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HOMOTOPY THEORY OF CYCLIC PRESHEAVES

SIGURD SETEKLEV and PAUL ARNE ØSTVÆR

Abstract
We generalize the homotopy theory of cyclic sets to cyclic presheaves on small Grothendieck
sites. This is achieved by constructing pointwise and local model structures reminiscent of the
homotopy theory of simplicial presheaves.

1. Introduction

The works of Dwyer, Hopkins and Kan [7] and Spaliński [14] show there are
Quillen equivalences between model structures on topological spaces with a
circle action and cyclic sets. In this paper we extend their work in an arith-
metic direction by constructing model structures on cyclic presheaves on small
Grothendieck sites [12]. Connes’ cyclic homology, Bökstedt’s topological
Hochschild homology, Goodwillie’s cyclic K-theory and the computational
successes of Jardine’s homotopy theory of simplicial presheaves [11] provide
much motivation and point towards applications of these model structures.

In our construction of model structures on cyclic presheaves the definitions
are rigged such that fibrant objects admit characterizations similar to fibrant
simplicial presheaves. Such characterizations are of interest because descent
questions, e.g. in the simplicial case the Quillen-Lichtenbaum conjecture for
algebraic and étale K-theory deal with fibrancy conditions. By way of ex-
ample, suppose {Uα → X} is an open cover of a scheme X. Then algebraic
K-theory K satisfies Zariski descent because the functorially induced map
between K(X) and the homotopy limit of the simplicial Čech complex of the
cover is a weak equivalence:

K(X)
∼−−−→ holim

(∏
K(Uα) −−−→−−−→

∏
K(Uα ∩Uα′)

−−−→−−−→−−−→ · · ·
)

This approach necessitates many formal similarities with the homotopy the-
ory of simplicial presheaves presented in [5] and [10]. The first section recalls
and expands the works on homotopy theory of cyclic sets. Second, we intro-
duce cyclic presheaves on small Grothendieck sites and work out the model
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structures. Cyclic presheaves are simplicial presheaves equipped with a cyclic
operator subject to the usual cyclic identities. The latter leads naturally to the
notion of a cyclic model structure, which is derived from the well known notion
of a simplicial model structure. As a consequence of the existence of the model
structures, every cyclic presheaf is weakly equivalent to some cyclic presheaf
that satisfies a certain descent condition reminiscent of the K-theoretic ex-
ample of Zariski descent. A discussion of descent for cyclic K-theory seems
to be missing in the literature. We note that cyclic sets are cyclic presheaves
on the one-point site, but the more general setup allows to include everyday
algebro-geometric examples arising from Grothendieck topologies.

A more detailed presentation of the content of this paper can be found
in the first author’s master’s thesis [13]. He was partially supported by an
Abel stipend granted by the Norwegian Mathematical Society. The authors
gratefully acknowledge the excellent working conditions and support provided
by the Fields Institute during the spring 2007 Thematic Program on Geometric
Applications of Homotopy Theory. We wish to thank Clark Barwick for sharing
his many insights on model categories, in particular [2], Bjørn Ian Dundas for
helpful emendations on [13] and Jan Spaliński for explaining his work on
cyclic sets [14].

2. Cyclic sets

Let � denote Connes’ cyclic category containing the category � of finite
ordinal numbers and all finite cyclic groups [4]. Denote by �Set the functor
category of cyclic sets or contravariant functors from � to the category Set of
sets. If n ≥ 0, let �[n] denote the standard cyclic set �op(n,−): �op → Set.
The Yoneda lemma implies there are natural isomorphisms �Set(�[n], K) ∼=
Kn for every cyclic set K . The inclusion i: �op ⊂ �op induces an adjunction
where the left adjoint i! is a left Kan extension:

(1) i!: �Set −−−→←−−− �Set: i∗

By [7], defining weak equivalences and fibrations between cyclic sets via the
right adjoint forgetful functor i∗ yields the so-called “weak” model structure
on �Set. The weak cofibrations are generated by the set of maps i!(∂�[n] ⊂
�[n]) for n ≥ 0 and the acyclic weak cofibrations by the set of maps i!(�

k[n] ⊂
�[n]) for n ≥ 1, 0 ≤ k ≤ n. Thus the weak model structure is combinatorial,
cf. [2] and [3]. The cofibrations are special types of monomorphisms that admit
a combinatorial description detailed in [7, Proposition 3.5].

For every integer r ≥ 1 there exists an adjunction noted in [14, §3]:

(2) �r : �Set −−−→←−−− �Set: �r
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For a cyclic set K we have �r(K) = (sdr K)Cr where sdr (K)n ≡ Kr(n+1)−1 is
the r-fold subdivision of the underlying simplicial set equipped with the natural
action of the cyclic group Cr of order r [14, §3.7]. The geometric realization
of �r(K) is homeomorphic to the fixed points of Cr acting on the topological
realization of K . We note �r preserves monomorphisms because it maps the
generating cofibrations ∂�[n] ⊂ �[n] to monomorphisms: Applying �r to
some face map �[n−1]→ �[n] yields a monomorphism by comparison with
a degeneracy map. Note that ∂�[n] is the direct limit of a diagram comprising
copies of �[n − 2] and �[n − 1] together with face maps. If we apply �r

to this diagram, the maps in the resulting diagram will be monomorphisms.
Since �r�[n − 1] → �r�[n] is a monomorphism, so is the induced map
�r∂�[n]→ �r�[n] on the colimit. Spaliński has shown that the functors �r

for every r ≥ 1 collectively define a combinatorial model category structure
on �Set by comparison with simplicial sets [14, Theorem 3.10]. It is called
the “strong” model structure on cyclic sets since it is Quillen equivalent to the
fine model structure on S1-spaces where weak equivalences and fibrations are
detected on fixed points of strict closed subgroups of S1 [14, Theorem 5.1].
The proof shows that defining weak equivalences and fibrations on cyclic sets
using �r for some fixed integer r ≥ 1 yields a “weak level r” combinatorial
model structure with generating cofibrations �r(∂�[n] ⊂ �[n]) for n ≥ 0,
and generating acyclic cofibrations �r(�

k[n] ⊂ �[n]) for n ≥ 1, 0 ≤ k ≤ n,
induced up from simplicial sets. More precisely, a map between cyclic sets
K → L is declared to be a level r weak equivalence if the map �r(K → L)

is a weak equivalence between simplicial sets, and likewise for the fibrations.
The classes of weak equivalences in the weak and strong model struc-

tures form full accessible subcategories of the morphism category Mor(�Set),
cf. [1], [2], [3]. Moreover, there exists a set of monomorphisms I in �Set such
that cof(I ) – that is, maps with the left lifting property with respect to every
map having the right lifting property with respect to every member in I [9,
Definition 2.1.7] – coincides with the class of monomorphisms in �Set [3,
Proposition 1.12]. Since the cofibrations in the weak level r and strong model
structures on �Set are monomorphisms, we may arrange that I contains the set
of generating cofibrations obtained by applying �r to the generating cofibra-
tions in �Set for r respectively every r ≥ 1. It follows that the class of
maps inj(I ) – defined by the right lifting property with respect to I [9, Defin-
ition 2.1.7] – consists of weak equivalences.

Combining the above with Jeff Smith’s main theorem on combinatorial
model categories [3, Theorem 1.7, Proposition 1.15] we conclude the following
result holds:
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Theorem 2.1. The following classes of weak equivalences together with
the monomorphisms as cofibrations define “weak monic level r” and “strong
monic” combinatorial and proper model structures on cyclic sets.

(i) The level r weak equivalences.

(ii) The maps that are level r weak equivalences for every r ≥ 1.

The identity functor on �Set yields Quillen equivalences between the weak
and weak monic model structures and between the strong and strong monic
model structures. The adjunction (2) is a Quillen pair for the weak monic level
r model structure.

Right properness of the model structures in Theorem 2.1 follows using
(2) and right properness of simplicial sets, while left properness holds since
every object is cofibrant. In fact, Spaliński’s model structures on cyclic sets are
also proper: Left properness holds since �r preserves pushouts of diagrams
of the form L ← K ⊆ K ′ and the model structure on simplicial sets is left
proper. Likewise, the next result holds true because the model structure on
simplicial sets is monoidal. A “monic model structure” refers to any of the
model structures on �Set established in Theorem 2.1.

Lemma 2.2.The monic model structures on�Set are monoidal: If i: K → L

and i ′: K ′ → L′ are cofibrations, then the pushout product map

L×K ′
∐

K×K ′
K × L′ → L× L′

is a cofibration that is a weak equivalence if in addition either i or i ′ is so.

Observe that �Set is a closed symmetric monoidal category with respect to
the cartesian product when the internal hom object Hom�Set(K, L) of cyclic
sets K and L is defined by Hom�Set(K, L)n ≡ �Set(K×�[n], L); its cyclic
structure is induced from the standard cyclic sets.

A cyclic model category is defined similarly to a simplicial model category
by an evident “cyclic version” of Quillen’s SM7 axiom. Thus a standard ad-
junction argument combined with Lemma 2.2 implies:

Corollary 2.3. The model structures on �Set are cyclic: If i: K → L is
a cofibration and i ′: K ′ → L′ a fibration, then the pullback map

Hom�Set(L, K ′)→ Hom�Set(L, L′)×Hom�Set(K,L′) Hom�Set(K, K ′)

is a fibration that is a weak equivalence if in addition either i or i ′ is so.

Following [6] let RH(∂�[n], �[n]) denote the pushout in �Set of the
diagram:

∂�[n]← ∂�[n]×�[1]→ �[n]×�[1]
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Using [6, Proposition 4.1] and the adjunction (2) we deduce a basepoint free
lifting criterion for level r weak equivalences between cyclic sets.

Lemma 2.4. Suppose K and L are cyclic sets such that �rK and �rL are
Kan complexes. Then K → L is a level r weak equivalence if and only if there
exist liftings in all diagrams of the form:

�r∂�[n] K

�r�[n] �r�[n] L

�rRH(∂�[n],�[n])

This finishes the precursors on cyclic sets and we are now ready to discuss
the more general setting of cyclic presheaves.

3. Cyclic presheaves

Let C be a small Grothendieck site. The standard algebro-geometric examples
are the big and small Zariski, Nisnevich, étale and h- sites of some scheme. A
cyclic presheaf on C is a contravariant functor from C to �Set. Note that every
cyclic set defines a constant cyclic presheaf and every object of C represents
a discrete cyclic presheaf. Denote by �Pre(C ) the functor category of cyclic
presheaves on C .

Note that �Pre(C ) is tensored, cotensored and enriched in cyclic sets: If
X , Y are cyclic presheaves and K a cyclic set, define X ⊗K by X ⊗K(C) ≡
X (C) × K and YK by YK(C) ≡ Hom�Set(K, Y (C)). Reminiscent of the
internal hom objects in �Set, the function complex hom�Set(X , Y ) is defined
in degree n by setting hom�Set(X , Y )n ≡ �Pre(C )(X × �[n], Y ). The
contravariant functor on �Pre(C ) given by Z �→ �Pre(C )(X × Z , Y ) is
representable by the internal hom object Hom�Pre(C )(X , Y ) from X to Y .
With these definitions there is a natural isomorphism

Hom�Pre(C )(X , Y )(C) ∼= hom�Set
(
X , Y (C ×−)

)
for every object C of C .

The cyclic and simplicial categories of presheaves on C are also related by
adjoint functors for every integer r ≥ 1:

(3) �C
r : �Pre(C ) −−−→←−−− �Pre(C ): �C

r
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To wit, sdr : �op → �op, i: �op → �op and Cr → 1 (the trivial group)
induce (Cr → 1)∗C : �Pre(C )→ [Cr, �Pre(C )] and (i ◦ sdr )

∗
C : �Pre(C )→

[Cr, �Pre(C )]. Taking the right Kan extension of (Cr → 1)∗C and the left Kan
extension of (i ◦ sdr )

∗
C we get adjoint functor pairs:

�C
r : �Pre(C )

(Cr→1)∗
C−−−−→←−−−−

(Cr→1)C∗
[Cr, �Pre(C )]

(i◦sdr )
C
!−−−−→←−−−−

(i◦sdr )
∗
C

�Pre(C ): �C
r

Here [Cr, �Pre(C )] denotes the functor category from the category with one
object and morphisms the cyclic group of order r to simplicial presheaves on
C . Note that the right adjoint (Cr → 1)C∗ is the Cr -fixed point functor. Clearly
(3) specializes to (2) when C is the one-point site. The right adjoint �C

1 is the
forgetful functor from cyclic to simplicial presheaves on C . Using the special
case of the one-point site, one checks easily that the left adjoint �C

r preserves
monomorphisms for all r ≥ 1.

4. Pointwise model structures

In this section we discuss the injective and projective pointwise model struc-
tures on �Pre(C ). The pointwise model structures do not reflect the inner
workings of Grothendieck sites, but they are pivotal for the construction of the
finer local model structures in Section 5. Throughout the following, a model
structure on cyclic sets refers to any of the four types of model structures in
Section 2.

Definition 4.1. A map X → Y in �Pre(C) is a pointwise weak equi-
valence if the induced map X (C) → Y (C) is a weak equivalence between
cyclic sets for every object C ∈ C . The classes of pointwise cofibrations and
fibrations are defined similarly.

The next result can be verified in analogy with [2, Theorems 1.17, 1.19].

Theorem 4.2. The following classes of maps between cyclic presheaves
define combinatorial and proper model structures on �Pre(C ).

(i) Pointwise weak equivalences and pointwise cofibrations.

(ii) Pointwise weak equivalences and pointwise fibrations.

Remark 4.3. The model structure in (i) is called the pointwise injective
model structure. We note the injective fibrations are defined by the right lifting
property with respect to pointwise acyclic cofibrations. In the pointwise pro-
jective model structure (ii), the projective cofibrations are defined by the left
lifting property with respect to pointwise acyclic fibrations.

The following lemmas are now immediate from the definitions.
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Lemma 4.4. With the weak level r and weak monic level r model structure
on cyclic sets, the adjunction (3) is a Quillen pair for the pointwise injective
and projective model structures.

Lemma 4.5. The identity functor on �Pre(C ) induces a Quillen equivalence
between the pointwise injective and projective model structures.

Lemma 2.2 implies immediately:

Lemma 4.6. With a monic model structure on �Set the pointwise injective
model structure on �Pre(C ) is monoidal.

Next we exhibit a well known set of generators for the pointwise projective
model structure on �Pre(C ).

Lemma 4.7. In the pointwise projective model structure on �Pre(C ) the
class of cofibrations is generated by the set of maps C⊗i where i is a generating
cofibration in �Set and C ∈ C , while the class of acyclic cofibrations is
generated by the set of maps C⊗ j where j is a generating acyclic cofibration
in �Set and C ∈ C .

Using Lemma 4.7, we get:

Lemma 4.8. With a monic model structure on �Set the pointwise projective
model structure on �Pre(C ) is monoidal.

Standard adjunction arguments involving Hom�Pre(C ) and hom�Set com-
bined with Lemma 4.6 and Lemma 4.8 imply:

Corollary 4.9. With a monic model structure on �Set the following equi-
valent statements hold true.

(i) If i: X → Y a cofibration and i ′: X ′ → Y ′ a fibration in either one of
the pointwise model structures on �Pre(C ), then the pullback map

Hom�Pre(C )(Y , X ′)
→ Hom�Pre(C )(Y , Y ′)×Hom�Pre(C )(X ,Y ′) Hom�Pre(C )(X , X ′)

is a fibration that is a pointwise weak equivalence if either i or i ′ is so.

(ii) With the same assumptions as in (i), the pullback map

hom�Set(Y , X ′)→ hom�Set(Y , Y ′)×hom�Set(X ,Y ′) hom�Set(X , X ′)

is a fibration that is a weak equivalence in the model structure on �Set
if either i or i ′ is so.

(iii) If i: K → L a cofibration in �Set and i ′: X ′ → Y ′ a fibration in
�Pre(C ), the map

X ′L→ X ′K ×Y ′K Y ′L
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is a fibration that is a pointwise weak equivalence if either i or i ′ is so.

(iv) The pointwise model structures on �Pre(C ) are cyclic model structures.

5. Local model structures

We shall construct the local model structures on cyclic presheaves as left
Bousfield localizations of the pointwise injective and projective model struc-
tures. Existence of localized model structures on combinatorial and left proper
model structures is known by work of Smith. We refer to [8] for homotopy loc-
alization techniques at large and to [2] for a concise introduction to Bousfield
localization of (enriched) model categories; in particular, we will employ de-
rived mapping object functors for the pointwise model structures in Section 4.

The next result due to Dugger-Isaksen [6, Proposition 7.2] uses Jardine’s
work on simplicial presheaves [10, §1].

Proposition 5.1. A map X → Y between simplicial presheaves on C is a
local acyclic fibration if and only if every diagram

∂�[n]× C X

�[n] C Y

admits local liftings, i.e., there is a covering sieve R ⊂ C (−, C) such that for
every C ′ → C in R there exists a lifting as indicated in the following diagram:

∂�[n]× C X

�[n] C Y

′

′

From [5, Definition 4.2] we recall:

Definition 5.2. A map of simplicial presheaves U → C is a hypercover if
it is a local acyclic fibration, Un a coproduct of representables for every n ≥ 0,
and C an object of C .

In what follows we shall employ the classical Čech construction in order
to define level descent conditions for cyclic presheaves. First we need some
terminology: By a “pointwise level r” model structure on �Pre(C ) we refer
to the pointwise injective and projective model structures in Theorem 4.2 in



38 sigurd seteklev and paul arne østvær

the event �Set is equipped with either the “weak level r” or the “weak monic
level r” model structure.

Definition 5.3. A pointwise level r fibrant cyclic presheaf Z satisfies level
r descent for a hypercover U → C if the functorially induced map of cyclic
sets from Z (C) to the homotopy limit of the Čech construction

(4) Z (C) −−−→ holim

(∏
α0

Z (U
α0
0 ) −−−→−−−→

∏
α1

Z (U
α1
1 )
−−−→−−−→−−−→ · · ·

)

is a level r weak equivalence. The index αn runs over the representable sum-
mands of Un. If Z is not pointwise level r fibrant, then Z satisfies level r

descent if some pointwise level r fibrant replacement satisfies level r descent.
A cyclic presheaf satisfies level r descent if it satisfies level r descent for every
hypercover.

Remark 5.4. If Z is a pointwise level r fibrant cyclic presheaf, then �C
r Z is

a pointwise fibrant simplicial presheaf according to the Quillen adjunction (3)
in Lemma 4.4. Thus Z satisfies level r descent only if the simplicial presheaf
�C

r Z satisfies descent in the sense of [5, Definition 4.3].

What follows is a crux input in our approach to the local model structures
on �Pre(C ). It is the cyclic version of an analogous result for simplicial
presheaves proven in [5, Lemma 4.1], which we refer to for further details.

Lemma 5.5. A cyclic presheaf Z on C satisfies level r descent for a hy-
percover U → C if and only if the functorially induced map between derived
mapping object functors

(5) RHom�Pre(C )(C, Z )
∼=−−−→ RHom�Pre(C )(U, Z )

is an isomorphism for the pointwise level r model structure on �Pre(C ). In
particular, Z satisfies level r descent if and only if (5) is an isomorphism for
every hypercover U → C.

Proof. In global sections the internal hom object Hom�Pre(C )(C, Z ) iden-
tifies with Z (C). Hence the lemma follows from the weak equivalences

Hom�Pre(C )(U, Z ) � Hom�Pre(C )(hocolim Un, Z )

� holim Hom�Pre(C )(Un, Z )

� holim
∏
αn

Z (Uαn

n ).
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Here, global sections and also cofibrant and fibrant replacements are left im-
plicit in the notation.

Remark 5.6. There exist equivalent formulations of Lemma 5.5 in the
pointwise injective and projective model structures in terms of hom�Set(−,−).
We refer to [5, Lemma 4.1] for the corresponding formulations for simplicial
presheaves.

We are ready to define level local weak equivalences for cyclic presheaves.

Definition 5.7. A map X → Y between cyclic presheaves on C is called
a level r local weak equivalence if for every cyclic presheaf Z that satisfies
level r descent, the functorially induced map between derived mapping objects

RHom�Pre(C )(Y , Z ) −−−→ RHom�Pre(C )(X , Z )

is an isomorphism for the pointwise level r model structure on �Pre(C ).

Remark 5.8. Every hypercover is a level r local weak equivalence for
every r ≥ 1. The level r local weak equivalences between cyclic presheaves
that satisfies level r descent are pointwise weak equivalences.

Next we shall define a countable infinite set worth of local model structures
on �Pre(C ) by localizing the pointwise model structures in Theorem 4.2
with respect to the class of hypercovers. The set-theoretic issues involved in
these localizations can be dealt with by reference to [5]. In effect, the main
body of work in [5] shows that for the second claim in Lemma 5.5 it suffices
to consider only a dense set of hypercovers. The class of hypercovers has a
dense subset by [5, Proposition 6.4]. We are ready to prove existence of the
following model structures where the desired characterizations of the fibrant
objects follow immediately from Lemma 5.5.

Theorem 5.9. The following classes of maps define combinatorial and left
proper Quillen equivalent model structures on �Pre(C ).

(i) The level r local injective model structure consisting of level r local
weak equivalences, pointwise cofibrations and level r local injective
fibrations. The class of level r local injective fibrant cyclic presheaves
coincides with the pointwise injective fibrant cyclic presheaves satisfying
level r descent.

(ii) The level r local projective model structure consisting of level r local
weak equivalences, projective cofibrations and level r local projective
fibrations. The class of level r local projective fibrant cyclic presheaves
coincides with the pointwise fibrant cyclic presheaves satisfying level r

descent.
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Proof. The model structures are simply obtained by localizing the level r

model structures in Theorem 4.2 with respect to a dense subset of the class of
hypercovers. Lemma 5.5 implies the classes of fibrant objects in the localized
model structures coincide with the respective classes of level r fibrant objects.

The constructions of the “strong” versions of the “level r local” model struc-
tures on �Pre(C ) run in parallel with the above: A “strong pointwise” model
structure on cyclic presheaves refers to the pointwise injective and projective
model structures in Theorem 4.2 in the event �Set is equipped with either the
“strong” or the “monic strong” model structure.

Definition 5.10. A strong pointwise fibrant cyclic presheaf Z satisfies
strong descent for the hypercover U → C if the canonical map in the Čech con-
struction (4) is a strong pointwise weak equivalence. If Z is not strong point-
wise fibrant, then Z satisfies strong descent if some strong pointwise fibrant
replacement satisfies strong descent. A cyclic presheaf Z satisfies strong des-
cent if it satisfies strong descent for every hypercover.

We leave the verification of the next result to the reader since it is analogous
to the proof of Lemma 5.5.

Lemma 5.11. A cyclic presheaf Z on C satisfies strong descent for a hy-
percover U → C if and only if the functorially induced map between derived
mapping object functors

(6) RHom�Pre(C )(C, Z )
∼=−−−→ RHom�Pre(C )(U, Z )

is an isomorphism for the strong pointwise model structure on �Pre(C ).

Definition 5.12. A map X → Y between cyclic presheaves on C is called
a strong local weak equivalence if for every cyclic presheaf Z that satisfies
strong descent the functorially induced map between derived mapping object
functors

RHom�Pre(C )(Y , Z )
∼=−−−→ RHom�Pre(C )(X , Z )

is an isomorphism for the strong pointwise model structure on �Pre(C ).

We note that every hypercover is a strong local weak equivalence. With these
definitions, a proof of the next result follows as for Theorem 5.9 by localizing
the strong pointwise model structures with respect to a dense subset of the
class of hypercovers on C , and applying Lemma 5.11 for the identification of
the strong local fibrant objects.

Theorem 5.13. The following classes of maps define combinatorial and left
proper Quillen equivalent model structures on �Pre(C ).
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(i) The strong local injective model structure consisting of strong local weak
equivalences, pointwise cofibrations and strong local injective fibrations
(defined by the right lifting property). The class of strong local injective
fibrant objects coincides with the strong pointwise injective fibrant cyclic
presheaves satisfying strong descent.

(ii) The strong local projective model structure consisting of strong local
weak equivalences, projective cofibrations and strong local projective
fibrations (defined by the right lifting property). The class of strong local
projective fibrant objects coincides with the strong pointwise projective
fibrant cyclic presheaves satisfying strong descent.

We shall end this paper by noting that the local model structures are mon-
oidal, and hence cyclic. This result suggests there exists a highly structured
theory of stable homotopy of cyclic presheaves. For the one-point site, this
should be closely related to stable S1-equivariant homotopy theory.

Proposition 5.14. With a monic model structure on �Set the local model
structures on �Pre(C ) are monoidal.

Proof. The proof of the corresponding result for simplicial presheaves
given in [2, Theorem 3.38] carries over to the setting of cyclic presheaves on
account of Lemma 4.6 and Lemma 4.8.
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