(u;, v — 1))" <
C,, in Q uniformly for j we get

1im 1 qjy, 1) (dd’ max(u;, v — 1))" = 0.
j—o00

Moreover, by Theorem 1.1 in [8] and Theorem 4.1 in [15] we obtain

w > (dd max(u, v —1))" — 1jy<y)(dd° max(u, v — 1))"
= ljysv)(dd max(u, v — 1))"
= 1> (dd max(u, v))".

Let X be a compact Kihler manifold with a fundamental form w = wy such
that | y @" = 1. An upper semicontinuous function ¢ : X — [—00, +00) is
called w-plurisubharmonic (w-psh) if ¢ € L'(X) and w + dd¢ > 0. In [18]
Kotodziej introduced the capacity Cx ,, on X by

Cx(E) = Cx o(E) = sup{f o} ¢ € PSH(X,w), —1 < ¢ < 0},
E

where wg = (w+dd°¢p)" and n = dim X. In [10] Gued;j and Zeriahi proved
that Cx is a Choquet capacity on X and

Cx(E) = / (—hy )wps .
¥
where h7; , denotes the upper semicontinuous regularization of hg ,, given by

hgo(z) = sup{e(z) : ¢ € PSH™ (X, w), ¢l < —1}.

In [11] they introduced the new class of w-psh functions
E(X,w) = {go € PSH(X, ») : lim / Onax(on—j) = 1}.
1700 Jp>—j)

They proved that the complex Monge-Ampere is well defined on & (X, w) by

a)('; = lim 1{(p>—j}

n
w N
et max (g, — /)

From the proof of Proposition 2.7 we give a simple proof of Theorem 1.9 in
[11] (see [20]):

PROPOSITION 2.8. Let &(X, ) > u; — u € &(X, w) in Cx-capacity. Then
a)Zj — o in the weak-topology of measures.
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Proor. Without loss of generality we can assume that a)Zj — u in the
weak-topology of measures. We have

n n
@y, Z > —k—1)Ohnaxuy, —k-1)

— n n
= Omax(uj,—k—1) ~ l{u,-s—k—l}wmax(u,,—k—l)

n n
= wmax(uj,fkfl) - l{M_fS—k—l}mﬂuj—M|Sl}wmax(u,,fkf])

n
- 1{\Mj—u|>l}wmax(uj,—k—l)

n n n
z Omax(uj,—k—1) ~ 1{M§—k}wmax(u_,»,fk71) - 1{|Mj—’4|>1}wmax(u_,-,fk71)'

From the quasicontinuity of u (Corollary 3.8 in [10]) and from wﬁlax(uj’_ ey K
C, in 2 uniformly for j we get

lm 1{u§—k}wnmax(u,»,fk71) = l{ui—k}wrrllqax(u,fkfl)'
Jj—00 ’
On the other hand, since u; — u in C,-capacity and wl’;ax(uj e K C,in Q

uniformly for j we get

lim 1{Iu,-—u\>l}a)nmax(u,,—k—l) =0.
J—>00

Moreover, by Theorem 1.1 in [8] we obtain

n n n
M= WOmax (u,—k—1) — 1{M§—k}wmax(u,fk71) = 1{M>—k}wmax(u,fk71)

}’l

= 1{M>—k}wmax(u,—k)’

Letting k — oo we obtain i > wj,. Moreover, we have u(X) = o) (X) =
1. Hence u = ol.

3. Convergence in capacity
We start with the first result which is a generalization of Theorem 1.1 in [8].

THEOREM 3.1. Let uj, vj,w € &() be such that uj,v; > w, V j >
1. Assume that |uj — vj| — 0 in C,-capacity. Then lim;_, o ¢[(ddu;)" —
(ddvj)"] = 0 in the weak-topology of measures for all ¢ € PSHNL}; ().

loc

PRrROOF. As in the proof of Proposition 2.5 in [13] we can assume that w €
F () and ¢ € &)(2). We prove that

lim | @[(ddu;)" — (ddv;)"] =0,
Q

j—)OO
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for all ¢ € &,(£2). We can assume that ¢ > —1. For each s > 0 we have
/Q<p[(dd“uj)” — (ddvj)"] = Ajs + Bj; + Cjs,
where
Ajs = /Q(p[(ddcuj)” — (dd® max(u;, —s))"],
Bj; = /;Zgo[(ddc max(vj, —s))" — (ddv;)"],
Cjs = /Qw[(ddc max(uj, —s))" — (dd° max(vj, —s))"].

By Stokes formula and Proposition 2.6 we get

|Ajs] = '/ <P|:ddcuj — dd‘ max (uj, —s)]
Q
n—1

A [Z(ddcuj)k A (dd® max(u;, _S))n—l—k:|

k=0

= / [max(uj, —s) — u;lddp
Q
n—1

A [Z(ddcuj)k A (ddc max(uj, _s))n—l—ki|

k=0

n—1
=3 / [max(w, —s) — wlddg A (ddu;)* A (dd° max(u;, —s))" "' *
k=07

n—1
<Y | maxQw, —s) — 2wldd“p A dd‘w
k=0 V&

A (ddup) = A (dd® max(uj, —s))"

<.

<n f [max (2" 'w, —s) — 2" 'wldd g A (dd w)"~!
Q

= n/ @dd[max (2" 'w, —s) — 2" 'w] A (ddw)" .
Q
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Similarly we have
|Bjs| < n/ @dd‘[max (2" 'w, —s) — 2" 'w] A (dd“w)" .
Q

To simplify the notation we set

@ = max(p, —€),
n—1

T = > (dd max(uj, —s)) A (dd° max(vy, —5))""'~%.
k=0

Next by Stokes formula and Proposition 2.5 we get

1Ciis|

/Q[max(uj, —s) —max(vj, —=s)| Add“p A Tj,

< /Q | max(u;j, —s) — max(vj, —s)|dd g A T

< /Qeddcgo AT+ /{I i | max(uj, —s) — max(v;, —s)|dd @ A Tjq
< ne /Q dd e A (ddw)" !

+ | max(u;j, —s) — max(v;, —s)|[dd ¢ — dd“pc] A T

—

{luj—vj|>e€}

+ | max(u;, —s) — max(v;, —s)|dd pe A Tjg

—

{luj—vj|>€}

< ne

S

dd e A (dd°w)" ' + / 2s[dd ¢ + ddp.] A Tjy

{luj—vj[>elnfp=—e}

+ | —2wdd¢. A T,

<ne | dd¢ A (ddw)"!

— 5

Q

n—1

+dsn U (ddfw)"} "Gl =yl > e} N {p = —eD]’
Q

+ Zn/ —wddp. A (ddw)"™"
Q
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= ne / dd ¢ A (ddw)" !
Q
n—1

+dsn U (dd“w)"} "Gl =yl > e} N {p = —eD]
Q

+2n/ —@e (ddw)"
Q

< ne / dd®¢ A (ddw)" !
Q

n—1

+dsn U (dd“w)"} (Gl =yl > e} N {p < —eD]’
Q

+2ne/(ddcw)”.
Q
Hence

lim Cj, < ne / dd‘e A (dd“w)"~" + 2ne / (ddw)",
Q Q

Jj—o00
for all € > 0. Letting ¢ — 0 we have

lim Cj, = 0.

j—oo

Combining these inequalities we obtain

lim ' / @l(ddu;)" — (dd‘v;)"]
J—>00 Q
<2n / @dd[max (2" 'w, —s) — 2" 'w] A (dd°w)" !,
Q
forall s > 0. Letting s — oo by Proposition 5.1 in [7] we have
lim | @[(dd“u;)" — (dd“v;)"] = 0.
J—>00 Q

Moreover, from C§°(2) C 6&y(£2) and from Proposition 2.4 ii) we obtain

lim | fol(ddu))" — (ddv))"] =0,
J—>00 Q
forall f € C5°(2).

COROLLARY 3.2. Letu;j, vj, w € &(2) be suchthatuj,v; > w,V j > 1. As-
sume that |u; —vj| — 0in C,-capacity. Thenlim;_, o h(@i, ..., @n)[(ddu;)"
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— (dd“vj)"] = 0 in the weak-topology of measures for all ¢y, ..., ¢n €
PSHNLSC (), h € C(R™).

loc

PrOOF. As in the proof of Proposition 2.5 in [13] we can assume that
we F(Q) and ¢, ..., 9, € PSHNL>®(R). Set A = sup{max(|¢;(2)|, ...,
lom (2)]) : z € 2}. We choose a sequence of polynomials P; such that

lim sup{|P;(x) — h(x)| : x € [-A, A]"} = 0.
J—> 00

On the other hand, by Proposition 2.4 i) we have P;(¢, ..., ¢,) € §PSHN
L>(2). Moreover, by Theorem 3.1 we obtain lim;_. h(¢1, ..., @n)
[(dd u;)" — (dd“v;)"] = 0.

By using Theorem 3.1 we also obtain the following application.

THEOREM 3.3. Let uj,u,v € &(2) be such that u; > v, vV j > 1 and
limj_ o uj < u. Assume that the sequence of measures (dd°u;)" has a limit
point  in the weak-topology of measures. Then 1 > 1,=_oo)(dd“u)" in the
weak sense of measures.

We need:

LEMMA 3.4. Let u € €(2) and a compact subset K in {u = —oo}. Given
open sets D; CC Q2 such that D; \( K. Then there exist ; € & N C(K) such
that ¢;  u and lim;_, o 1p,(dd“¢;)" = 1x(dd“u)" in the weak-topology of
measures.

Proof. By Theorem 2.1 in [7] we can find

ENCQ) >y \u.

Since (dd“ ;)" — (dd“u)" as j — oo we can find a increasing sequence {k;}

such that |
/ ddy)" > f (dduy — L.
D; D; J

J

Set ; = ;. We have

lim 1p (dd“))" < lim 15 (dd“))" =15 (dd“u)"
j—o0o ’ j—oo
for all k > 1. Letting k — oo we get

lim 1, (dd°g;)" < 1x(ddu)".
j—o00
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On the other hand, we have

. 1
tim [ 1y, @ = tim [ (@) = li_m[ / (dd'fu)”——}
D; ' D; J

j—o00JQ Jj—>00 J—00

= / 1 (dd u)".
Q

Therefore lim;_, o 1p, (ddp;)" = 1g (dd“u)".

ProOF OF THEOREM 3.3. Let K be a compact subset in {# = —oo}. Given
f € CP(2), f = 0. We only have to prove that

/ fdp = / Fledduy.
Q Q

We choose open sets D; CC Q2 such that D; \( K. By Lemma 3.3 we can find
@; € & () NC () such that p; N\ u and lim; ., 1p,(dd p;)" = 1k (ddu)".
Since sup{g;(z) : z € D;} N\ —00 we can assume that

sup{p;j(z) :z € Dj} < —j(j+1).

By [14] we can choose a increasing {k;} such that ugy <¢j+1on l_)j. Set

1
v, = max(ukf, (1 — —,)(pj - j).
' J

Since uy, < ¢ +1 < (1—%)<pj—jonDj we getv; = (1—})(pj—jonDj.

This implies that

lim f(ddcvj)" > lim (1 — l) / le,- (ddc(pj)n
1) jsoJQ j—00 J Q
=/ flg(ddu)"
Q

Since {|luy, — v;| # 0} C {uy;, < —j} C {v < —j} we getuy, —v; — Oin
C,,-capacity. Moreover, by Theorem 3.1 we have

) lim | f(dduz)" = lim / f(ddv;)".
Q j— Jo

From (1) and (2), letting j — oo we get

/quz/Qflx(ddCu)".
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