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A NOTE ON FRACTIONAL INTEGRAL OPERATORS
DEFINED BY WEIGHTS AND NON-DOUBLING

MEASURES

OSCAR BLASCO, VICENTE CASANOVA and JOAQUÍN MOTOS∗

Abstract
Given a metric measure space (X, d, μ), a weight w defined on (0,∞) and a kernel kw(x, y)
satisfying the standard fractional integral type estimates, we study the boundedness of the operators
Kwf (x) = ∫

X
kw(x, y)f (y) dμ(y) and K̃wf (x) = ∫

X
(kw(x, y) − kw(x0, y))f (y) dμ(y) on

Lebesgue spaces Lp(μ) and generalized Lipschitz spaces Lipφ , respectively, for certain range of
the parameters depending on the n-dimension of μ and some indices associated to the weight w.

1. Introduction

It is well known that a basic assumption in the classical Calderón-Zygmund
theory in Rn is the doubling property of the underlying measure space, i.e.
μ(B(x, 2r)) ≤ Cμ(B(x, r)) for all x ∈ Rn and r > 0. However, it has been
recently shown that many results of the theory still hold for general metric
spaces X assuming only that μ(B(x, r)) ≤ Crn for all x ∈ X and r > 0. The
reader is referred to [8], [9], [26] for results on vector-valued inequalities and
weights and to [13], [19], [34], [35] for results on classical spaces such as H 1

and BMO in the setting of non-doubling measures.
The aim of this note is to analyze the boundedness of the fractional integral-

type operators defined on non-doubling measure spaces acting on Lebesgue
spaces and generalized Lipschitz spaces. This study was initiated in the work of
J. García-Cuerva and A. E. Gatto (see [6], [7], [10]) for the classical fractional
integral operators and Lipschitz spaces, which had been previously developed
in the setting of spaces of homogeneous type in [11], [12]. In this paper we
are able to extend some of their results, including weights more general than
the potential ones, and to see that a similar theory can be applied to operators
defined with kernels more general than the fractional integral ones.

The action of the fractional integral operator

Iα(f )(x) =
∫

Rn

f (y)

|x − y|n−α dy
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on Hölder spaces goes back to the work of Hardy-Littlewood in [14]. Since
then, many different extensions have been considered. Similar results for
power weights were proved in [27], [28] and later, extended to other classes
of weights, including power-logarithmic type ones, in [21]. On a different dir-
ection some development of the theory in the setting of generalized Lipschitz
spaces and spaces of homogeneous type was initiated in [17], [18] and con-
tinued in [11]. More recently there are several studies of potential operators in
generalized Lipschitz that have been initiated (see [4], [16], [31]).

In [22] E. Nakai introduces the “generalized fractional integral”

Iρ(f )(x) =
∫

Rn
f (y)

ρ(|x − y|)
|x − y|n dy

for a given ρ : (0,∞) → (0,∞) with certain properties and studies its
boundedness properties on Lebesgue spaces. Also in [23] he considers, in the
setting of n-homogeneous spaces (X, d, μ) such that μ(B(x, r)) ≈ rn, the
operator

Iρ(f )(x) =
∫
X

f (y)
ρ(d(x, y))

d(x, y)n
dμ(y)

and extends the boundedness results even to Orlicz spaces.
The reader is referred to further boundedness results of the generalized

fractional integrals in other settings to the papers [25], [24], [5].
Our aim is to study these type of operators in the setting of non-doubling

measures and to see how the boundedness results in Lebesgue and Lipschitz
type spaces can be described in term of certain well-known indices associated
to the weight function defining the operators.

Throughout the paper (X, d, μ) will be a metric measure space, that is a
metric space (X, d) equipped with a Borel measure μ such that

(1) μ(B(x, r)) ≤ Crn

for every ball B(x, r) = {y ∈ X : d(x, y) < r}, where n > 0 is some fixed
constant and C is independent of x and r . We shall deal, for simplicity, only
with the case diam(X) = ∞.

For us a weight w on an interval I ⊂ (0,∞) will always be a continuous
function w : I → (0,∞). We shall use weights defined on (0,∞) but we
shall relate them with the known theory for weights defined on (0, 1]. Given
w : (0,∞) → (0,∞) we denote by w0(t) = w(t) and w∞(t) = w(1/t) for
0 < t ≤ 1.

We consider the indices m(w), M(w), m∞(w) and M∞(w) introduced by
N. G. Samko in the case of weights defined on the finite interval (0, 1] (see
[29]) or by N. G. et al. in the case [1,∞) (see [32]) (which actually were
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motivated by the Matuszewska-Orlicz indices first introduced in [20]). We
shall also work in the class of weights W̃ such that there exists a, b ∈ R such
that taw(t) is almost increasing in (0, 1], tbw(t) is almost decreasing in [1,∞)

and −∞ < M(w),m∞(w) < +∞.

In the paper we shall consider B(X) × B(X)-measurable functions kw :
X ×X → C that satisfy the following conditions:

(2) |kw(x, y)| ≤ C
w(d(x, y))

d(x, y)n
, x, y ∈ X, x 	= y

and there exists ε > 0 such that

(3) |kw(x, z)− kw(y, z)| ≤ C

(
d(x, y)

d(x, z)

)ε
w(d(x, z))

d(x, z)n
,

d(x, z) ≥ 2d(x, y) > 0.

This extends the definition of fractional kernels of order α and regularity ε
introduced in [6] for w(t) = tα and also the case Iρ introduced in [22], [23].

For such kernels we define the operators

Kwf (x) =
∫
X

kw(x, y)f (y) dμ(y)

and
K̃wf (x) =

∫
X

(kw(x, y)− k(x0, y))f (y) dμ(y)

and study their boundedness on Lebesgue spaces and generalized Lipschitz
spaces. As pointed out above operators of such a fashion have been previously
considered in [22], [23], [25] in the setting of homogeneous spaces and also
there their boundedness in Lebesgue and Orlicz spaces have been studied.

Our considerations are inspired by those developed in the case w(t) = tα

corresponding to the classical fractional integrals. However we will explore
the connections between the weight w and the measure μ that still allow the
operators Kw and K̃w to be well defined for functions in Lp(μ) and will find
the dependence between their boundedness on some spaces and the indices of
the weight w. We shall find a Hardy-Littlewood-Sobolev type inequality for
Kw in our setting in Theorem 3.2. We will study the boundedness of K̃w from
Lp(μ) into Lipφ for φ(t) = t−n/pw(t) in Theorem 4.6 and from Lipφ into
Lipψ , where ψ depends on φ and w in some special fashion, in Theorem 4.9.
Our results recover those obtained in [6] for the fractional integral operator
(corresponding to w(t) = tα) and classical Lipschitz classes (corresponding
to φ(t) = tβ).
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The paper is divided into three sections. In the first one we prove the basic
lemmas on weights to be used in the paper. Section 3 is devoted to get conditions
on the weights for the operatorKw to be defined on Lp(μ) for some values on
p. Section 4 contains the results on K̃w and its boundedness on the generalized
Lipschitz classes.

As usualA ≈ B means thatK−1A ≤ B ≤ KA for someK > 1, C denotes
a constant that may vary from line to line and p′ stands for the conjugate
exponent, 1/p + 1/p′ = 1.

Acknowledgement. We would like to thank the referee for his/her help-
ful comments and for providing us the references [22], [23], [25] that the
authors were not aware of.

2. Admisible weights

In what follows we shall use the following indices introduced by N. G. Samko
for weights defined on (0, 1] (see [29, Def. 2.3], see also [20]) or by N. G. Sam-
ko et al. for weights defined on [1,∞) (see [32, Pag. 566], see also [20]). We
write

m(w) = sup
x>1

log
(
limh→0

w(xh)

w(h)

)
log x

, M(w) = inf
x>1

log
(
limh→0

w(xh)

w(h)

)
log x

,(4)

m∞(w) = sup
x>1

log
(
limh→∞

w(xh)

w(h)

)
log x

, M∞(w) = inf
x>1

log
(
limh→∞ w(xh)

w(h)

)
log x

.(5)

Definition 2.1. We shall say that a weight on (0,∞) belongs to the class
W̃ if there exista, b ∈ R such that taw(t) is almost increasing in (0, 1] (i.e. there
existsC ≥ 1 such that taw(t) ≤ Csaw(s) for 0 < t ≤ s ≤ 1), tbw(t) is almost
decreasing in [1,∞) (i.e. there exists C ≥ 1 such that sbw(s) ≤ Ctbw(t) for
1 ≤ t ≤ s < ∞) and −∞ < M(w),m∞(w) < +∞.

For a weight w ∈ W̃ , we use the notation mw = min{m(w),m∞(w)} and
Mw = max{M(w),M∞(w)}.

Definition 2.2. Given −∞ < σ1, σ2 < ∞, we say that a weight w
on (0,∞) belongs to 	(σ1, σ2) if tσ1w(t) is almost increasing in (0,∞) and
tσ2w(t) is almost decreasing in (0,∞).

Remark 2.3. Observe that if w ∈ 	(σ1, σ2) then there exists C ≥ 1 such
that, for 0 < s < ∞,

C−1x−σ2w(s) ≤ w(xs) ≤ Cx−σ1w(s), 0 < x ≤ 1,(6)

C−1x−σ1w(s) ≤ w(xs) ≤ Cx−σ2w(s), 1 ≤ x.(7)
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Hence it follows immediately that if w ∈ 	(σ1, σ2) then σ2 ≤ σ1.

Our first objective is to show that the class W̃ can be described as W̃ =⋃
σ1,σ2

	(σ1, σ2).
To such a purpose, let us first recall some classical weights considered

by Zygmund, Bari and Stechkin (see [1]) which play an important role in
extending results valid for w(t) = tα to more general weights and that will be
connected with our class of weights.

Let −∞ < β, γ < ∞ and let w be a weight on (0, 1]. w is said to belong
to Z β([0, 1]) if there exists C > 0 such that

(8)
∫ h

0

w(t)

t1+β dt ≤ C
w(h)

hβ
, h < 1.

w is said to belong to Zγ ([0, 1]) if there exists C > 0 such that

(9)
∫ 1

h

w(t)

t1+γ dt ≤ C
w(h)

hγ
, h ≤ 1.

w is said to belong to W̃0([0, 1]) if there exists a ∈ R such that

(10) tau(t) is almost increasing.

The class of weights in Z β([0, 1]) ∩ Zγ ([0, 1]) ∩ W̃0([0, 1]) is called the
generalized Zygmund-Bari-Stechkin class in [15]. These classes of weights
have been used by many authors and under different names (see [2], [3] for
the notation dε and bδ and references therein).

We have the following connection between the Zygmund-Bari-Steckin clas-
ses and the former indices (see [29, Pg. 125], [15, Thm 3.1 and Thm 3.2], [32,
Thm 2.4]).

Theorem 2.4. Let w ∈ W̃0([0, 1]) and −∞ < β, γ < ∞. The following
are equivalent.

(a) w ∈ Z β([0, 1]) (resp. w ∈ Zγ ([0, 1])).

(b) m(w) > β (resp. M(w) < γ ).

(c) For all m(w) > δ > β one has that w(t)

tδ
is almost increasing in (0, 1]

(resp. for all M(w) < δ < γ one has that w(t)
tδ

is almost decreasing in
(0, 1]).

We now collect in the following result several facts which easily follow
from the definition and the previously mentioned results.
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Theorem 2.5. Let w be a weight on (0,∞). The following are equivalent.

(i) w ∈ ⋃
σ1,σ2

	(σ1, σ2).

(ii) w ∈ W̃ .

(iii) There exist u, v ∈ W̃0([0, 1]) such that u(1) = v(1), M(u),M(v) ∈ R
and

w(t) =
{
u(t), 0 < t ≤ 1;

v(1/t), 1 ≤ t < ∞.

For examples in the class W̃ we refer to [30].
It is not difficult to see that m(w) ≤ M(w) when w ∈ W̃0([0, 1]) (see [30,

(2,4)–(2.5)]). Let us mention the following useful result given in terms of the
indices previously defined.

Proposition 2.6. Let w ∈ W̃ and β < mw ≤ Mw < γ . Then w ∈
	(−β1,−γ1) for any β < β1 < mw and Mw < γ1 < γ .

Proof. Using Theorem 2.4 applied tow0 andw∞, sincem(w0) = m(w) >

β andM(w∞) = −m∞(w) < −β, we have t−β1w(t) and tβ1w∞(t) are almost
increasing and decreasing in (0, 1] respectively. This shows that t−β1w(t) is
almost increasing in (0,∞).

Similarly we get the corresponding result for γ1.

We shall start by proving a couple of basic lemmas that will be used in the
sequel.

Lemma 2.7. Let w ∈ W̃ and ε ∈ R. Then there exists C > 0 such that, for
all x ∈ X and r > 0,

(11)
∫
B(x,r)

w(d(x, y))

d(x, y)n−ε
dμ(y) ≤ C

∫ r

0
t εw(t)

dt

t
.

Proof. Assume w ∈ 	(σ1, σ2). Define, for j = 0, 1, . . .,

Bj = {y ∈ B(x, r) : 2−(j+1)r ≤ d(x, y) < 2−j r}.

Note that (6) gives

(12) C−1w(2−j r) ≤ w(d(x, y)) ≤ Cw(2−j r), y ∈ Bj .
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Observe that
⋃
j Bj = B(x, r) \ {x} and μ({x}) = 0. Now, using condition

(1), we have∫
B(x,r)

w(d(x, y))

d(x, y)n−ε
dμ(y) =

∞∑
j=0

∫
Bj

w(d(x, y))

d(x, y)n−ε
dμ(y)

≈
∞∑
j=0

w(2−j r)(2−j r)ε−n
∫
Bj

dμ(y)

≤ C

∞∑
j=0

w(2−j r)(2−j r)ε−nμ(B(x, 2−j r))

≤ C

∞∑
j=0

(2−j r)εw(2−j r)

≤ C

∞∑
j=0

(2−j r)ε
∫ 2−j r

2−(j+1)r

w(t)
dt

t

≤ C

∞∑
j=0

∫ 2−j r

2−(j+1)r

t εw(t)
dt

t

= C

∫ r

0
t εw(t)

dt

t
.

Corollary 2.8. Let w ∈ W̃ and −ε < mw. Then there exists C > 0 such
that, for all x ∈ X and r > 0,

(13)
∫
B(x,r)

w(d(x, y))

d(x, y)n−ε
dμ(y) ≤ Crεw(r).

Proof. From Proposition 2.6 one obtains w ∈ 	(σ1, σ2) for some ε > σ1.
Invoking Lemma 2.7 and using (6) we have∫ r

0
t εw(t)

dt

t
= rε

∫ 1

0
sεw(rs)

ds

s
≤ Crεw(r)

∫ 1

0
sε−σ1

ds

s
≤ Crεw(r).

Remark 2.9. If γ > 0 and β ∈ R then (see [6, Lemma 2.1] for β = 0)
(14)∫

B(x,r)

(
1 + | log(d(x, y)|)β

d(x, y)n−γ
dμ(y) ≤ Crγ (1 + | log r|)β, 0 < r < ∞.
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To obtain (14) for 0 < r ≤ 1 apply Corollary 2.8 for ε = 0 to w(t) =
wγ,β(t) which belongs to 	(σ1, σ2) whenever −σ1 < γ < −σ2. The case
r > 1 follows similarly using wγ,−β .

Lemma 2.10. Letw ∈ W̃ and δ ∈ R. Then there exists C > 0 such that, for
all x ∈ X and r > 0,

(15)
∫
X\B(x,r)

w(d(x, y))

d(x, y)n+δ
dμ(y) ≤ C

∫ ∞

r

w(t)

tδ

dt

t
.

Proof. Assume again w ∈ 	(σ1, σ2) and now consider for j = 0, 1, . . .

Aj = {y ∈ X : 2j r ≤ d(x, y) < 2j+1r}.
As above

(16) C−1w(2j r) ≤ w(d(x, y)) ≤ Cw(2j r), y ∈ Aj .
Using again (1) we have∫

X\B(x,r)
w(d(x, y))

d(x, y)n+δ
dμ(y) =

∞∑
j=0

∫
Aj

w(d(x, y))

d(x, y)n+δ
dμ(y)

≈ C

∞∑
j=0

(2j r)−δ−nw(2j r)
∫
Aj

dμ(y)

≤ C

∞∑
j=0

(2j r)−δ−nw(2j r)μ(B(x, 2j+1r))

≤ C

∞∑
j=0

(2j r)−δw(2j r)

≈ C

∞∑
j=0

(2j r)−δ
∫ 2j+1r

2j r
w(t)

dt

t

≤ C

∞∑
j=0

∫ 2j+1r

2j r

w(t)

tδ

dt

t
= C

∫ ∞

r

w(t)

tδ

dt

t
.

Corollary 2.11. Let w ∈ W̃ and Mw < δ. Then there exists C > 0 such
that, for all x ∈ X and r > 0,

(17)
∫
X\B(x,r)

w(d(x, y))

d(x, y)n+δ
dμ(y) ≤ C

w(r)

rδ
.
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Proof. From Proposition 2.6 one obtainsw ∈ 	(σ1, σ2) for some δ > −σ2

Invoking Lemma 2.10 and (7) we get the estimate∫ ∞

r

w(t)

tδ

dt

t
= 1

rδ

∫ ∞

1

w(rs)

sδ

ds

s
≤ C

w(r)

rδ

∫ ∞

1
s−σ2−δ ds

s
≤ C

w(r)

rδ
.

Remark 2.12. If γ > 0 and β ∈ R then (see [6, Lemma 2.2] for β = 0)
(18)∫

X\B(x,r)

(
1 + | log(d(x, y)|)β

d(x, y)n+γ
dμ(y) ≤ C

1

rγ
(1 + | log r|)β, 0 < r < ∞,

To obtain (18) for 0 < r ≤ 1 we use Corollary 2.11 with δ = 0 applied to
w−γ,β , which belongs to 	(σ1, σ2) for σ2 < γ < σ1. The case r > 1 follows
similarly using the weight w−γ,−β .

3. The weighted fractional kernels

Definition 3.1. Let w ∈ W̃ . A B(X) × B(X)-measurable function kw :
X ×X → C is said to be a w-fractional kernel if

(19) |kw(x, y)| ≤ C
w(d(x, y))

d(x, y)n
, x, y ∈ X, x 	= y.

Denote by Kw the operator given by

Kwf (x) =
∫
X

kw(x, y)f (y) dμ(y), x ∈ X.

Note that if
∫ 1

0
w(t)

t
< ∞, in particular if w ∈ 	(σ1, σ2) with σ1 < 0,

then Kw is well defined on bounded functions f with bounded support (due
to Lemma 2.7), or if w ∈ W̃ and w(t) ≤ Ctn for 0 < t < ∞ then Kw is well
defined on integrable functions f .

Let us extend the definition of such operator to more general functions
depending on the properties of w.

In [6, Theorem 3.2] it was shown that for w(t) = tα and 1 ≤ p < n/α

the operator Kα maps Lp(μ) into Lq,∞(μ) for 1/q = 1/p − α/n extending
to the non-doubling setting the Hardy-Littlewood-Sobolev inequality which
holds for Rn and the Lebesgue measure (see [33]). The reader is referred to
[25, Thm 1.3] for the boundedness of Iρ fromLp into some Orlicz space under
certain conditions of ρ and in the setting ofQ-homogeneous spaces and to [22,
Thm 3.1] for the boundedness of Iρ from L(Rn) into L�(Rn).

Here we present a “weak type” result which can be achieved in the non-
doubling setting.
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Theorem 3.2. Let w ∈ W̃ with 0 < mw ≤ Mw < n and let kw be a
w-fractional kernel. If 1 ≤ p < n/Mw, 0 < ε < mw and 0 < δ < n −Mw

then there exists A > 0 such that, for 1/q1 = 1/p − (mw − ε)/n and 1/q2 =
1/p − (Mw + δ)/n, we have for every f with ‖f ‖Lp(μ) = 1

μ{x : |Kw(f )(x)| > λ} ≤ C

λq2
, 0 < λ ≤ A,(20)

μ{x : |Kw(f )(x)| > λ} ≤ C

λq1
, λ ≥ A.(21)

Proof. From Proposition 2.6 we have w ∈ 	(σ1, σ2) for all 0 < −σ1 <

mw ≤ Mw < −σ2 < n. Put σ1 = ε − mw and σ2 = −Mw − δ. Now, let
1 < p < n/Mw, f ∈ Lp(μ) and r > 0 and define

Ir(f, x) =
∫
B(x,r)

|Kw(x, y)||f (y)| dμ(y), x ∈ X,

IIr (f, x) =
∫
X\B(x,r)

|Kw(x, y)||f (y)| dμ(y), x ∈ X.

On the one hand, using Hölder’s inequality and Lemma 2.7, we have

Ir(f, x)

=
∫
B(x,r)

|Kw(x, y)||f (y)| dμ(y)

≤ C

∫
B(x,r)

w(d(x, y))

d(x, y)n
|f (y)| dμ(y)

≤ C

(∫
B(x,r)

w(d(x, y))

d(x, y)n
|f (y)|p dμ(y)

)1/p(∫
B(x,r)

w(d(x, y))

d(x, y)n
dμ(y)

)1/p′

.

Now, using that mw > 0 in Corollary 2.8, we obtain

(22) Ir (f, x) ≤ Cw(r)1/p
′
(∫

B(x,r)

w(d(x, y))

d(x, y)n
|f (y)|p dμ(y)

)1/p

Now, using Fubini’s theorem and Corollary 2.8 again, we have∫
X

Ir(f, x)
p dμ(x)

≤ Cw(r)p/p
′
∫
X

(∫
B(y,r)

w(d(x, y))

d(x, y)n
dμ(x)

)
|f (y)|p dμ(y)

≤ Cw(r)p
∫
X

|f (y)|pdμ(y).
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On the one hand

IIr (f, x)

=
∫
X\B(x,r)

|Kw(x, y)||f (y)| dμ(y)

≤ C

∫
X\B(x,r)

w(d(x, y))

d(x, y)n
|f (y)| dμ(y)

≤ C

(∫
X\B(x,r)

|f (y)|p dμ(y)
)1/p(∫

X\B(x,r)
wp

′
(d(x, y))

d(x, y)np
′ dμ(y)

)1/p′

.

and now using that Mwp
′ = p′Mw < (p′ − 1)n and Corollary 2.11, we have

IIr (f, x) ≤ Cr−n/pw(r)
(∫

X\B(x,r)
|f (y)|p dμ(y)

)1/p

.

Now, for each ‖f ‖p = 1, the estimates (6) and (7) allow us to write

IIr (f, x) ≤ C0r
−n/p max{r−σ1 , r−σ2} = φ(r).

Denoting

φ(r) =
{
C0r

−n/p−σ1 , 0 < r ≤ 1;

C0r
−n/p−σ2 , 1 ≤ r < ∞,

we have that φ is continuous, decreasing in (0,∞), limr→0 φ(r) = ∞ and
limr→∞ φ(r) = 0. Hence for any λ > 0 there is a unique 0 < r < ∞ such
that φ(r) = λ/2 and IIr (f, x) ≤ λ/2 for all x ∈ X. Hence we have

μ{x : |Kw(f )(x)| > λ} ≤ μ{x : Ir(f, x) > λ/2}
≤ Cλ−p‖Ir(f, .)‖pp
≤ Cλ−pw(r)p

≤ Cλ−prnφ(r)p

= C[φ−1(λ/2)]n.

To finish the proof observe that if λ ≥ 2C0 then φ−1(λ/2) = C1λ
−q1/n where

n/q1 = n/p + σ1 and that if 0 < λ ≤ 2C0 then φ−1(λ/2) = C2λ
−q2/n where

n/q2 = n/p + σ2.
The case p = 1 is similar with the obvious modifications.
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4. Boundedness in Lipschitz spaces

Definition 4.1. Let φ : (0,∞) → (0,∞) be a continuous function. A func-
tion f : X → C is said to satisfy a φ-Lipschitz condition if

(23) |f (x)− f (y)| ≤ Cφ(d(x, y)), x, y ∈ X, x 	= y.

The smallest constant satisfying (23) will be denoted ‖f ‖Lip(φ). It is easy to
see that ‖ · ‖Lip(φ) is a norm on the linear space of all φ-Lipschitz functions,
modulo constants, and Lip(φ) is complete under this norm.

Remark 4.2. If limt→0+ φ(t) = 0 then functions in Lipφ are continuous.

Remark 4.3. Assume that there exist constants C > 1 and K > 1 so that
K−1φ(t) ≤ φ(s) ≤ Kφ(t) whenever C−1t ≤ s ≤ Ct . In this case Lip(φ)
defines the same space for all equivalent distances in X and with equivalent
norms.

Definition 4.4. Let kw be a w-fractional kernel. We say that kw has regu-
larity ε > 0 if it satisfies

(24) |kw(x, z)− kw(y, z)| ≤ C

(
d(x, y)

d(x, z)

)ε
w(d(x, z))

d(x, z)n
,

d(x, z) ≥ 2d(x, y) > 0.

For a given x0 ∈ X define

(25) K̃wf (x) =
∫
X

(
kw(x, y)− kw(x0, y)

)
f (y) dμ(y).

Note that, from Lemma 2.10, if f is bounded with supp(f )∩B(x0, 2R) = ∅
then Kwf (x) is well defined for any x ∈ B(x0, R).

Example 4.5. Let kw(x, y) = w(d(x,y))

d(x,y)n
where w ∈ W̃ is differentiable and

sup
t>0

∣∣∣∣ tw′(t)
w(t)

− n

∣∣∣∣ < ∞.

Then kw has regularity 1.

Proof. Consider w1(t) = w(t)

tn
. By the mean value theorem

|w1(t)− w1(s)| ≤ |w′
1((1 − θ)s + θt)||t − s|.
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Hence, setting t (θ, x, y, z) = t0 = (1 − θ)d(x, z)+ θd(y, z) then

|kw(x, z)− kw(y, z)| ≤ |w′
1(t0)||d(x, z)− d(y, z)|

≤ |t0w′(t0)− nw(t0)|
tn+1
0

d(x, y)

≤ C
w(t0)

tn+1
0

d(x, y).

Let x, y, z ∈ X such that d(x, z) ≥ 2d(x, y), i.e. d(x, z) − d(x, y) ≥
d(x, y). It is elementary to see that

3

2
d(x, z) ≥ d(y, z) ≥ 1

2
d(x, z) ≥ d(x, y).

This shows that

1

2
d(x, z) ≤ t (θ, x, y, z) ≤ 3

2
d(x, z),

and allows to conclude that

|kw(x, z)− kw(y, z)| ≤ C
w(d(x, z))

d(x, z)n+1
d(x, y).

Theorem 4.6. Let w ∈ W̃ with mw > 0. Assume that kw is a w-fractional
kernel with regularity 0 < ε < Mw and

max{n/mw, 1} < p < n/(Mw − ε).

Then K̃w is bounded from Lp(μ) to Lip(φ) for φ(t) = t−n/pw(t).

Proof. We have n/p < mw ≤ Mw < n/p + ε. Let f ∈ Lp(μ), x, y ∈ X
with x 	= y and r = d(x, y). Then

|K̃wf (x)− K̃wf (y)| ≤
∫
X

|kw(x, z)− kw(y, z)||f (z)| dμ(z)

≤
∫
B(x,2r)

|kw(x, z)||f (z)| dμ(z)

+
∫
B(x,2r)

|kw(y, z)||f (z)| dμ(z)

+
∫
X\B(x,2r)

|kw(x, z)− kw(y, z)||f (z)| dμ(z).
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First, using Hölder’s inequality and Corollary 2.8 (because mwp′ = p′mw >
n(p′ − 1)), we estimate∫

B(x,2r)
|kw(x, z)||f (z)| dμ(z)

≤ C

∫
B(x,2r)

w(d(x, z))

d(x, z)n
|f (z)| dμ(z)

≤ C

(∫
B(x,2r)

wp
′
(d(x, z))

d(x, z)np
′ dμ(z)

)1/p′(∫
B(x,2r)

|f (z)|p dμ(z)
)1/p

≤ C
w(2r)

rn/p
‖f ‖Lp(μ).

The second term is estimated similarly using B(x, 2r) ⊂ B(y, 3r),∫
B(x,2r)

|kw(y, z)||f (z)| dμ(z) ≤ C
w(3r)

rn/p
‖f ‖Lp(μ).

Finally we use (24) and Corollary 2.11 (sinceMwp
′ = p′Mw < n(p′ −1)+

εp′) to obtain∫
X\B(x,2r)

|kw(x, z)− kw(y, z)||f (z)| dμ(z)

≤ Cd(x, y)ε
∫
X\B(x,2r)

w(d(x, z))

d(x, z)n+ε
|f (z)| dμ(z)

≤ Cd(x, y)ε
(∫

X\B(x,2r)
wp

′
(d(x, z))

d(x, z)(n+ε)p′ dμ(z)

)1/p′

·
(∫

X\B(x,2r)
|f (z)|p dμ(z)

)1/p

≤ C
w(2r)

rn/p
‖f ‖Lp(μ).

Therefore, using that w(r) ≈ w(2r) ≈ w(3r) and r = d(x, y) one gets

|K̃wf (x)− K̃wf (y)| ≤ C
w(d(x, y))

d(x, y)n/p
‖f ‖p.

We write kα for kw in the case w = tα .
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Corollary 4.7 (See [6, Theorem 5.2 ]). Let 0 < α < n and kα be a
w-fractional kernel with regularity ε > 0. If n/α < p ≤ ∞ and α−n/p < ε,
then K̃α maps boundedly Lp(μ) into Lip(α − n/p).

Remark 4.8. The reader is referred to [22, Thm 3.3] for similar result for
Iρ and even its extension to Orlicz spaces.

Let us now analyze the boundedness of K̃w on Lipschitz spaces.

Theorem 4.9. Assume that u,w ∈ W̃ withmw > 0,mu > 0 andMuw < ε.
Let kw be a w-fractional kernel with regularity ε. Then K̃w(1) = 0 if and only
if K̃w maps continuously Lip(u) into Lip(uw).

Proof. Assume K̃w(1) = 0. Equivalently∫
X

(kw(x, z)− kw(y, z)) dμ(z) = 0, x, y ∈ X.

If f ∈ Lip(u), x 	= y and r = d(x, y) then we can write

|K̃wf (x)− K̃w(y)| =
∣∣∣∣∫
X

(kw(x, z)− kw(y, z))(f (z)− f (x)) dμ(z)

∣∣∣∣
≤

∫
B(x,2r)

|kw(x, z)||f (z)− f (x)| dμ(z)

+
∫
B(x,2r)

|kw(y, z)||f (z)− f (x)| dμ(z)

+
∫
X\B(x,2r)

|kw(x, z)− kw(y, z)||f (z)− f (x)| dμ(z).

Now, since muw > 0 (see Proposition 2.6), one gets∫
B(x,2r)

|kw(x, z)||f (z)− f (x)| dμ(z)

≤ C

∫
B(x,2r)

w(d(x, z)

d(x, z)n
u(d(x, z)) dμ(z)

≤ Cu(2r)w(2r)

by virtue of Corollary 2.11.
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Using, as above, the fact that B(x, 2r) ⊂ B(y, 3r) one also gets∫
B(x,2r)

|kw(y, z)||f (z)− f (x)| dμ(z)

≤
∫
B(y,3r)

|kw(y, z)|(|f (z)− f (y)| + |f (y)− f (x)|) dμ(z)

≤ C

∫
B(y,3r)

w(d(y, z))

d(y, z)n
u(d(y, z)) dμ(z)

+ Cu(d(x, y))

∫
B(y,3r)

w(d(y, z))

d(y, z)n
dμ(z).

Since w(3t) ≈ w(2t) ≈ w(t) and u(3t) ≈ u(2t) ≈ u(t), Corollary 2.8
implies that∫
B(y,3r)

w(d(y, z))u(d(y, z))

d(y, z)n
dμ(z)

+ u(d(x, y))

∫
B(y,3r)

w(d(y, z))

d(y, z)n
dμ(z) ≤ Cu(r)w(r).

Finally, we have∫
X\B(x,2r)

|kw(x, z)− kw(y, z)||f (z)− f (x)| dμ(z)

≤ Cd(x, y)ε
∫
X\B(x,2r)

w(d(x, z))

d(x, z)n+ε
u(d(x, z)) dμ(z).

Also using Corollary 2.11 we have
∫
X\B(x,2r)

w(d(x,z))u(d(x,z))

d(x,z)n+ε dμ(z) ≤
Cw(2r)u(2r)

rε
. Hence, the previous estimates imply

|K̃wf (x)− K̃wf (x)| ≤ Cu(r)w(r).

Conversely, if we assume that K̃w is bounded from Lip(u) to Lip(uw) then
K̃(1) should have norm zero in Lip(uw), that is K̃(1) is constant, but since
K̃w(1)(x0) = 0 the constant should be zero.

Applying the previous result for w(t) = tα and u(t) = tβ we recover the
following theorem.

Corollary 4.10 (See [6, Theorem 5.3]). Let α, β > 0 and kα be a frac-
tional kernel with regularity ε > 0 with α+ β < ε. Then K̃α maps boundedly
Lip(β) into Lip(α + β) if and only if K̃α(1) = 0.
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Remark 4.11. The reader is referred to [22, Thm 3.4] and [24, Thm 3.6]
for similar results for Ĩρ and even its extension to Orlicz spaces, where

Ĩρ(f )(x) =
∫

Rn
f (y)

(
ρ(|x − y|)
|x − y|n − ρ(y)(1 − χB0(y))

|y|n
)
dy.
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