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C∗-ALGEBRA RELATIONS

TERRY A. LORING

Abstract
We investigate relations on elements in C∗-algebras, including ∗-polynomial relations, order
relations and all relations that correspond to universal C∗-algebras. We call these C∗-relations
and define them axiomatically. Within these are the compact C∗-relations, which are those that
determine universal C∗-algebras, and we introduce the more flexible concept of a closed C∗-
relation.

In the case of a finite set of generators, we show that closed C∗-relations correspond to the
zero-sets of elements in a free σ -C∗-algebra. This provides a solid link between two of the previous
theories on relations in C∗-algebras.

Applications to lifting problems are briefly considered in the last section.

1. Introduction

In the contexts of operator inequalities, lifting problems,K-theory and univer-
sal C∗-algebras, the need arises for relations on an element x in a C∗-algebra
A that that are best described in terms of M2(A). An example is the relation

0 ≤
[ |x| x∗
x |x|

]
≤ 1

on x. We also need relations such as[
x11 x12

x21 x22

]2

=
[
x11 x12

x21 x22

]

that do not determine universal C∗-algebras.
The variety of relations that arise in operator theory is impressive. In [13]

we study questions about operators that can be reduced to questions about
matrices. The relations that arise include

α ≤ ex+x∗ ≤ β
and ∥∥y√|x| −√|x|y∥∥ ≤ δ.
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This example-rich environment will support a general theory, a theory of C∗-
relations.

Two existing theories are compelling: that of Phillips in [15, §1.3] and
that of Hadwin, Kaonga and Mathes in [8, §6]. The allowed class of relations
is, for our purposes, too large in first instance, too small in the second. Our
compromise is an axiomatic approach that is slightly more restrictive than
allowed by Phillips. In the case of finitely many generators, Theorem 6.11
shows that each of these relations is equivalent to a relation in the same basic
form as considered by Hadwin et al.

The lack of free C∗-algebras forces us to consider pro-C∗-algebras. For
background on this class of ∗-algebras, see [6] or [15].

Another name for a pro-C∗-algebra is locally-C∗-algebra. A pro-C∗-algebra
is a topological ∗-algebra whose topology arises from, and is complete with
respect to, a set of C∗-seminorms. Those seminorms are not part of the object
in this category. The morphisms are all continuous ∗-homomorphisms.

This terminology is in conflict with Grothendieck’s notion of a pro-category
([1, p. 4]). The conflict is slight, as continuous ∗-homomorphisms give rise to
families of ∗-homomorphisms between C∗-algebras, as in Lemma 3.3.

When a pro-C∗-algebra has a topology described by a sequence of C∗-
seminorms, it is metrizable and called a σ -C∗-algebra.

The free pro-C∗-algebras F〈x1, . . . , xn〉 are σ -C∗-algebras. They contain
in a nice way the ∗-polynomials in finitely many noncommuting variables.
The elements of F〈x1, . . . , xn〉 are the noncommutative functions of Hadwin,
Kaonga and Mathes, and their zero sets provide a rich class of C∗-algebra
relations.

There is a lot of confusion in the definition of a relation for C∗-algebras,
mostly arising from the fact that free C∗-algebras do not exist (except on zero
generators). We cannot simply define the relations as being elements of the
free object that have been set to zero. The free object we can access is in the
wrong category, and is not easily understood as it arises from completion with
respect to a uncomputable sequence of seminorms.

We can define a relation as a “statement about elements in a C∗-algebra,”
but must take care. It is easy to have hidden ideas of what statements are
allowed. We only need to know the class of functions f : X → A that are
to be representations of a relation, so we work directly with categories whose
objects are functions from sets to C∗-algebras.

The statement
0 ≤ a1 ≤ a2 ≤ 1

is to be thought of as shorthand for the category whose objects are functions

f : {x1, x2} → A
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for which
0 ≤ f (x1) ≤ f (x2) ≤ 1

and whose morphisms are intertwining ∗-homomorphisms. The desired uni-
versal representation

ι : {x1, x2} → C∗ 〈x1, x2 | 0 ≤ x1 ≤ x2 ≤ 1〉
is the initial object in that category.

2. C∗-Algebra Relations

We identify within a general class of relations those that correspond to universal
C∗-algebras.

Definition 2.1. Given a set X , the null C∗-relation on X is the category
FX with objects of the form (j, A), where A is a C∗-algebra and j : X → A

is a function. The morphisms from (j, A) to (k, B) all ∗-homomorphisms
ϕ : A→ B for which ϕ ◦ j = k.

Given any nonempty set � and C∗-algebras Aλ for λ ∈ �, we use one of

∏
λ∈�

Aλ or
C∗∏
λ∈�

Aλ

to denote the C∗-algebra of families 〈aλ〉λ∈� that are bounded in norm and
have aλ ∈ Aλ.

Definition 2.2. Given a set X , a C∗-relation on X is a full subcategory
R of FX of such that:

C1: the unique map X → {0} is an object;

C2: if ϕ : A ↪→ B is an injective ∗-homomorphism and f : X → A is a
function, then

f is an object ⇐ ϕ ◦ f is an object;
C3: if ϕ : A→ B is a ∗-homomorphism and f : X → A is a function, then

f is an object ⇒ ϕ ◦ f is an object;
C4f: if fj : X → Aj is an object for 1 ≤ j ≤ n then

∏
fj : X →

n∏
j=1

Aj

is an object.
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The admissible relations defined in [15] are only required to satisfy C3 in the
case where ϕ is a surjection. Such a relation can be extended to a C∗-relation
by adding in every push-forward by an inclusion.

The intersection of two or more C∗-relations on the same set X will be the
full subcategory whose objects are the f : X → A that are representations of
all the given relations. This intersection is again a C∗-relation.

We will generally not mention the morphisms as they are determined by the
objects.

Definition 2.3. The C∗-relation R on X is called compact if

C4: for any nonempty set�, if fλ : X → Aλ is an object for all λ ∈ � then∏
fλ : X →

∏
λ∈�

Aλ

is an object.

Example 2.4. Let R be the subcategory of F∅ whose only object is the
unique function from ∅ to the zeroC∗-algebra. This is satisfies C1, C2 and C4
but only the weaker form of C3 where ϕ is only allowed to be a surjection.

Usually we will have a statement that determines the objects in aC∗-relation.
We will call this statement a C∗-relation and the objects in the associated
category representations of the relation. If we start with R we can use

f : X → A is an object in R

as a relation whose representations are the objects in R. For this reason, we
generally call an object a representation.

Example 2.5. If p is a noncommutative ∗-polynomial in n variables with
zero constant term then

p(x1, . . . , xn) = 0

is a C∗-relation.

Example 2.6. The C∗-relation

x∗x − x = 0

is compact, since x∗x = x implies x∗ = x and so x is a projection, and so has
norm at most one.

Example 2.7. The C∗-relation

x2 − x = 0

is not compact, as idempotents can have any norm.
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Example 2.8. Consider the relation determined by the equation

xy − yx − 1 = 0,

where if x and y are in A then this relation holds if A is unital and xy − yx
equals the unit in A. If we allow the case 1 = 0 in the zero C∗-algebra then
C3 will fail. If we exclude this case, then C1 will fail. Either way, we do not
obtain a C∗-relation.

For any C∗-algebra A, let

repR(X , A) = {f : X → A | f is a representation of R} .

Definition 2.9. If X is a set and R is a C∗-relation on X then a function
ι : X → U from X to a C∗-algebra U is universal for R if:

U1: given a C∗-algebra A, if ϕ : U → A is a ∗-homomorphism then ϕ ◦ ι :
X → A is a representation of R;

U2: given a C∗-algebraA, if a function f : X → A is a representation of R

then there is a unique ∗-homomorphism ϕ : U → A so that f = ϕ ◦ ι.
It should be clear that ι and U are unique up to isomorphism. Notice that ι

must be a representation. The definition of a universal representation is sum-
marized by the bijection

hom(U,A)→ repR(X , A)

defined by ϕ �→ ϕ ◦ ι.
Notice that U1 is absent in [15, §1.3]. See [3, Definition 1.2].
Various versions of Theorem 2.10 can be found in [8, §1.4], [10, §3.1] and

[15, Proposition 1.3.6]. The proof here uses the same techniques as Hadwin
and Ma in [9, §2].

Theorem 2.10. If R is C∗-relation on X then R is compact if and only if
there exists a universal representation for R.

Proof. Assume such a universal representation f : X → U exists. We
need to verify C4.

Suppose� is a nonempty set and fλ : X → Aλ is a representation for each
λ ∈ �. For each λ we know there exists a ∗-homomorphism ϕλ : U → Aλ
with fλ = ϕλ ◦ ι. Since ∏

fλ =
(∏

ϕλ

)
◦ ι

we have proven C4.
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As to the converse, assume R is a compact C∗-relation on X .
Let S1 be a set such that every C∗-algebra generated by a set no larger

than X has cardinality at most the cardinality of S1. Let S2 be the set of all
C∗-algebras whose underlying set is a subset of S1. Let S3 be the set of all
functions from X to a C∗-algebra in S2. Let S4 be the set containing every
function f : X → A in S3 whose image f (X ) generates A and so that f is
a representation in R. Let these representations be indexed as fλ : X → Aλ
for λ in a set �.

Given any representation g : X → B, by C2 we know that by corestricting
we can factor g as g = α ◦g0 where g0 : X → B0 has image that generatesB0

and α : B0 → B is an inclusion. There will be an isomorphism β : B0 → B1

for some B1 in S2. Let g1 : X → B1 be defined as g1 = β ◦ g0. This will be a
representation by C3, with generating image, and so g1 = fλ and B1 = Aλ for
some λ in �. Thus g factors as g = γ ◦ fλ where g : Aλ → B is the injective
∗-homomorphism g = α ◦ β−1.

To summarize the last paragraph: every representation g in R can be
factored as g = ϕ ◦ fλ where ϕ : Aλ → B is an injective ∗-homomorphism.

By C1 there is a representation, so we know � = ∅.
Let

f =
∏
λ∈�

fλ : X →
∏
λ∈�

Aλ.

This is well defined and a representation by C4. Let U denote the C∗-algebra
generated by the image of f and let ι : X → U be the corestriction of f . The
inclusion of U in the product we call η, so f = η ◦ ι.

Suppose ϕ : U → A is a ∗-homomorphism. Since ι is a representation, C3
tells us that ϕ ◦ ι is also a representation. We have meet the first requirement
on U .

SupposeB is aC∗-algebra and that a functiong : X → B is a representation
in R. We can factor g as g = ϕ ◦ fλ0 where ϕ : Aλ0 → B is an injective ∗-
homomorphism. Let pλ0 denote the coordinate projection

pλ0 :
∏
λ∈�

Aλ → Aλ0 .

Define ψ : U → B as the ∗-homomorphism ψ = ϕ ◦ pλ0 ◦ η. Then

ψ ◦ ι = ϕ ◦ pλ0 ◦ f = ϕ ◦ fλ0 = g.

Since ι has range that generates U , the ∗-homomorphism ψ is the unique one
satisfying ψ ◦ ι = g.
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If R is a C∗-relation with universal representation ι : X → U then we
call U the universal C∗-algebra for R and use for notation U = C∗ 〈X | R〉.
Sometimes we will use ιR in place of the generic ι.

Example 2.11. There is one free C∗-algebra, namely C∗ 〈∅ | F∅〉, which
is just {0}.

Example 2.12. For any C∗-algebra A,

C∗ 〈A | A→ B is a ∗-homomorphism〉 ∼= A.
That is, if we let RA be the full subcategory of FA with objects f : A→ B

that are ∗-homomorphisms, then A is isomorphic to C∗ 〈A | RA〉.
Neither the zero sets of noncommutative polynomials, not even a2 = 0,

nor basic order relations like a ≤ b are compact. The story must continue, and
that means leaving our familiar category.

3. Relations in Pro-C∗-algebras

For any pro-C∗-algebra A, let S(A) denote the set of all continuous C∗-
seminorms on A. For p in S(A) we have the C∗-algebra Ap = A/ ker(p)
and the surjection πp : A → Ap. For q ≥ p we have also surjections
πq,p : Aq → Ap. If S ⊆ S(A) is cofinal then A = lim←− Ap where p ranges

over S.
Starting from an inverse system of C∗-algebras, ρλ′,λ : Aλ′ → Aλ for

λ � λ′ in �, we can take the inverse limit and get a pro-C∗-algebra A =
lim←− Aλ. However, the induced ∗-homomorphisms ρλ : A→ Aλ may fail to be

surjective. However, if � = N then the ρλ are always surjections. For proofs
of these facts, see [15, §1] and [14, §5].

Lemma 3.1. SupposeA = lim←− Aλ is a pro-C∗-algebra and ρλ : A→ Aλ is

a surjection for all λ in�. There is an order-preserving, cofinal map γ : �→
S(A) and there are isomorphisms ϕλ : Aγ(λ) → Aλ so that ρλ = ϕλ ◦ πγ (λ).

Proof. Simply define γ (λ)(a) = ‖ρλ(a)‖. There is clearly an injective
∗-homomorphism ϕλ defined by

ϕλ(a + ker γ (λ)) = ρλ(a)
and it is onto because ρλ is assumed to be onto. If λ � λ′ then ρλ′,λ is norm
decreasing, which is easily seen to imply γ (λ) ≤ γ (λ′). The inverse limit
topology on A is determined by the γ (λ) and so γ (�) must be cofinal.



50 terry a. loring

Lemma 3.2. Suppose A and B are pro-C∗-algebras and that T ⊆ S(B)

is cofinal. If ϕ : A → B is a ∗-homomorphism that is a homeomorphism
onto its image then there is a cofinal function θ : T → S(A) and injective
∗-homomorphisms ϕp : Aθ(p) ↪→ Bp so that, for all p in T , we have πp ◦ ϕ =
ϕp ◦ πθ(p).

Proof. For any p in T we know that p ◦ϕ is in S(A), so we define θ(p) =
p ◦ ϕ. Since a ∈ ker(θ(p)) implies

‖πp ◦ ϕ(a)‖ = p(ϕ(a)) = 0

we find that ϕ induces a ∗-homomorphism ϕp from Aθ(p) to Bp with πp ◦ ϕ =
ϕp ◦ πθ(p). It is injective since

‖ϕp(πθ(p)(a))‖ = ‖πp(ϕ(a))‖ = p(ϕ(a)) = θ(p)(a) = ‖πθ(p)(a)‖.
We wish to show that θ(T ) is cofinal. For p in T let

B(p, ε) = {b ∈ B | p(b) < ε}
and defineB(q, ε) similarly for q in S(A). These sets form neighborhood bases
at the respective origins.

Suppose q is in S(A). Since ϕ is open, there is an ε > 0 and a p in T so
that

B(p, ε) ⊆ ϕ(B(q, 1)).

For a in A,

θ(p)(a) < ε �⇒ ∃a1 ∈ A s.t. q(a1) < 1 and ϕ(a1) = ϕ(a)
and, since ϕ is one-to-one,

θ(p)(a) < ε �⇒ q(a) < 1.

Standard facts about C∗-algebras show that this implies q ≤ θ(p).
Lemma 3.3. SupposeA andB are pro-C∗-algebras and that S ⊆ S(A) and

T ⊆ S(B) are cofinal. If ϕ : A → B is a continuous ∗-homomorphism then
there is a function θ : T → S and there are ∗-homomorphisms ϕp : Aθ(p) →
Bp so that πp ◦ ϕ = ϕp ◦ πθ(p) for all p in T .

Proof. For any p in T , we know that p ◦ϕ is in S(A), so choose θ(p) ∈ S
with θ(p) ≥ p ◦ ϕ. Since a ∈ ker(θ(p)) implies

‖πp ◦ ϕ(a)‖ = p(ϕ(a)) = 0
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we find that ϕ induces a ∗-homomorphism ϕp from Aθ(p) to Bp with πp ◦ ϕ =
ϕp ◦ πθ(p).

In the last two lemmas, the function θ and the maps ϕp : Aθ(p) → Bp
are a morphism in the sense of Grothendieck ([1]) between the pro-objects
(A, {Ap}, {πp}) and (B, {Bp}, {πp}). That is, one can show that if p ≤ p′ and
q ≥ θ(p) and q ≥ θ(p′) then

ϕp ◦ πq,θ(p) = πp′,p ◦ ϕp′ ◦ πq,θ(p′).
Lemma 3.4. Suppose A = lim←− Aλ is a pro-C∗-algebra and ρλ : A→ Aλ

is a surjection for all λ in �. Suppose B is a C∗-algebra. If ϕ : A → B is
a continuous ∗-homomorphism then there exists λ in � and ϕ′ : Aλ → B so
that ϕ = ϕ′ ◦ ρλ.

Proof. Lemma 3.1 reduces this to a special case of Lemma 3.3.

Lemma 3.5. Suppose R is a C∗-relation on X . Suppose f : X → A is a
function and A is a pro-C∗-algebra. If πp ◦ f is a representation of R in Ap
for all p in a cofinal set S in S(A) then ϕ ◦f is a representation of R for every
continuous ∗-homomorphisms ϕ from A to a C∗-algebra.

Proof. Composition with a ∗-isomorphism preserves representations of
R, so it suffices to show πp ◦ f is a representation for any p in S(A). Since S
is cofinal, we know πq ◦ f is a representation for some q ≥ p. Therefore

πp ◦ f = πq,p ◦ πq ◦ f
is a representation.

Given Aλ a pro-C∗-algebra for each λ in a set �, we denote the ∗-algebra
of all families 〈aλ〉 with aλ ∈ Aλ by

A =
proC∗∏
λ∈�

Aλ,

with projection maps ρλ : A → Aλ. This becomes a pro-C∗-algebra if we
endow it with the product topology.

Lemma 3.6. If Aλ is a family of pro-C∗-algebras and

A =
proC∗∏
λ∈�

Aλ,
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then the seminorms of the form

max(p1 ◦ ρλ1 , . . . , pn ◦ ρλn)
for pj in S(Aλj ) are cofinal in S(A).

Proof. A collection ofC∗-seminorms onA that is closed under the pairwise
max operation is cofinal if and only if it determines the topology on A. In this
case, the topology is component-wise convergence, and the seminorms p ◦ρλ,
for p ∈ S(Aλ), determine the topology.

Suppose X is any set. For each l : X → [0,∞) define

Fl〈X 〉 = C∗ 〈X | ∀x ∈ X , ‖x‖ ≤ l(x)〉
with ιl the universal representation. Consider also the ∗-algebra of ∗-polyno-
mials in noncommuting variables

{x, x∗ | x ∈ X }
(the x∗ being some symbols not in X ) hereby denoted C[X ∪X ∗].

Lemma 3.7 is by Goodearl and Menal [7, Proposition 2.2]. The proof is
only a little modified from theirs.

Lemma 3.7. For any l > 0 the canonical ∗-homomorphism

C[X ∪X ∗] → C∗ 〈X | ‖x‖ ≤ l(x)〉
is one-to-one.

Proof. For two nonzero choices for l we get isomorphic C∗-algebras. It is
then easy to reduce to the case l(x) = 2 for all x.

Let U denote the full group C∗-algebra of the free group generated by two
copies of X . Let the two disjoint copies of x ∈ X be ẋ and x̄. In terms of
generators and relations in the category of unital C∗-algebras,

U = C∗1
〈
Ẋ ∪ X̄

∣∣ each ẋ and x̄ is unitary
〉
.

We know that the group algebra embeds in U , and so it is safe to drop the
inclusion map from our notation. Define

ϕ : C[X ∪X ∗] → U

byϕ(x) = ẋ+x̄. Noticeϕ(x∗) = ẋ−1+x̄−1. Given a ∗-polynomialp of degree
n, consider the terms in ϕ(p) that are in the alternating pattern “ ˙ ¯ ˙ ¯ ˙ ¯ ”.
These terms will not simplify in ϕ(p), so ϕ(p) = 0 implies that all top-degree
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monomials have coefficient zero. This means ϕ is injective, and the result
follows.

To illustrate the argument based on the pattern of decorations, suppose
X = {x} and

p = x∗x + 2xx∗ + 3x.

Then

ϕ(p) = (
ẋ−1x̄ + 2ẋx̄−1

)+ (
x̄−1ẋ + 2x̄ẋ−1

)+ 3ẋ + 3x̄ + 6

and so the dot-dash terms of length two reflect the coefficients of the terms of
length two in p.

There are surjections between these “free” C∗-algebras. If l ≥ l′ then send-
ing x to x determines

γl,l′ : Fl〈X 〉 → Fl′ 〈X 〉.
Finally let F〈X 〉 = lim←− Fl〈X 〉 and ι : X → F〈X 〉be defined so that ι(x) corres-

ponds to the coherent family 〈ιl(x)〉l . There are the obvious ∗-homomorphisms
γl : F〈X 〉 → Fl〈X 〉. These are in fact surjections, as each generator determ-
ines a coherent family that is then sent to the copy of that generator in Fl〈X 〉.
Notice ι(X ) algebraically generates a dense copy of C[X ∪X ∗].

Theorem 3.8. In the category of pro-C∗-algebras and continuous ∗-homo-
morphisms, ι : X → F〈X 〉 is free.

Proof. First suppose A is a C∗-algebra. For any function f : X → A

we can set l(x) = ‖f (x)‖ and there is a ∗-homomorphism ϕl : Fl〈X 〉 → A

sending ιl(x) to f (a). Then ϕl ◦γl is a continuous ∗-homomorphism that sends
ι(x) to f (a). This is the unique such map since ι(X ) generates F〈X 〉.

Suppose A is a pro-C∗-algebra and f : X → A is a function. For each p
in S(A) there is a unique continuous ∗-homomorphism ϕp : F〈X 〉 → Ap for
which ϕp ◦ ι = πp ◦ f . Since

πp,p′ ◦ ϕp ◦ ι = πp,p′ ◦ πp ◦ f = πp′ ◦ f
we can conclude πp,p′ ◦ ϕp = ϕp′ . This means there is a continuous ∗-homo-
morphism ϕ : F〈X 〉 → A so that πp ◦ ϕ = ϕp. Therefore

πp(ϕ(ι(x))) = ϕp(ι(x)) = πp(f (x))
and so ϕ(ι(x)) = f (x).

The uniqueness of ϕ again follows from the fact that ι(X ) generates F〈X 〉.
Lemma 3.9. The pro-C∗-algebra F〈X 〉 is a σ -C∗-algebra if and only if X

is finite.
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Proof. Suppose X is the finite set {x1, . . . , xn}. The functions lk defined
by lk(xj ) = k are cofinal among all functions from X to [0,∞). Therefore
F〈x1, . . . , xn〉 is an inverse limit of a sequence of C∗-algebras,

F〈x1, . . . , xn〉 = lim←− C
∗〈x1, . . . , xn | ‖x1‖ ≤ k, . . . , ‖xn‖ ≤ k

〉
.

For the converse it suffices to show that F〈x1, x2, . . .〉 is not a σ -C∗-algebra.
Supposep1, p2, . . . is an increasing sequence ofC∗-seminorms determining

the topology of F〈x1, x2, . . .〉. By passing to a subsequence, we are able to
assume pn(ι(xn)) = 0 for all n. Define

αk = min
n≤k (kpn(ι(xk)))

−1

and yn = αnι(xn). For k ≥ n we have pn(yk) ≤ 1
k
. Therefore limk→∞ yk = 0.

Take any sequence ak in B(H) so that ‖ak‖ = α−1
k . There is a continuous

∗-homomorphism
ϕ : F〈x1, x2, . . .〉 → B(H)

with ϕ(ι(xk)) = ak . This means αkak converges to zero, contradicting the fact
that ‖αkak‖ has norm 1.

Definition 3.10. Given a set X, the null pro-C∗-relation on X is the
category F

proC∗
X whose objects are of the form (j, A), where A is a pro-C∗-

algebra and j : X → A is a function from X to (the underlying set of) A.
As morphisms from (j, A) to (k, B) it has all continuous ∗-homomorphisms
ϕ : A→ B for which ϕ ◦ j = k.

Definition 3.11. Given a set X , a pro-C∗-relation on X is full subcategory
R of F

proC∗
X such that:

PC1: the unique map X → {0} is an object;
PC2: if ϕ : A ↪→ B is the inclusion of a closed ∗-subalgebra of a pro-C∗-

algebra B and if f : X → A is a function, then

f is an object ⇐ ϕ ◦ f is an object;
PC3: if ϕ : A→ B is a continuous ∗-homomorphism, and if f : X → A

is a function, then

f is an object ⇒ ϕ ◦ f is an object;
PC4: if � is a nonempty set, and if fλ : X → Aλ is an object for each

λ ∈ �, then ∏
fλ : X →

proC∗∏
λ∈�

Aλ

is an object.
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Again we will conflate statements with categories and representations with
objects.

Definition 3.12. Suppose X is a set and R is a pro-C∗-relation on X . A
function ι : X → U from X to a pro-C∗-algebra U is universal for R if:

PU1: given a pro-C∗-algebra A, if ϕ : U → A is a continuous ∗-homo-
morphism then ϕ ◦ ι : X → A is a representation of R;

PU2: given a pro-C∗-algebraA, if a functionf : X → A is a representation
in R then there is a unique ∗-homomorphism ϕ : U → A so that
f = ϕ ◦ ι.

It should be clear that ι and U are unique, up to isomorphism. Also notice
that ι must be a representation.

The definition of a universal representation is again summarized by the
bijection

hom(U,A)→ repR(X , A)

defined by ϕ �→ ϕ ◦ ι, but now for A any pro-C∗-algebra and hom(−,−)
meaning the set of continuous ∗-homomorphisms.

Theorem 3.13. If R is a pro-C∗-relation on X then there exists a universal
representation for R.

Proof. Suppose g : X → A is a representation of R. Let B be the
closed ∗-algebra generated by g(X ). There is a continuous ∗-homomorphism
ϕ : F〈X 〉 → B so that ϕ(ι(x)) = g(x). By PC2, we can corestrict g to a
representation f1 : X → B. Let κ be the inclusion of B in A, so κ ◦ f1 = g.
There is an open, continuous *-algebra isomorphism

ψ : F〈X 〉/ ker(ϕ)→ B

where the completion is with respect to the seminorms

ϕ(y)+ ker(ϕ) �→ p (ϕ(y)) (for p ∈ S(B)).
By PC3, f2 = ψ−1 ◦ f1 is a representation and f = κ ◦ ψ ◦ f2.

The algebraic quotients of F〈X 〉 by closed, two-sided self-adjoint ideals
form a set. The collection of all C∗-seminorms on each quotient is a set, and
so the collection of all possible completions of quotients of F〈X 〉 is a set.
Therefore, we can index by a set� all representation into these particular pro-
C∗-algebras fλ : X → Aλ so that a generic representation g as above factors
as g = γ ◦ fλ for some continuous ∗-homomorphism γ .

By PC1 there are representations, so we know � = ∅.
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Let

f =
∏
λ∈�

fλ : X →
proC∗∏
λ∈�

Aλ

This is well-defined and a representation by PC4. Let U denote the pro-C∗-
algebra generated by the image of f and let ι : X → U be the corestriction
of f . The inclusion of U in the product we call η, so f = η ◦ ι.

The proof that ι is universal for R is similar to the argument given in the
proof of Theorem 2.10.

For notation, the universal pro-C∗ algebra will be

proC∗ 〈X | R〉 .

If A is a pro-C∗-algebra and RA is defined on the set A with ϕ : A → B

considered a representation if and only if it is a continuous ∗-homomorphism,
then RA is a pro-C∗-relation andA is isomorphic to proC∗ 〈A | RA〉. This can
easily be made a bit more general.

Lemma 3.14. Suppose f : X → A is a function whose image generates
the pro-C∗-algebra A. Let Rf be the full subcategory of F

proC∗
X for which

repRf
(B) = {ϕ ◦ f | ϕ ∈ hom(A,B)} .

Then R is a pro-C∗-relation and

proC∗
〈
X | RAf

〉 ∼= A,
where the isomorphism sends ι(x) to f (x).

Proof. We know the zero function A→ {0} is in hom(A, {0}) and so the
zero function X → {0} is a representation.

Suppose g : X → B is a function and ψ : B ↪→ C is an embedding of
a closed ∗-subalgebra and ψ ◦ g is a representation. Then ψ ◦ g = ϕ ◦ f for
some ϕ in hom(A,C). Thus ϕ(f (X )) ⊆ B and so ϕ(A) ⊆ B and ϕ = ψ ◦ϕ0

for some ϕ0 in hom(A,B) and

ψ ◦ ϕ0 ◦ f = ψ ◦ g.
Since ψ is injective, ϕ0 ◦ f = g and g is a representation.

If g : X → B is a representation and ψ is in hom(B,C) then g = ϕ ◦ f
for some ϕ in hom(A,B). Therefore ψ ◦ g = ψ ◦ ϕ ◦ f is a representation.
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Suppose gλ : X → Bλ is a representation for all λ ∈ �. Then gλ = ϕλ ◦ f
for some ϕλ in hom(A,Bλ). Then∏

gλ =
(∏

ϕλ

)
◦ f

is a representation.
For the second statement, we need to show that f : X → A is universal.

But that says there is a bijection

hom(A,B)→ repRf
(X , B)

defined by ϕ �→ ϕ ◦ f , and this is true by definition.

Lemma 3.15. Every pro-C∗-relation is closed under inverse limits.

Proof. Suppose R is a pro-C∗-relation on X . Suppose we have an inverse
system. That is Aλ is a pro-C∗-algebra for each λ in a directed set� and there
are bonding maps ρλ,μ : Aλ → Aμ that are continuous ∗-homomorphisms
whenever μ � λ. Then the limit can be constructed as

lim←− Aλ =
{
〈aλ〉 ∈

proC∗∏
λ∈�

Aλ

∣∣∣∣ ρλ,μ(aλ) = aμ if μ � λ
}

and ρλ : A→ Aλ defined by ρλ (〈aα〉) = aλ.
Given fλ : X → Aλ, representations that are coherent in the sense that

ρλ,μ ◦ fλ = fμ wherever μ � λ, we have a function f : X → A define by
corestricting the product,

f (x) = 〈fλ(x)〉 ∈ lim←− Aλ

and this is a representation by PC2 and PC4.

Proposition 3.16. If R is a pro-C∗-relation, then its restriction to C∗-
algebras is a C∗-relation. If two pro-C∗-relations on the same set have the
same restriction to C∗-algebras then they are equal.

Proof. The first statement is clear, since the pro-C∗ product of a finite
number of C∗-algebras equals the C∗ product.

As to the second, every pro-C∗-algebra is the inverse limit of C∗-algebras,
so Lemma 3.15 applies.

Proposition 3.17. Suppose R is a C∗-relation on X . If we define R̂ as
the full subcategory of F

proC∗
X , where f : X → A is an object if πp ◦ f is a
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representation of R for all p in S(A), then R̂ is a pro-C∗-relation extending
R.

Proof. Since quotients take representations to representations, R̂ extends
R. Notice also that f : X → A must be a representation for R̂ if πp ◦ f is a
representation of R for all p in a cofinal set in S(A).

Since 0 : X → {0} is a representation in R it is also a representation in R̂.
Suppose ϕ : A ↪→ B is the inclusion of a closed ∗-subalgebra of a pro-C∗-

algebra B and f : X → A is a function for which ϕ ◦ f is a representation of
R̂. By Lemma 3.2 there is a cofinal function θ : S(B)→ S(A) and injective
∗-homomorphisms ϕp : Aθ(p) ↪→ Bp so that πp ◦ ϕ = ϕp ◦ πθ(p) for all p in
S(B). We know that

πp ◦ ϕ ◦ f = ϕp ◦ πθ(p) ◦ f
is a representation of R, and since ϕp is injective, also that πθ(p) ◦ f is a
representation of R. Since the image of θ is cofinal in S(A), we conclude f
is a representation of R.

Suppose ϕ : A → B is a continuous ∗-homomorphism and f : X → A

is a representation of R̂. By Lemma 3.3 there is a function θ : S(B)→ S(A)

and ∗-homomorphisms ϕp : Aθ(p) → Bp so that πp ◦ϕ = ϕp ◦πθ(p) for allp in

S(B). Since f is a representation of R̂, we know πθ(p) ◦ f is a representation
of R, and so

πp ◦ ϕ ◦ f = ϕp ◦ πθ(p) ◦ f
is a representation of R. This being true for all p in S(B), we conclude ϕ ◦ f
is a representation of R̂.

Suppose fλ : X → Aλ is a representation of R̂ for each λ in a nonempty
set �. To show f = ∏

fλ is a representation of R̂, it suffices to show πq ◦ f
is a representation for

q = max(p1 ◦ ρλ1 , . . . , pn ◦ ρλn).
Let

A =
proC∗∏
λ∈�

Aλ.

Consider the continuous ∗-homomorphism

γ : A→ (Aλ1)pn ⊕ · · · ⊕ (Aλn)pn
defined as

γ = πp1 ◦ ρλ1 ⊕ · · · ⊕ πpn ◦ ρλn .
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This corresponds to the seminorm q, as

‖γ (〈aλ〉λ)‖ = ‖πp1(aλ1)⊕ · · · ⊕ πpn(aλn)‖
= max(‖πp1(aλ1)‖, . . . , ‖πp1(aλ1)‖)
= max(p1(aλ1), . . . , pn(aλ1))

and so we have a ∗-isomorphism

ψ : Aq → (Aλ1)pn ⊕ · · · ⊕ (Aλn)pn
satisfying ψ ◦ πq = γ . Finally

πq ◦ f = ψ−1 ◦ γ ◦ f
= ψ−1 ◦ (πp1 ◦ ρλ1 ◦ f ⊕ · · · ⊕ πpn ◦ ρλn ◦ f )
= ψ−1 ◦ (πp1 ◦ fλ1 ⊕ · · · ⊕ πpn ◦ fλn)

which means πq ◦ f is a representation of R.

4. Pushouts of Pro-C∗-algebras

Recall that a diagram of pro-C∗-algebras and continuous ∗-homomorphisms

C
θ2−−−−−−−→ B

↓
θ1

↓
ι2

A
ι1−−−−−−−→ D

is a pushout (and D an amalgamated free product) if ϕ �→ (ϕ ◦ ι1, ϕ ◦ ι2)
determines a bijection

hom(D,E)→ {
(ϕ1, ϕ2) ∈ hom(A,E)× hom(B,E) | ϕ1 ◦ θ1 = ϕ2 ◦ θ2

}
.

By the usual category theory result we know that pushouts must be unique.
Lemma 4.1 extends [15, Proposition 1.5.3(1)], showing pushouts exist in

full generality.

Lemma 4.1. SupposeA,B andC are pro-C∗-algebras and that θ1 : C → A

and θ2 : C → B are continuous ∗-homomorphisms. Assume A and B are
disjoint. Define R to have as representations each function f : A ∪ B → E

such that f |A : A→ E and f |B : B → E are continuous ∗-homomorphisms



60 terry a. loring

and f ◦ θ1 = f ◦ θ2. Then R is a pro-C∗-relation. The diagram

C
θ2−−−−−−−−−−−−−→ B

↓
θ1

↓
ι|B

A
ι|A−−−−−−−−→ C∗pro〈A ∪ B | R〉

is a pushout.

Proof. The proof is routine.

Lemma 4.2. Suppose
C

θ2−−−−−−−→ B

↓
θ1

↓
ι2

A
ι1−−−−−−−→ D

a diagram of pro-C∗-algebras and continuous ∗-homomorphisms. This is a
pushout if and only if ι1(A) ∪ ι2(B) generates D and for every pair

(ϕ1, ϕ2) ∈ hom(A,E)× hom(B,E)

such that ϕ1 ◦ θ1 = ϕ2 ◦ θ2 there exists ϕ in hom(D,E) with ϕ ◦ ιj = ϕj .
Proof. Without loss of generality, A and B are disjoint.
Pushouts are unique. If the diagram is a pushout then up to isomorphismD

is given by generators A ∪ B and the relations as in Lemma 4.1. Therefore

ι(A ∪ B) = ι1(A) ∪ ι2(B)
must generate.

For the converse, we are given the existence of ϕ for compatible ϕ1 and ϕ2

and need only show uniqueness. However, if ι1(A) ∪ ι2(B) generates, then ϕ
is uniquely determined by ϕ(ι1(a)) = ϕ1(a) and ϕ(ι2(b)) = ϕ2(b).

Lemma 4.3. Suppose
C

θ2−−−−−−−→ B

↓
θ1

↓
ι2

A
ι1−−−−−−−→ D

a diagram of pro-C∗-algebras and continuous ∗-homomorphisms. The dia-
gram is a pushout if for every C∗-algebra E and every pair

(ϕ1, ϕ2) ∈ hom(A,E)× hom(B,E)
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such thatϕ1◦θ1 = ϕ2◦θ2 there exists a uniqueϕ in hom(D,E)withϕ◦ιj = ϕj .
Proof. This follows easily using the universal properties of pushouts and

inverse limits.

5. Pushouts in two categories

First a look at an easy example of a pushout diagram in the category of C∗-
algebras. Then a method to create pushout diagrams in the pro-C∗ category
out of a sequence of pushouts in the C∗ category.

Lemma 5.1. Consider the commutative diagram of C∗-algebras and ∗-
homomorphisms

C
β−−−−−−−→ B

↓
α

↓
γ

A δ−−−−−−−→ X

If α and β are onto and the square is a pushout then:

(1) γ and δ are surjections;

(2) α(ker(β)) = ker(δ);

(3) given a in A and b in B with δ(a) = γ (b), there exists c in C with
α(c) = a and β(c) = b.

Proof. Without loss of generality, B = C/J and A = C/K for some
ideals J and K of C. Since

C −−−−−−−−−−−−→ C/J

↓ ↓
A −−−−−−−−−−→ C/(J +K)

is a pushout, and pushouts are unique, we can also assume

X = C/(J +K).
That shows (1).

Notice (2) is a special case of (3).
As to (3), we can assume we have c and c′ in C with c− c′ in J +K . There

are elements j in J and k in K with c − k = c′ + j . Taking c′′ = c − k we
have c′′ in C with c′′ +K = c +K and c′′ + J = c′ + J .
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Theorem 5.2. Suppose

An+1
ρn+1−−−−−−−−→ Bn+1

↓
αn+1,n

↓
βn+1,n

A
ρn−−−−−−−−→ Bn

is a pushout in the category of C∗-algebras for all n. Let A = lim←− An and

B = lim←− Bn with associated maps αn : A → An and βn : B → Bn. Define

ρ : A→ B by βn ◦ ρ = ρn ◦ αn.
(1) If αn+1,n and βn+1,n are surjective for all n then the diagram

A
ρ−−−−−−−−→ B

↓
αn

↓
βn

An
ρn−−−−−−−−→ Bn

is a pushout in the category of pro-C∗-algebras.

(2) If αn+1,n, βn+1,n and ρn are surjective for all n then ρ is a surjection.

Proof. (1) It suffices to show that

A
ρ−−−−−−−−→ B

↓
α1

↓
β1

A1
ρ1−−−−−−−−→ B1

is a pushout. By Lemma 4.3 we need only consider a C∗-algebra E and ϕ :
A1 → E and ψ : B → E such that ϕ ◦ α1 = ψ ◦ ρ. By Lemma 3.4 there is
some n and a map ψn : Bn → E so that ψ = ψn ◦ βn. We have

ϕ ◦ αn−1,1 ◦ αn,n−1 ◦ αn = ϕ ◦ α1 = ψ ◦ ρ
= ψn ◦ βn ◦ ρ
= ψn ◦ ρn ◦ αn,

and since αn is onto,

ϕ ◦ αn−1,1 ◦ αn,n−1 = ψn ◦ ρn.
The pushout property of the square involving ρn and αn,n−1 tells us there is a
ψn−1 : Bn−1 → E so that ψn = ψn−1 ◦ βn,n−1. Thus ψ = ψn−1 ◦ βn−1 and we
are where we were before, but with n decreased by one.
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By induction, there is a continuous ∗-homomorphism ψ1 : B1 → E with
ψ = ψ1 ◦ β1. Also

ϕ ◦ α1 = ψ ◦ ρ = ψ1 ◦ β1 ◦ ρ = ψ1 ◦ ρ1 ◦ α1

and α1 is onto so ϕ = ψ1 ◦ ρ1. That takes care of existence.
As to uniqueness, notice that ρ1(A1) equals B1 so the equation ϕ = ψ1 ◦ρ1

makes ϕ unique.
(2) Given a coherent sequence b1, b2, . . . in B1, B2, . . ., we choose any a1

with ρ1(a1) = b1. Now we repeatedly apply Lemma 5.1 to find a coherent
sequence a1, a2, . . . that is mapped to b1, b2, . . ., proving the surjectivity of ρ.

6. Closed Relations

Definition 6.1. For a set X , and given functions fλ : X → Aλ into C∗-
algebras Aλ for each λ in a nonempty set �, if

sup
λ

‖fλ(x)‖ <∞

for all x then we call 〈fλ〉 a bounded family of functions and define

∏
fλ : X →

C∗∏
λ∈�

Aλ

by ∏
fλ(x) = 〈fλ(x)〉λ∈� .

Definition 6.2. A C∗-relation on X is called closed if

C4b: if � is a nonempty set, and if fλ : X → Aλ form a bounded family
of objects, then ∏

fλ : X →
∏
λ∈�

Aλ

is an object.

Of course, compact implies closed. The intersection of a closedC∗-relation
with a compact C∗-relation is compact. An arbitrary intersection of closed
C∗-relations is closed.

Next we offer a sweepingly general functional calculus, as considered in
[8, §4].

Definition 6.3. If g is an element of F〈x1, . . . , xn〉 then we can define
g(a1, . . . , an) for aj ∈ A, where A is a pro-C∗-algebra, by

g(a1, . . . , an) = ϕ(g)
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where
ϕ : F〈x1, . . . , xn〉 → A

is the unique continuous ∗-homomorphism defined by ϕ(xj ) = aj . For ex-
ample, if

g = √
ι(x1)∗ι(x1)+ ι(x2)

then
g(a1, a2) =

√
a∗1a1 + a2.

This is clearly natural.

Theorem 6.4. If g is an element of F〈x1, . . . , xn〉 then

g(x1, . . . , xn) = 0

is a closed C∗-relation.

Proof. The only ∗-homomorphism from F〈x1, . . . , xn〉 to {0} is the zero
map ζ , and so ζ(g) = 0 and so the zero map from {x1, . . . , x2} to {0} is a
representation.

If ϕ : A → B is an injective ∗-homomorphism, and if f : X → A is a
function so that ϕ ◦ f is a representation, then

ϕ(g(f (x1), . . . , f (xn))) = g(ϕ(f (x1)), . . . , ϕ(f (xn))) = 0

so
g(f (x1), . . . , f (xn)) = 0

and f is also a representation.
If ϕ : A→ B is a ∗-homomorphism, and if f : X → A is a representation,

then

g(ϕ(f (x1)), . . . , ϕ(f (xn))) = ϕ(g(f (x1), . . . , f (xn))) = 0

and so ϕ ◦ f is a representation.
Suppose� is a nonempty set and that fλ : X → Aλ form a bounded family

of relations. Let

f =
∏

fλ : X →
C∗∏
λ∈�

Aλ.

Let
ϕλ : F〈x1, . . . , xn〉 → Aλ

and

� : F〈x1, . . . , xn〉 →
C∗∏
λ∈�

Aλ
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be the associated continuous ∗-homomorphisms. Let ρλ be the coordinate
morphism, so that ρλ ◦� = ϕλ. In particular,

ρλ ◦�(g) = ϕλ(g) = 0

and so
g(f (x1), . . . , f (xn)) = �(g) = 0.

Therefore f is a representation.

Not all closed relations are best described by setting an element of F〈x1, . . . ,

xn〉 to zero.

Example 6.5. If p is a noncommutative ∗-polynomial in n variables with
zero constant term and C is a positive constant then

‖p(x1, . . . , xn)‖ ≤ C
is a closed C∗-relation.

Example 6.6. The inequality

‖x‖ < 1

is a C∗-relation that is not closed.

Example 6.7. Let X denote a copy of [0, 1],

X = {xt | t ∈ [0, 1]}
The statement

t �→ xt is continuous

is a C∗-relation that is not closed. This example and variations are discussed
in [15, §1.3].

We want something like a universal representation, but technically not a
representation since the function ι might not take X into a C∗-algebra.

Definition 6.8. If X is a set and R is a full subcategory of FX, then a
function ι : X → U from X to a pro-C∗-algebra U is ubiquitous for R if:

UB1: given aC∗-algebraA, ifϕ : U → A is a continuous∗-homomorphism
then ϕ ◦ ι : X → A is a representation in R;

UB2: given a C∗-algebraA, if a function f : X → A is a representation in
R then there is a unique continuous ∗-homomorphism ϕ : U → A

so that f = ϕ ◦ ι.
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Lemma 6.9. Every C∗-relation R has an ubiquitous function, namely the
universal representation of the extension R̂ of R to a pro-C∗-relation.

Proof. Proposition 3.17 assures us that R̂ exists. Consider the universal
representation ι : X → U of R̂. Suppose A is a C∗-algebra. If ϕ : U → A

is a continuous ∗-homomorphism then ϕ ◦ ι is in R̂ and so in R. If a function
f : X → A is a representation in R then it is a representation in R̂, so there
is a unique continuous ∗-homomorphism ϕ : U → A so that f = ϕ ◦ ι.

Lemma 6.10. The ubiquitous function for a C∗-relation is unique.

Proof. We will show that a function ι : X → U that is ubiquitous for R

is universal for R̂.
Suppose f : X → A is a representation of R̂. Then for all p in S(A),

the composition πp ◦ f is a representation of R. For each p there is a unique
continuous ∗-homomorphism ϕp : U → Ap so that ϕp ◦ ι = πp ◦f . If p′ ≥ p
then

πp′,p ◦ ϕp′ ◦ ι = πp′ ◦ f
and so, by uniqueness,πp′,p◦ϕp′ = πp. There is, therefore, a unique continuous
∗-homomorphism ϕ : U → A such that πp ◦ ϕ = ϕp. Therefore πp ◦ ϕ ◦ ι =
πp ◦ f for all p, and so πp ◦ ϕ = f .

If ϕ′ ◦ ι = f then πp ◦ ϕ′ ◦ ι = πp ◦ f , and so by the uniqueness of the ϕp
we have πp ◦ ϕ′ = ϕp. Therefore πp ◦ ϕ′ = πp ◦ ϕ for all p, and so ϕ′ = ϕ.

Theorem 6.11. Suppose X is finite. If R is a closedC∗-relation on X then
there exists a function ι : X → U such that:

(1) ι is ubiquitous for R and U is a σ -C∗-algebra;

(2) the induced continuous ∗-homomorphism ῑ : F〈X 〉 → U is onto and
induces an isomorphism U ∼= F〈X 〉/I for I = ker(ῑ);

(3) there is a single element g of F〈X 〉 so that

U ∼= proC∗ 〈X | g(x1, . . . , xn) = 0〉 .

Proof. Let Sn denote the C∗-relations

‖x‖ ≤ n (∀x ∈ X ).

Then Sn and Sn ∩R are compact. We get a commutative diagram

C∗ 〈X | Sn+1〉 −−−−−−−−→ C∗ 〈X | Sn+1 ∩R〉

↓ ↓
C∗ 〈X | Sn〉 −−−−−−−−−−→ C∗ 〈X | Sn ∩R〉
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where all the maps are induced by the identity on the generators. This is clearly
a pushout with surjective ∗-homomorphisms. Let U be the σ -C∗-algebra

U = lim←− C
∗ 〈X | Sn ∩R〉

and let ι : X → U denote the limit of the ιn = ιSn∩R . Theorem 5.2 applies,
telling us that ῑ : F〈X 〉 → U is onto.

Suppose A is a C∗-algebra and ϕ : U → A is a continuous ∗-homomor-
phism. By Lemma 3.4, for some n there is a ∗-homomorphism

ϕ̄ : C∗ 〈X | Sn ∩ R〉 → A

so that ϕ = ϕ̄ ◦ ρn. This means that ϕ ◦ ι = ϕ̄ ◦ ιn is a representation of R.
Given a C∗-algebra A and a representation f : X → A, for some n we

have ‖f (x)‖ ≤ n for all x in X and so have a ∗-homomorphism

ϕn : C∗ 〈X | Sn ∩ R〉 → A

for which f = ϕn ◦ ιSn∩R . Therefore f = (ϕn ◦ ρn) ◦ ι. Uniqueness follows
since ι(X ) generates U .

By [14, Corollary 5.4] we have an isomorphism U ∼= F〈X 〉/I for I =
ker(ῑ).

To prove (3) we modify a technique from [5, Theorem 2.1] and [8, Propos-
ition 41]. Certainly

U ∼= proC∗ 〈X | g(x1, . . . , xn) = 0 (∀g ∈ I )〉 .
By the separability of F 〈X 〉 we may replace all the elements of I with a
sequence so that

U ∼= proC∗ 〈X | gk(x1, . . . , xn) = 0 (∀k ∈ N)〉 .
The fact that y∗y = 0 in a C∗-algebra if and only if y = 0 allows us to
replace the gk as needed to ensure the gk are positive elements in I . Let pn be
a sequence of C∗-seminorms defining the topology on I . Taking a sequence
of positive scalars αk so that αk ≤

(
2kpr(gk)

)−1
for 1 ≤ r ≤ k we can ensure

that g =∑
αkgk exists, and then

U ∼= proC∗ 〈X | g(x1, . . . , xn) = 0〉 .
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7. Matrices having C∗-Relations

We will use Ã to denote the unitization of a C∗-algebra A, where a unit is
adjoined even when A is unital. The adjoined unit is denoted 1, and 1 denotes
the original unit, when it exists.

In studying the boundary maps in K-theory ([11], [12]) we proved the
projectivity of the C∗-algebras

(1) C∗
〈
h, k, x

∣∣∣∣ P 2 = P ∗ = P for P =
[

1− h x∗
x k

]〉

and

(2) C∗
〈
h, k, x

∣∣∣∣ hk = 0 and 0 ≤ P ≤ 1 for P =
[

1− h x∗
x k

]〉

and, implicitly at least, also

(3) C∗
〈
h, k, x

∣∣∣∣ 0 ≤ P ≤ 1 for P =
[

1− h x∗
x k

]〉
.

It may not be obvious these C∗-algebras exist. They do, and there is a general
method to reinterpret C∗-relations in Mn(B̃) as C∗-relations in B.

We are adding a chapter to an old story whose beginnings include [2, §7]
by Bergman and [4] by Larry Brown. In the nonunital case, we cannot use a
trick with free products and relative commutants. We must face the universal
nonsense.

In this section n is a positive integer.

Notation 7.1. Let n = {1, 2, . . . , n}.
Definition 7.2. Suppose R is a C∗-relation on X and that α : X →

Mn(C) is a representation of R. Define Rα as the full subcategory of FX×n×n
whose objects are the functions

f : X × n× n→ B

for which fα : X → Mn(B̃) is a representation of R, where

fα(x) =
∑
i,j

(
αij1+ f (x, i, j)

)⊗ eij .
For example, in (1) R is the relation p2 = p∗ = p and

α(p) =
[

1 0
0 0

]
.
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The generator (p, 1, 2) is redundant, h = −(p, 1, 1), k = (p, 2, 2) and x =
(p, 2, 1).

Lemma 7.3. With R and α as in Definition 7.2, Rα is a C∗-relation on
X × n× n. It is compact when R is compact. It is closed when R is closed.

Proof. Suppose first that R is any C∗-relation on X .
If f is the zero map

f : X × n× n→ {0}
then fα = α is a representation of R so f is a representation of Rα .

Suppose ϕ : A→ B is an injective ∗-homomorphism and

ϕ ◦ f : X × n× n→ B

is a representation in Rα . Then Mn (ϕ̃ ) = ϕ̃ ⊗ id is also an injective ∗-
homomorphism,

Mn (ϕ̃ ) : Mn

(
Ã

)→ Mn

(
B̃

)
and

(ϕ ◦ f )α(x) =
∑
i,j

(
αij1+ ϕ(f (x, i, j))

)⊗ eij
= Mn (ϕ̃ )

(∑
i,j

(
αij1+ f (x, i, j)

)⊗ eij)

= (Mn (ϕ̃ ) ◦ fα) (x).
Since ϕ ◦ f is a representation of R, we know Mn (ϕ̃ ) ◦ fα is a representation
of Rα . Therefore fα is a representation of Rα and so f is a representation of
R.

Suppose ϕ : A→ B is a ∗-homomorphism and

f : X × n× n→ A

is a representation in Rα . Then we still have that Mn (ϕ̃ ) is a ∗-homomorphism
and

(ϕ ◦ f )α = Mn (ϕ̃ ) ◦ fα.
Since f is a representation, so is fα . Therefore (ϕ ◦ f )α is a representation,
and so ϕ ◦ f is a representation.

Now suppose
fλ : X × n× n→ Aλ
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is a representation for each λ in a nonempty, finite set �. Each (fλ)α is a
representation. Let

� : Mn

((∏
λ

Aλ

)∼ )
→

∏
λ

Mn

(
Ãλ

)
be the injective ∗-homomorphism defined by

�
(
(β1+ 〈aλ〉λ)⊗ eij

) = 〈
(β1+ aλ)⊗ eij

〉
λ
.

Since
� ◦

(∏
λ

fλ

)
α

=
∏
λ

(fλ)α

we know that (∏
λ

fλ

)
α

is a representation. This means
∏
λ fλ is a representation.

If R is compact, then the above argument works for infinite sets�. If R is
only closed, we need to add the assumptions

sup
λ

‖fλ(x, i, j)‖ <∞

for each x and each i and j . This forces, for each x,

sup
λ

∥∥(fλ)α (x)∥∥ = sup
λ

∥∥∥∥∑
i,j

(
αij1+ fλ(x, i, j)

)⊗ eij
∥∥∥∥ <∞

and the above argument is still fine.

This is helpful even when n is 1. For example there is

C0(0, 1) = C∗ 〈
x | (1+ x)∗ = (1+ x)−1

〉
.

For an example that does not produce a C∗-algebra, there is

proC∗
〈
a, b, c, d

∣∣∣∣ P 2 = P for P =
[

1+ a b

c d

]〉
.

In these two examples it is easy rewrite the relations as ∗-polynomials not
involving matrices. Such a reduction is not always practical, as illustrated by

C∗
〈
a, b, c, d

∣∣∣∣ 0 ≤ P ≤ 1 for P =
[
a b

c d

]〉
.

Define λ : Ã→ C by λ(α1+ a) = α.
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Definition 7.4. If A is a C∗-algebra and α : A → Mn(C) is a ∗-homo-
morphism, define Wα(A) as

C∗
〈
A× n× n ∣∣ a �→ [

αij1+ (a, i, j)
]

is a ∗-homomorphism
〉
.

That is, Wα(A) has a ∗-homomorphism ι : A→ Mn(Ã) so that Mn(λ)◦ι =
α that is universal for all ∗-homomorphisms ϕ : A → Mn(B̃) such that
Mn(λ) ◦ ϕ = α. If α = 0 then

hom(Wα(A), B) ∼= hom(A,Mn(B))

and Wα = Wn is the left-adjoint to the functor Mn. This was investigated by
Phillips in [16].

Theorem 7.5. If A is projective and α : A → Mn(C) is a representation
then Wα(A) is projective.

Proof. Suppose we have a diagram

B

ρ

Wα(A)
ϕ

D

ϕ̄

in which ρ is surjective, ϕ is given and we want to find ϕ̄ making the diagram
commute. This translates to the lifting problem

Mn(C)

Mn(B̃)

Mn(λ)

Mn(λ)

α

A Mn(D̃)

which is easily solved.

For example, Theorem 7.5 tells us that

C∗
〈
a, b, c, d

∣∣∣∣
∥∥∥∥
[
a 1+ b
c d

]∥∥∥∥ ≤ 1

〉

is projective.
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