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BORDISM INVARIANCE IN KK-THEORY

MICHEL HILSUM

Abstract
A bordism invariance property in bivariant K-theory for unbounded Hilbert modules is proved.
Various geometric corollaries are deduced.

1. Introduction

In a recent work, W. Lück et T. Schick [15, Remark 1.7] asked if the L2-index
of a twisted signature operator over a Lipschitz manifold is a bordism invariant.

Bordism invariant of the index of elliptic differential operators goes back
to the Atiyah-Singer index theorem [16]. Here the method relies on the use
of the Calderon projector, and entails pseudodifferential calculus. For the sig-
nature operator on a Lipschitz manifold, bordism invariance was shown by
N. Teleman [18] by surgery methods. Besides, in K-homology, J. Rosenberg
et S. Weinberger [17] have shown analytically the existence of a morphism for
a finite cellular complex X.

(1.1) �(X) → K0(X)

By using topological methods, C. Carvalho [8], [9] has proved the bordism
invariant of the index for families of elliptic differential operators.

In [13], the notion of Hilbert module with odd boundary over a C*-algebra
B has been introduced. It has been shown that the index of such a module with
target the topological K-theory group of B is null.

Here, we propose a general theorem in G. Kasparov’s bivariant K-theory
which recovers all these cases, and moreover we give a simple proof, although
not elementary. Actually, analytical bordism invariance is a mere translation of
the simple fact that the C*-algebraC0(]0, 1]) is K-contractile, and thus, that for
any C*-algebras A ,B, the bivariant K-theory groupKK(C0(]0, 1])⊗A ,B)

is trivial.
We start with two C*-algebras A ,B, and (E , A, τ) a cycle of bivariant

K-theory. Assuming that it is a boundary, we prove that its class inKK(A ,B)

is null (Theorem 6.2).
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Here we use unbounded picture of cycles in G. Kasparov’s theory as ex-
pounded by S. Baaj and P. Julg [3]. Doing so, we are lead to understand how a
symmetric but not self-adjoint operator may define an element inKK(A ,B).
Such a question have already been adressed by P. Baum, R. Douglas and
M. Taylor [4] when A is commutative, and T is an order one elliptic differen-
tial operator on some non-compact manifold. There, the proof uses the finite
speed velocity property of T . Here we prove an analogous result, but we relax
this latter hypothesis.

As a consequence, we give a positive answer to the question mentioned
initially.

Then we will prove a G-equivariant version of the map (1.1), where G is
a compact Lie group in Corollary 9.3. This construction is related to pseudo-
differential operators transversally elliptic to a smooth action of G. A similar
result for the topological index has been given by C. Farsi [10].

Finally, we shall use this theorem to formulate a non-commutative conser-
vation of total indices under some cutting and gluing operations on manifolds.

2. Preliminaries

Let B be a C*-algebras, E a Banach B-module; recall then that E is said to be
a Hilbert bimodule if we have a sesquilinear map 〈.,.〉 : E × E → B such that
for ξ, η ∈ E , b ∈ B, one has 〈ξ, η〉∗ = 〈η, ξ〉, 〈ξ, bη〉 = 〈ξ, η〉b, 〈ξ, ξ〉 ≥ 0
and 〈ξ, ξ〉 = 0 iff ξ = 0. Then the map ξ → ‖〈ξ, ξ〉‖ 1

2 is the norm on E .
Let T : E → E a densely defined linear map. The adjoint of T is defined

for those ξ ∈ E such that there exists η ∈ E satisfying for every ζ ∈ E the
equality 〈T ζ, ξ〉 = 〈ζ, η〉 and then T ∗ξ = η. In general, T ∗ is a closed operator
of B-module, which means that (dom T ∗)B ⊂ dom T ∗ andT ∗(ξb) = (T ∗ξ)b
whenever (ξ, b) ∈ (dom T ∗)× B.

Equivalently, one may define T ∗ as follows: the orthogonal of the graph of
T in E ⊕ E is the graph of an operator S of E , as T is densely defined, and we
put T ∗ = −S.

We say that a densely defined linear operator is adjointable if T ∗ is densely
defined. A densely defined operator T such that T ∗ is densely defined is clos-
able, its closure is a B-module operator, and one has T̄ = T ∗∗.

The operator is said to be symmetric if 〈T ξ, η〉 = 〈ξ, T η〉 for ξ, η ∈ dom T ,
and selfadjoint if T = T ∗. If T is adjointable and bounded, then T ∗ is bounded
and everywhere defined. As usual we denote by L (E ) the C*-algebra of
bounded adjointable operators of the B-module E , and by K (E ) the closed
ideal of compact operators of E , generated by the rank one operators of the
form ζ → ξ〈η, ζ 〉, for ξ, η ∈ E .

We define L (T ) the subalgebra of L (E ) of operators a ∈ L (E ) such that
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a(dom T ) ⊂ dom T and such that the graded commutator [T , a] extends to an
element of L (E ).

Lemma 2.1. For T and T ∗ densely defined on E , and a ∈ L (T ), one has
a∗ ∈ L (T ∗), and [a, T ]∗ is the closure of [T ∗, a∗].

Proof. For ξ ∈ dom T , η ∈ dom T ∗, the equality 〈T ξ, a∗η〉 = 〈[a, T ]ξ, η〉
+ 〈aξ, T ∗η〉 shows that a∗η ∈ dom T ∗ and (T ∗a∗ − a∗T ∗)η = [a, T ]∗η.

Given a closed linear operator T on E , we shall denote by W (T ) the Hilbert
B-module dom T equipped with the B-product: 〈ξ, η〉+〈T ξ, T η〉. Recall that a
core or an essential domain for a closed operatorT is a dense subspace of W (T )

and that T is said to be regular if 1+T ∗T and 1+T T ∗ are surjective operators
of E , and in that case the inverse operators (1 + T ∗T )−1 and (1 + T T ∗)−1

belongs to L (E ) [14]. If T = T ∗, then these conditions are equivalent to the
surjectivity of im(i + T ). Regularity is also equivalent to the adjointability of
the natural continuous injection W (T ) → E .

We now specify some terms which will be used in the sequel.

i) An unbounded module over B is the data of a Hilbert module E over
B with a regular operator T . We shall call (E , T , τ ) an even unbounded
module if τ is a unitary involution such that τT + T τ = 0.

ii) A symmetric module over B is an unbounded module (E , T ) with T ⊂
T ∗.

iii) A closed module over B is an unbounded module (E , T ) with T = T ∗
and (i + T )−1 ∈ K (E ).

We end this section with a lemma which resembles [13, Lemma 2.3], but with
the hypothesis of selfadjointness dropped off. Let E an Hilbert B-module, T a
regular operator on E and f ∈ L (T ) with f = f ∗. The map uf (ξ) = f ξ for
ξ ∈ dom T defines then a continuous map from W (T ) to itself, commuting
with B and of norm less than

√‖[T , f ]‖2 + ‖f ‖2.

Lemma 2.2. The map uf is adjointable and we have, for η ∈ dom T :

u∗
f η = f ∗η + ((1 + T 2)−1T ∗)[T , f ]η + (1 + T 2)−1[T , f ]T η.

Proof. The proof is similar to that of [13, Lemma 2.3].

Remark 2.3. If we assume in the previous lemma that T ⊂ T ∗, then
the same conclusion holds with arbitrary f ∈ L (T ), as in that case f ∗ ∈
L (T ∗) ⊂ L (T ).

Remark 2.4. This lemma will be applied in the following case: Let Ti be a
regular operator on Ei for i = 1, 2, and f ∈ L (E1, E2) such that f dom T1 ⊂
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dom T2, f ∗ dom T2 ⊂ dom T1, and such that f T1 − T2f ,and f ∗T2 − T2f
∗

are bounded. Then the map ξ → f ξ from W (T1) to W (T2) is bounded and
adjointable. This follows from the lemma by taking the direct sum of T1 and
T2.

Still, the same result remains valid with T2 singular and T ∗
2 densely defined,

as in [13, lemma 2.3].

2.1. Continuous fields of symmetric operators

Let E = (Ez)z∈Z be a C*-module overC(Z)⊗A , in other words a continuous
field overZ of Hilbert modules over A . LetTz be a family of symmetric regular
operators on Ez. When does this family gives a symmetric regular operator on
E ? Let T acting on E the domain of which contains those continuous sections
ξ = (ξz) of E such that (Tzξz) is a section of E . Then T is evidently symmetric
and closable

Lemma 2.5. Suppose that under the evaluation maps ez : E → Ez, the
subspace ez(dom T ) and respectively ez(dom T ∗) are essential domains for
Tz and respectively T ∗

z . Then T is a regular operator on E .

Proof. Let the 2 × 2-matrix:

T =
(

0 T

T ∗ 0

)

Then the result follow from [11] applied to T .

3. Half-closed cycles in bivariant K-theory

Usually, the bivariant K-theory of G. Kasparov is defined by cycles (H , F, τ )

where H is a Hilbert module,F a bounded adjointable operator, and τ a unitary
involution anticommuting with F .

S. Baaj and P. Julg [3] have shown how to define a cycle in bivariant K-theory
starting with a closed module, that is to say by using unbounded operators in-
stead of bounded ones. This theory is well suited for the study of geometric
elliptic differential operators on compact manifolds, as an elliptic pseudodif-
fernetial operator is essentially self-adjoint. This does not necessarily remains
true on non-compact manifolds, and here we give a slight generalisation of
this theory by using only symmetric operators.

On non-compact manifolds, cycles in analytical K-homology coming from
symmetric elliptic differential operators have been studied by P. Baum, R.
Douglas and M. Taylor [4]. The main result obtained there is that, when the
operator has order one, then any closed symmetric extension determines a KK-
cycle. The method uses the notorious “finite speed velocity property”. Here
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we show that this condition is not necessary, and that one can obtain under
weaker conditions a similar result in a more general framework.

Let A ,B be two C*-algebras and E be an (A ,B) Hilbert bimodule, and
T a symmetric regular operator on E , such that there is a dense involutive
subalgebra A0 ⊂ A enjoying the following properties:

(1) For a ∈ A0, one has a(dom T ∗) ⊂ dom T .

(2) A0 ⊂ L (T ).

(3) For a ∈ A , the operator (1 + T ∗T )−1a is a compact morphism of E .

Such an operator will be called half-closed in the sequel. In the following
lemma, T̂ is not necessarily symmetric:

Lemma 3.1. Let T ⊂ T̂ ⊂ T ∗ be an extension of T , F = T (1 + T ∗T )− 1
2

and F̂ = T̂ (1 + T̂ ∗T̂ )− 1
2 . Then, for a ∈ A , one has (F ∗ − F̂ )a ∈ K (E )

Proof. Let λ > 0, a ∈ A0 andRλ = (T ∗(λ+T T ∗)−1 − (λ+ T̂ T̂ ∗)−1T̂ )a.
Then one has:

(3.1)

Rλ = ((λ+ T̂ T̂ ∗)−1T̂ T̂ ∗)(T ∗(λ+ T T ∗)−1)a

− ((λ+ T̂ T̂ ∗)−1T̂ )(T T ∗(λ+ T T ∗)−1)a

+ λ((λ+ T̂ T̂ ∗)−1T̂ )(λ+ T T ∗)−1a

− λ(λ+ T̂ T̂ ∗)−1(T ∗(λ+ T T ∗)−1)a

Here we adopt the rule that when an algebraic expression in under paren-
thesis or bracket, as for example (T ∗(λ+ T T ∗)−1), it means that we consider
the closure of the operator. Otherwise, products are meant to be algebraic:
for example, T1T2 is the operator with domain T −1

2 (dom T1). The left side
of the equality has four terms which we analyse now. For the first two ones,
we remark that if ζ ∈ dom T , then T̂ ∗ζ = T ζ , and ((λ + T̂ T̂ ∗)−1T̂ T̂ ∗)ζ =
((λ+ T̂ T̂ ∗)−1T̂ )T ζ . As im(T ∗(λ+T T ∗)−1) ⊂ dom T , the first term becomes
equal to ((λ+ T̂ T̂ ∗)−1T̂ )T (T ∗(λ+ T T ∗)−1)a = ((λ+ T̂ T̂ ∗)−1T̂ )(T T ∗(λ+
T T ∗)−1)a, which is the opposite of the second term. Thus the two first terms
collapse, and Rλ reduces to:

Rλ = λ
(
((λ+ T̂ T̂ ∗)−1T̂ )(λ+ T T ∗)−1 − (λ+ T̂ T̂ ∗)−1(T ∗(λ+ T T ∗)−1)

)
a

As for ξ ∈ dom T ∗, one has (T̂ − T ∗)aξ = 0 and as im(λ + T T ∗)−1 ⊂
dom T ∗, one has:

Rλ = λ
(
((λ+T̂ T̂ ∗)−1T̂ )[(λ+T T ∗)−1, a]−(λ+T̂ T̂ ∗)−1(T ∗[(λ+T T ∗)−1, a])

)



78 michel hilsum

Observe that im[(λ+T T ∗)−1, a] ⊂ dom T ∗, thus the last expression makes
sense as an everywhere defined closed operator, hence bounded. We show now
the equality:

(3.2)
[(λ+ T T ∗)−1, a] = (λ+ T T ∗)−1[T , a](T ∗(λ+ T T ∗)−1)

+ ((λ+ T T ∗)−1T )[T ∗, a](λ+ T T ∗)−1

Here [T , a], [T ∗, a] means the bounded and closable operator defined on
dom T and dom T ∗, and the expressions on the r.h.s. are defined upon all of E .
This equality would be obvious if all the operators were bounded. However, for
example in the second term of the r.h.s, it is not possible to write the equality
((λ+ T T ∗)−1T )[T ∗, a](λ+ T T ∗)−1 = (λ+ T T ∗)−1T [T ∗, a](λ+ T T ∗)−1,
as im[T ∗, a](λ + T T ∗)−1 is not necessarily included in dom T . To proceed,
observe that:

[(λ+ T T ∗)−1, a] = ((λ+ T T ∗)−1T T ∗)a(λ+ T T ∗)−1

− (λ+ T T ∗)−1aT T ∗(λ+ T T ∗)−1

and that:

((λ+ T T ∗)−1T T ∗)a(λ+ T T ∗)−1 = ((λ+ T T ∗)−1T )T ∗a(λ+ T T ∗)−1

= ((λ+ T T ∗)−1T )[T ∗, a](λ+ T T ∗)−1

+ ((λ+ T T ∗)−1T )aT ∗(λ+ T T ∗)−1

= ((λ+ T T ∗)−1T )[T ∗, a](λ+ T T ∗)

+ (λ+ T T ∗)−1T aT ∗(λ+ T T ∗)−1

= ((λ+ T T ∗)−1T )[T ∗, a](λ+ T T ∗)−1

+ (λ+ T T ∗)−1[T , a]T ∗(λ+ T T ∗)−1

+ (λ+ T T ∗)−1aT T ∗(λ+ T T ∗)−1

All these equality are valid upon all of E , that is to say for every ξ ∈ E .
For example, (λ + T T ∗)−1T aT ∗(λ + T T ∗)−1 is defined for all ξ ∈ E , as
T ∗(λ + T T ∗)−1)ξ ∈ dom T , and a(dom T ) ⊂ dom T . The two terms of the
r.h.s of equation (3.2) is a bounded operator the image of which is contained
in dom T ∗; thus we get:

(3.3)

Rλ = λ((λ+ T̂ T̂ ∗)−1T̂ )(λ+ T T ∗)−1[T , a](T ∗(λ+ T T ∗)−1)

+ λ((λ+ T̂ T̂ ∗)−1T̂ )(λ+ T T ∗)−1T )[T ∗, a](λ+ T T ∗)−1

− λ(λ+ T̂ T̂ ∗)−1(T ∗(λ+ T T ∗)−1)[T , a](T ∗(λ+ T T ∗)−1)

+ λ(λ+ T̂ T̂ ∗)−1((λ+ T T ∗)−1T )[T ∗, a](λ+ T T ∗)−1
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Each of the four term in the right hand side of the later is a compact morphism
the norm of which is a O (λ−1) as λ goes to +∞, and norm continuous w.r.t. λ.

The classic formula gives us that:

(F ∗ − F̂ )a = 1

π

∫ +∞

1
Rλ

dλ√
λ− 1

which is therefore compact.

Theorem 3.2. Let T a symmetric regular operator on E enjoying the prop-
erties (1)–(3) above, T ⊂ T̂ ⊂ T ∗ be an extension and τ a unitary involution
anticommuting with T and T̂ , and F̂ = T̂ (1 + T̂ ∗T̂ )− 1

2 . Then for a ∈ A ,
the operators (F̂ ∗ − F̂ )a, (F̂ 2 − 1)a are compact morphisms of E and thus
(E , F̂ , τ ) is a bounded cycle of bivariant K-theory. Moreover, the class of
(E , F, τ ) in KK(A ,B) does not depend of the extension’s choice.

Proof. The compactness of (F̂ ∗ − F̂ )a = (F̂ ∗ − F ∗)a + (F ∗ − F̂ )a

results from the preceding lemma. To prove compactness of (F̂ 2 − 1)a =
(1 + T̂ ∗T̂ )−1a, take b, c ∈ A0; let I (resp. Î ) be the injection of W (T )

(resp. W (T̂ )) in E , which is bounded adjointable. Then by Lemma 2.2 and
Remark 2.4, the multiplication operator by c from W (T̂ ) to W (T ) is bounded
adjointable, and the composition b ◦ I ◦ c ◦ Î ∗ is a compact morphism as b ◦ I
is, and therefore (1 + T̂ ∗T̂ )−1bc is compact, and the assertion follows as A0

and thus A 2
0 are dense in A .

As in particular for any a ∈ A the operator (F̂ −F)a is compact, it shows
that (E , F̂ , τ ) is equal to the class of (E , F, τ ).

3.1. External tensor product

As an application, we may characterize the external intersection product of two
such operators. Let (Ei , Ti, τi) be two half-closed operator on (Ai ,Bi ). Then
T1⊗̂1 + 1⊗̂T2 is a regular symmetric operator on E1⊗̂E2. Then the following
may be proved exactly as in [3, Théorème 3.2].

Lemma 3.3. The external tensor product inKK(A1 ⊗ A2,B1 ⊗ B2) is the
class defined by (E1⊗̂E2, T1⊗̂1 + 1⊗̂T2).

3.2. Naturality with respect to restriction

Another interesting consequence is the following: let (E , T ) as above and
φ : A1 → A be a morphism such that φ−1(A0) is dense in A1. Suppose that
the restriction T1 of T to E1, the closure of φ(A1)E , is regular. Then (E1, T1)

defines an element of KK1(A1,B) which is the image of [E , T ] under φ∗.
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3.3. Riemannian incomplete manifolds

Let (V , g) be a Riemannian manifold, and D be a Dirac type operator acting
upon some Clifford module bundle S on V . Then it is well known that when
the Riemannian metric structure is complete, then D is a selfadjoint operator
with locally compact resolvent, and thus gives a K-homology class of V .

What does happen when the structure is incomplete? Then D is a half-
closed operator overC0(V ), and by the device described above, one gets again
a K-homology class of V . The operator F considered in the lemma above is
exactly the same that is usually defined in a bounded framework.

Moreover, by the remark above, for any open U ⊂ V , the restriction of
D to U determine an element in K∗(C0(U)) equal to the image of [D] under
the inclusion U → V . However, it is not so clear that the element obtained
in independant of the metric. Let gt be a path of Riemannian metrics on V ,
uniformly continuous on every compact subset of V , and suppose that S is a
Clifford module on V × [0, 1] for this metric. Let D = (Dt) the family of
Dirac type operators. Then one can deduce from Lemma 2.5 thatD is regular.

Lemma 3.4. With the hypothesis above, D0 and D1 give the same class in
K0(V ).

Proof. This a simple consequence of Theorem 3.2: D determines an ele-
ment of K0(C(V )⊗ C([0, 1]).

Example 3.5. Let V = ]0, 1[ with the standard Riemannian metric dt2,
and A be the closure of the operator −i ∂

∂t
on C∞

c (]0, 1[) in L2([0, 1]). Then
the element of K1(]0, 1[) = KK1(C0(]0, 1[), C) defined by (L2([0, 1]), A) is
the so-called dual Dirac or fundamental class, generator of K1(]0, 1[) = Z.

4. Axioms of unbounded cycles: a counter-example

Classically, axioms of unbounded module entails the condition a(domD) ⊂
domD, and [D, a] bounded for a belonging to a dense *-algebra of A [3].
In the second edition of B. Blackadars’ book [6, page 163], the condition
a(domD) ⊂ domD is substituted with the space of ξ ∈ domD such that
aξ ∈ domD is dense in E .

We show here that this last condition is not valid, by exhibiting a counter-
example.

Let V be an even dimensional smooth oriented manifold with boundary
W . Then, with a Riemannian metric collared near the boundary, the signature
operatorD0 acts on the Hilbert space E of square integrable differential forms,
with essential domain the space of differential forms compactly supported in
V −W ; it satisfiesD0 ⊂ D∗

0 , is not self-adjointD0 �= D∗
0 and a ∈ L (D0) for

a ∈ C∞(V ) the space of smooth functions up to the boundary on V . Among
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the self-adjoint extensions of D0, there is a remarkable one D, associated to
the positive part of the spectrum of the signature operator on W , and studied
first byAtiyah-Patodi-Singer [1]. ThenD satisfies these properties: (1+D2)−1

is compact, and for a ∈ C∞(V ), so that a is smooth up to the boundary, then
the space of ξ ∈ domD such that aξ ∈ domD is dense in E , as it contains
domD0, and [D, a] is bounded on that space.

However, D does not define a K-homology class of C(V ). Let us assume
the contrary and write z ∈ K0(C(V )) for the element defined by D and z0 ∈
K0(C0(V )) that one be given byD0, and let j : V −W → V be the inclusion.
Then j ∗(z) = z0. Besides, we may find a non trivial y ∈ K0(C0(V − W))

such that j∗(y) = 0 and y ⊗ z0 �= 0: take for example x0 ∈ V − W and y
the pushforward in K0(C0(V −W)) of a generator of K0(x0) � Z. Then one
would have the nonsense 0 = j∗(y)⊗ z = y ⊗ z0 �= 0.

5. Boundary Modules (even dimensional case)

Let (Eb, A, τ) be an even unbounded bimodule over (A ,B), with A = A∗,
and on the external tensor product E = Eb⊗L2(]−∞,+∞[), let�(A) be the
closure of the operator given by the formula:

(5.1) �(A) = iτ ⊗ 1(1 ⊗ ∂ + A⊗ 1)

where ∂f (u) = − df

du
is the usual derivative on the line. The subspace Eb ⊗

Cc(]−∞,+∞[) is an essential domain for�(A)which is a regular selfadjoint
operator [12, Lemma 5.1]. Besides, for every ϕ ∈ Cc(]−∞,+∞[), 1 ⊗ϕ(i+
�(A))−1 ∈ K (E ). Let us now introduce the notion of a boundary (A ,B)-
module.

Definition 5.1. Let (E , T ) (resp. (Eb, A, τ)) be a symmetric bimodule
(resp. a closed module) over (A ,B). Then (Eb, A, τ) is the boundary of (E , T )
if there is a projection p in L (E ), commuting with A , an isomorphism of
(A ,B) Hilbert bimodule and θ : im p → Eb ⊗ L2([0, 1]) and enjoying the
following properties, where, for ϕ ∈ C([0, 1]), b(ϕ) ∈ L (E ) is given by
b(ϕ) = θ∗(1 ⊗ ϕ)p + ϕ(1)(1 − p):

(a) For ϕ ∈ C∞
c (]0, 1]), then b(ϕ) dom T ∗ ⊂ dom T and T ∗b(ϕ)ξ =

T b(ϕ)ξ when ξ ∈ dom T ∗.

(b) For ϕ ∈ C∞
c (]0, 1[), then 1 ⊗ ϕ(dom�(A)) = θ ◦ b(ϕ)(dom T ), and

for ξ ∈ b(ϕ) dom T , one has θT ξ = �(A)θξ

(c) If ϕ,ψ ∈ C∞([0, 1])with supportψ∩support ϕ = ∅, then b(ϕ)T ∗b(ψ)
= 0.

Remark 5.2. Condition (a) implies that, whenever ϕ ∈ C∞
c (]0, 1]), then

T ∗b(ϕ) = T b(ϕ), that is to say, for every ξ ∈ E with b(ϕ)ξ ∈ dom T ∗, then
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b(ϕ)ξ ∈ dom T and T ∗b(ϕ)ξ = T b(ϕ)ξ . To see this, let ψ ∈ C∞
c (]0, 1])

such that ψϕ = ϕ. Then by (a), as b(ψ)b(ϕ) = b(ψϕ) = b(ϕ), then b(ϕ)ξ =
b(ψ)b(ϕ)ξ ∈ dom T , and T ∗b(ϕ)ξ = T ∗b(ψ)b(ϕ)ξ = T b(ψ)b(ϕ)ξ =
T b(ϕ)ξ .

Example 5.3. Obviously, we can take E = Eb ⊗ L2([0,+∞[) with T the
closure on Cc(]0,+∞[) of the matrix given by the formula (5.1), in which
case the boundary is given by (Eb, A, τ).

With the hypothesis of the last definition, let b0 : L∞([0, 1]) → L (E ) be
the morphism given by b0(ϕ) = θ∗(1 ⊗ ϕ)pξ ; thus if ϕ is continuous, then
b(ϕ)− b0(ϕ) = ϕ(1)(1 − p). Then one has:

Lemma 5.4. Let ϕ be a Lipschitz function on [0, 1]. Then b(ϕ) ∈ L (T )

and [T , b(ϕ)] = b0(ϕ
′), where ϕ′ = dϕ

dt
is the derivative on the line.

Moreover, if ϕ(1) = 0, then b(ϕ)(T ∗T + 1)−1 ∈ K (E ).

Proof. Suppose first that ϕ is smooth and support(ϕ) ⊂]0, 1[, and let
ψ ∈ C∞

c (]0, 1[) such thatψϕ = ϕ. Then by properties (b), (c) of the definition,
one has for ξ ∈ dom T , [T , b(ϕ)]ξ = [T , b(ϕ)]b(ψ)ξ = θ−1[�(A), 1 ⊗
ϕ)]1 ⊗ ψθpξ . Thus [T , b(ϕ)] = b0(ϕ

′) is bounded.
Suppose then ϕ(0) = ϕ(1). Then we may assume that ϕ(0) = 0 and there

exists a sequence ϕk in C∞
c (]0, 1[) converging to ϕ in the Lipschitz norm.

For ξ ∈ dom T , one has lim T ϕkξ = lim([T , ϕk] + ϕkT )ξ = lim b0(ϕ
′
k)ξ +

lim ϕkT ξ = b0(ϕ
′)ξ+ϕT ξ , by the Lebesgue dominated convergence theorem.

As T is closed, T ϕξ = lim T ϕkξ , and thus [T , ϕ] = b0(ϕ
′) is bounded.

Suppose then support ϕ ⊂ [0, 1
2 [; then one has a(ϕ̃) ∈ L (T ) with ϕ̃(t) =

ϕ(t) on [0, 1
2 [ and ϕ̃(t) = ϕ(1 − t) on ] 1

2 , 0]. Let ψ s.t. ψϕ = ϕ and
supportψ ⊂ [0, 1

2 [; then for ξ ∈ dom T one has, by property (c) of Defini-
tion 5.1, b(ψ)[T , b(ϕ̃)]ξ = b0(ϕ)ξ and thus b(ϕ) ∈ L (T ).

Finally, every ϕ can be written ϕ = ϕ1 + ϕ2 where support ϕ1 ⊂ [0, 1
2 [ and

ϕ2(0) = ϕ2(1), and we are done.
To prove that b(ϕ)(T ∗T + 1)− 1

2 ∈ K (E ), it suffices by continuity to take
ϕ ∈ C∞

c (]0, 1[). Let W0 be the closure in W (T ) of θ−1(Eb ⊗ C∞
c (]0, 1[)); by

Definition 5.1(c), the injection W0 → E is compact; otherwise, by Lemma 2.2
and Remark 2.4, the map ξ → b(ϕ)ξ from W (T ) to W0 is adjointable. Then
compactness of b(ϕ)(T ∗T + 1)−1 follows from the factorisation:

E
(T ∗T+1)−1−−−−−→ W (T )

b(ϕ)−−−−−→ W0 −−−−−→ E

Remark 5.5. It follows from above that (E , T ) comes up with the structure
of a (A ⊗ C([0, 1]),B)-bimodule.
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6. Boundary invariance

Let (E , T ) an A ,B-bimodule with boundary (Eb, A, τ).

Lemma 6.1. Let (E , T )with boundary (Eb, A, τ). Then the induced element
of the bivariant group KK(C0(]0, 1[) ⊗ A ,B) is the external intersection
product of (Eb, A, τ) with the fundamental class, generator ofK1(C0(]0, 1[)).

Proof. By the results of the previous sections, the induced element is the
external cup-product of (Eb, A, τ) by the class of the symmetric operator −i ∂

∂t

on L2([0, 1]) in K1(C0(]0, 1[)), which is the Dirac class.

Theorem 6.2. Let (E , T ) with boundary (Eb, A, τ). If a(1 + T ∗T )−1 ∈
K (E ), for a ∈ C(]0, 1])⊗A , then the class of (Eb, A, τ) is zero inKK(A ,B).

Proof. As a(1 + T ∗T )−1 is a compact morphism, and by Lemma 5.4,
(E , T ) defines a class inKK(C(]0, 1])⊗A ,B). We know thatKK(C0(]0, 1])
⊗A ,B) = {0}, as C0(]0, 1])⊗A is a K-contratible C*-algebra [6, 19.1] and
thus the induced class inKK(C0(]0, 1[)⊗A ,B) is null. Now the intersection
product by the Dirac element implements an isomorphism ofKK1(A ,B)with
KK(C0(]0, 1[)⊗ A ,B) and so, by the previous lemma, (Eb, A, τ) is null.

7. The odd dimensional case

Here we state the analogous odd dimensional result. Let (E , T , τ )over (A ,B),
with boundary (Eb, A) (cf. [13]). Under the hypothesis which govern the the-
orem above, we want to show that the class of (Eb, A) is zero inKK1(A ,B).

Let C1 be the complexified Clifford algebra of R with standard euclidean
metric; then by definition,KK1(A ,B) := KK(A ,B ⊗C1), and the element
associated to (Eb, A) is the class of (Eb ⊗ C2, A ⊕ −A, 1 ⊗ τ1), where τ1 is
the involution on C2 giving the grading (it intertwines the two elements of the
standard basis). Before stating our next theorem, we recall a lemma.

Lemma 7.1. Let Ai ,Bi for i = 1, 2 be C*-algebras, and (Ei , Ai) for i =
1, 2 closed modules over (Ai ,Bi ). Then the external intersection product in
KK(A1 ⊗ A2,B1 ⊗ B2) of the element associated to (Ei , Ai) for i = 1, 2 is
represented by the cycle (E , A, τ), where E = E1 ⊗ E2 ⊗ C2, and:

A =
(

0 −iA1 ⊗ 1 + 1 ⊗ A2

iA1 ⊗ 1 + 1 ⊗ A2 0

)

Proof. This follows from 3.1 above, and basic Clifford algebras properties
as expounded in [6] for example.

Then one has then statement analogous to Theorem 6.2:
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Theorem 7.2. Let (E , T , τ ) with boundary (Eb, A). If a(1 + T ∗T )−1 ∈
K (E ), for a ∈ C(]0, 1])⊗A , then the class of (Eb, A) is zero inKK1(A ,B).

Proof. By definition, (E , T , τ ) on the image of p has the form

�(A) =
(

0 − ∂
∂u

+ A

∂
∂u

+ A 0

)

By the preceding lemma,�(A) acting onL2([0, 1])⊗Eb⊗C2 with standard
grading, is a cycle in KK(C0(]0, 1[)⊗ A ,B) which represents the intersec-
tion product of [Eb, A] ∈ KK1(A ,B) with the Dirac fundamental class of
KK1(C0(]0, 1[), C). Thus [Eb, T , τ ] = 0 by Theorem 6.2.

8. Signature operators and coverings

This section is devoted to the question raised by W. Lück and T. Schick. Let
V a Lipschitz oriented manifold of even dimension, E a complex hermitian
Lipschitz vector bundle over V , f : V → B� a continous map and Ṽ the
Galois covering associated, which is a Lipschitz manifold.

Given a (measurable) Riemannian metric g on V , there is a lifting g̃ to
Ṽ . The group � acts by unitary operator on H = L2(V ,�C(T

∗Ṽ )⊗ Ẽ), the
Hilbert space of square integrable differential forms with coefficient in the pull-
back Ẽ of E to Ṽ , and let M be the commutant of this representation, which
is a type II∞ von Neumann algebra coming with a faithful nomal semi-finite
trace φ.

Let τ be the Hodge unitary involution on H . Given a unitary �-invariant
connection∇E on Ẽ ( such a connection may be obtained by pulling back on Ṽ
a unitary connection onE), the signature operator ÃE = ∇E − τ∇Eτ on H is
a closed self-adjoint operator affiliated to the commutant of the representation
of � on H , and its resolvent is a compact operator of M in the sense of Breuer,
which implies in particular that ker ÃE is a �-finite subspace affiliated to M.

Definition 8.1. The φ-index of ÃE is the difference Indφ(ÃE) =
dimφ(kerAE,+)− dimφ(kerAE,−).

Proposition 8.2. With the notation above, suppose that there exists a
Lipschitz oriented manifold Z with boundary ∂Z = W , such that f and E
extend to Z: then Indφ(ÃE) = 0.

The proof is postponed until later. Actually, we will prove a stronger result,
namely the nullity of a certain class in a K-theory group. Let A be the reduced
C*-algebra of �, so that A is the C*-algebra acting in l2(�) generated by
the left regular representation. Let Hc ⊂ H be the subspace of forms with
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compact support, and for ξ, η ∈ Hc, defines a finitely supported function on
� by the formula (here * means the Hodge unitary operator):

〈ξ, η〉(γ ) =
∫
Ṽ

∗ξ̄ ∧ (γ ∗)−1(η)

Then Hc with this product is a pre-Hilbert module over A , and its comple-
tion Eb is a Hilbert module over A , the action of a ∈ C[�] on ξ ∈ Hc be given
by:

ξa =
∑
γ

a(γ )γ ∗ξ

The following is nowadays classical:

Proposition 8.3. The connection ∇E extends to a closed regular operator
on Eb and the signature operator AE = ∇E − τ∇Eτ is a selfadjoint operator
of Eb with compact resolvent.

LetM be a topological space and j : V → M continuous. Thus one obtains
a cycle (Eb, AE, τ) and a well defined class in KK(C(M),A ), denoted �E .
Besides, letZ be an oriented Lipschitz manifold with boundary lip-isomorphic
to V such f : V → B�, and E → V have extension to Z. Then one
has a module E over (C(Z),A ), and a symmetric operator T constructed
in a similar way. The fact that T is a regular operator on E follows from
[13, Proposition 3.9], and by considering the double of Z, which is a closed
manifold. Thus we have shown that (Eb, A, τ) is the boundary of (E , T ). We
have now readily as a consequence of Theorem 6.2:

Theorem 8.4. With the notations above, let Z be an oriented Lipschitz
manifold with boundary lip-isomorphic to M . If f : V → B�, E → M and
j : V → M have extension to Z, then �E = 0 in KK(C(M),A ).

Proof of Proposition 8.2. Take M to the connected zero dimensional
manifold, so thatC(M) = C. The trace φ gives on E a pre-Hilbert space struc-
ture by putting q(ξ, η) = φ(〈ξ, η〉) for ξ, η ∈ E . The completion of E w.r.t q is
equal to H , and AE gives on H an essentially selfadjoint operator the closure
of which is precisely ÃE . The trace φ extends to a group homomorphism of
K0(A ) to C and one has Indφ(ÃE) = φ(�E) [17]. Thus Indφ(ÃE) = 0.

9. Differential operator transversely elliptic to a Lie group action

Let G be a compact Lie group acting smoothly on a smooth compact man-
ifold V , E a complex hermitian G-vector bundle over V , and P a classical
pseudodifferential operator of order m > 0 acting on the space of sections
of E. We suppose first that P is transversely elliptic, which means that the
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restriction of the principal symbol of P to the cotangent bundle transverse to
the action of G is invertible, and otherwise that P is quasi-invariant by G,
which means that gPg−1 − P is of order strictly less than m.

We construct here a class in the analytical K-cohomology groupK∗(C(V )×
G) := KK∗(C(V )�G, C)), whereC(V )�G is the cross-product C*-algebra.

Lemma 9.1. With the notation above, for any a ∈ C(V )�G, the operator
a(1 + P ∗P)−1 is compact.

Proof. For the simplicity of the proof, we assume that the order of P is
one.

Let �G be the Casimir invariant, an order 2 differential operator already
considered in [2, ch2]. Then P ∗P +�G is an elliptic pseudodifferential oper-
ator, and thus has compact resolvent. Let a be an element of C∞

c (V ×G).
Let’s show that S = a(1 +P ∗P)−1 − a(1 +P ∗P +�G)

−1 is compact. We
have:

S = a(1 + P ∗P +�G)
−1�G(1 + P ∗P)−1

= (1 + P ∗P +�G)
−1a�G(1 + P ∗P)−1

+ [a, (1 + P ∗P + +�G)
−1]�G(1 + P ∗P)−1

= (1 + P ∗P +�G)
−1a�G(1 + P ∗P)−1

+ (1 +P ∗P +�G)
−1[a, P ∗P +�G](1 +P ∗P +�G)

−1�G(1 +P ∗P)−1

By classical Lie group analysis, the operator a�G is bounded. Thus the first
term in the last part of the equation is compact. The commutator is the second
term is a equal to a first order pseudo-diffrential operator plus a bounded one,
and thus its product by (1+P ∗P+�G)

−1 is compact, and the whole expression
too.

Thus a(1 + P ∗P)−1 is compact for a ∈ C∞
c (V ×G) and by continuity for

all a in the cross-product C(V )�G.

Proposition 9.2. With P as above, the operator F = P(1 +P 2)− 1
2 acting

on L2(V ,E) is a Fredholm module over C(V )�G.

Thus we obtain an element in K∗(C(V ) × G). Now let X be a locally
compact topological G-space and f : V → X be a G-map. Then one gets a
class f∗([P ]) ∈ KK(C(X) � G). as an immediate consequence of our main
theorem, the latter is nul when it is a boundary:

Corollary 9.3. Let Z be a G-manifold with boundary diffeomorphic to
V , and suppose that E extends to Ẽ on Z, and let Q be an pseudodifferential
operator on Z, transversely elliptic and quasi-invariant under G, compatible
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with P , and suppose that f : V → X extends toW . Then the index class of P
in K∗(C(X)�G) vanishes.

Proof. This follows from the fact that the triple (L2(V ,E), P, τ) is the
boundary of (L2(Z, Ẽ),Q).

Remark 9.4. A similar statement for the topological index has been ob-
tained in a recent paper by C. Farsi [10]: a proof of the bordism invariance of
the index map defined by M. F. Atiyah: K0

G(T
∗
GV ) → D ′(G) is carried out.

10. Conservation of the index

This section is devoted to a non-commutative version of a well known gluing
theorem: let V1, V2 be two manifolds of dimension n, M an n − 1 compact
manifold, ji : M → Vi a separating embedding. Then one can split each Vi
along ji(M), intertwines the pieces and glue them to obtain two new manifolds
W1 and W2. Suppose also that coefficients bundles are given, and consider
Diract type operator twisted by those bundles. Then how is the sum of the
indices of Vi is related to that of Wi?

Such a theorem has been proved by U. Bunke [7] for (non-compact) Rieman-
nian manifolds with scalar curvature uniformly positive at infinity, and for the
index in value in the K-theory of some C*-algebra. Let A ,B be two C*-
algebras and Z = ((E1, Ti, τi))i=1,...,n be a finite sequence of Hilbert module
with the same boundary (Eb, A). To this sequence we may associate an ele-
ment of KK(A ,B) as follows: let zi ∈ KK(A ,B) be the classe of Ei�Ẽ i+1

for i ≤ n − 1 and zn be that of En�Ẽ 1, where Ẽ i means the opposite Hilbert
module. Then we show here that z1 + · · · + zn is bordant to zero, and as a
consequence of the main theorem, we get:

Proposition 10.1. With the previous hypothesis, one has
∑

i zi = 0 in the
bivariant group KK(A ,B).

Proof. Let P = Eb ⊗ L2([0, 1]) ⊗ L2(S), with T = A ⊗ 1 ⊗ 1 + 1 ⊗
∂1 ⊗ 1 + 1 ⊗ 1 ⊗ ∂2, where S is the circle of length N + 1 covered by the
interval [0, n+ 1] by the map x → exp

(
2π x

n+1

)
, and ∂j are the standard Dirac

operators. Then we glue Ei ⊗ L2
([

0, 1
2

])
on P by identifying the submodule

Eb ⊗L2
([

0, 1
4

]) ⊗L2
([
k, k+ 1

2

])
of P with the corresponding submodule of

Ei ⊗ L2
([

0, 1
2

])
.

Then, as a result, one obtains a Hilbert module (P̃ , T̃ , τ̃ ) with boundary
given by the direct sum of E1�Ẽ 2 ⊕ E2�Ẽ 3 ⊕ · · · ⊕ En�Ẽ 1 ⊕ (Eb ⊗ L2(S)).

By Theorem 6.2, the corresponding element in KK(A ,B) is zero, and as
[Eb ⊗ L2(S)] = 0, the claimed is proven.
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E1 E2 Ek En

Eb × [0, n + 1] × [0, 1]

0

1

. . . . . .

0 1
2 1 3

2 . . . k k + 1
2 . . . n n + 1

2 n + 1

Figure 1. The Hilbert bimodule P̃ (before identifying the end-sides)

A particular case is the following: let (Ei,j , Ti,j , τi,j ), for i, j = 1, 2, be
Hilbert bimodules over (A ,B) with boundary isomorphic to (Eb, A). Then,
by using these isomorphims, we have four closed bimodules over (A ,B),
P1 = E1,1#E1,2, P2 = E2,1#E2,2, Q1 = E2,1#E1,2, Q2 = E1,1#E2,2, with cor-
responding operator C1, C2,D1,D2 and grading β1, β2, γ1, γ2, and one has
classes in KK(A ,B) simply denoted by [P1] etc. Then:

Corollary 10.2. One has equality [P1] + [P2] = [Q1] + [Q2] in
KK∗(A ,B).

Proof. The claim follows from the previous proposition with n = 4 and
E1 = E1,1, E2 = E1,2, E3 = E2,1, E4 = E2,2.

Example 10.3. We shall retrieve the main theorem of Bettaieb, Matthey and
Valette [5, Theorem 2.2]. Let as above V1, V2 be two manifolds of dimension
n,M an n− 1 compact manifold, ji : M → Vi a separating embedding. Then
one can split eachVi along ji(M), intertwine the pieces and glue them to obtain
two new manifoldsW1 andW2. Suppose that fi : Vi → Z is a continuous map
such that the restriction of f1 and f2 to W (via ji) are homotopic. Then the
gluing gives canonically two maps gi : Wi → Z. Suppose next that there exist
compatible spinc structure on Vi andWi . Then the Dirac operator associated to
the spinc structure on Vi (resp.Wi) gives a class inK0(Vi) (resp.K0(Wi)) and
thus a class [Vi] (resp.Wi) inK0(Z) by fi,∗ (resp. gi,∗). Then the last corollary
reads as: [V1] + [V2] = [W1] + [W2] in K0(Z).
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