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APPROXIMATE WEAK AMENABILITY OF
ABSTRACT SEGAL ALGEBRAS

H. SAMEA

Abstract
In this paper the approximate weak amenability of abstract Segal algebras is investigated. Appli-
cations to compact groups are given. Also an open problem raised by Ghahramani and Lau is
answered negatively.

Introduction

In [3], Ghahramani and Lau studied approximate weak amenability of Segal
algebras on locally compact groups. We continue the study of the notions
approximate weak amenability for a larger class of Banach algebras that called
abstract Segal algebras.

The organization of this paper is as follows. Section 1 is devoted to pre-
liminaries and notations which are needed throughout the rest of the paper. In
Section 2 the structure of abstract Segal algebras is studied. Also the approxim-
ate weak amenability of this class of Banach algebras is investigated. Section 3
is devoted to application of section 2 to convolution Banach algebras on com-
pact groups. It is shown that if G is an infinite compact abelian group, then
the symmetric Segal algebras A(G) and L2(G) are not approximately amen-
able. This establishes negatively the Open Question 2 of [3]. Furthermore, it
is proved that if G is a compact group, then for the abstract Segal subalgebra
L∞(G) of L1(G), the notions of approximate weak amenability, and weak
amenability are equivalent to finiteness of G. This contradicts Remark 3.4 of
[3]. Indeed, if G is an infinite compact group, then L∞(G) is an abstract Segal
subalgebra of the amenable Banach algebra L1(G) that is not approximately
weakly amenable.

1. Preliminaries

Let A be a Banach algebra, and let B and C be non-empty subsets of A. Define
B.C = {bc : b ∈ B, c ∈ C}, and BC to be the linear span of B.C. Write B2

for BB.
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Let A be a Banach algebra, and let X be a Banach A-bimodule. A left
approximate identity in A for X is a net (eα) in A such that for each x ∈ X,
limα eα.x = x. Right approximate identity and approximate identity in A for
X are defined similarly. A bounded linear map D : A → X is called an
X-derivation, if

D(ab) = D(a).b + a.D(b) (a, b ∈ A).

For example, take x ∈ X, and set adx(a) = a.x − x.a (a ∈ A). Then adx

is a derivation; such derivations are termed inner derivations. A derivation
D : A → X is approximately inner if there exists a net (xα) ⊆ X such that
for every a ∈ A, D(a) = limα adxα

(a). A Banach algebra A is amenable
(approximately amenable, respectively) if every derivation from A into X∗ is
inner (approximately inner, respectively) for all Banach A-bimodules X. For
more details see [5] and [8].

Every Banach algebra A with the product of A giving the two module
multiplications defines a Banach A-bimodule. Let A∗ be the dual A-bimodule.
A Banach algebra A is weakly amenable if each derivation from A into A∗
is inner. Recall from [3] that a Banach algebra A is approximately weakly
amenable if each derivation from A into A∗ is approximately inner.

Let (A, ‖.‖A) be a Banach algebra. Recall from [3], a Banach algebra
(B, ‖.‖B) is an abstract Segal subalgebra of A if:

(i) B is a dense left ideal in A.

(ii) There exists M > 0 such that ‖b‖A ≤ M‖b‖B for each b ∈ B.

(iii) ‖ab‖B ≤ ‖a‖A‖b‖B (a, b ∈ B).

Let G be a locally compact group. A Banach space (S(G), ‖.‖S(G)) is Segal
algebra on G if:

(i) S(G) is dense in L1(G).

(ii) There exists M > 0 such that ‖f ‖1 ≤ M‖f ‖S(G) for all f ∈ S(G).

(iii) S(G) is left translation invariant, ‖δx ∗ f ‖S(G) = ‖f ‖S(G) (f ∈ S(G),
x ∈ G), and the map x 	→ δx ∗ f from G into S(G) is continuous for
all f ∈ S(G).

That a Segal algebra on G is an abstract Segal algebra is well-known; see [1],
page 492.

A Segal algebra S(G) is symmetric if it is right translation invariant, and
for all f ∈ S(G), ‖f ∗ δx‖S(G) = ‖f ‖S(G) (x ∈ G), and the map x 	→ f ∗ δx

from G into S(G) is continuous for all f ∈ S(G).
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2. Approximate weak amenability of abstract Segal algebras

We start this section with the following.

Lemma 2.1. Let A be a Banach algebra with a bounded left approximate
identity, B an abstract Segal subalgebra of A. Then A.B is an abstract Segal

subalgebra of A, and A.B = AB
‖.‖B . Furthermore, there exists a left approx-

imate identity for A.B which is also a bounded left approximate identity for
A.

Proof. It is easy to check that AB
‖.‖B is a Banach left A-module. Let (eα)

be a bounded left approximate identity for A. Let x ∈ AB
‖.‖B . Suppose δ > 0.

There exists xδ = ∑n
i=1 aibi ∈ AB, where n ∈ N, ai ∈ A, and bi ∈ B

(1 ≤ i ≤ n), such that ‖x − xδ‖B < δ. Applying the triangular inequality and
properties of B, we have

‖eαx − x‖B ≤ (1 + sup
α

‖eα‖A)δ +
n∑

i=1

‖eαai − ai‖A‖bi‖B.

Hence lim supα ‖eαx − x‖B ≤ (1 + supα ‖eα‖A)δ, and so (eα) is a bounded

approximate left identity in A for AB
‖.‖B . By Cohn’s Factorization Theorem

(Theorem 32.23 of [7]) AB
‖.‖B = A.B. Let a ∈ A, and ε > 0. There exists

bε ∈ B such that ‖a−bε‖A < ε
2 . Also, there exists α such that ‖bε −eαbε‖A <

ε
2 . Hence ‖a −eαbε‖A < ε. Since eαbε ∈ A.B, A.B is dense in A. Hence A.B

is an abstract Segal subalgebra of A.
For each ε > 0 and α, there exists e(α,ε) ∈ A.B such that ‖eα − e(α,ε)‖A ≤

min{ε, 1}. By a simple calculation one can prove that (e(α,ε))(α,ε) is a bounded
left approximate identity for A. Since for a ∈ A, and b ∈ B, ‖e(α,ε)(ab) −
(ab)‖B ≤ ‖e(α,ε)a − a‖A‖b‖B , (e(α,ε)) is a left approximate identity for A.B.

Similar to Theorem 2.8.63 of [1], we have the following result.

Proposition 2.2. If A is an approximately weakly amenable Banach al-
gebra, then A2 = A.

Proof. If A2 
= A, then there exists a0 ∈ A\A2. By the Hahn-Banach the-
orem there exists φ ∈ A∗ such that φ|A2 = 0 and φ(a0) = 1. It is easy to show
that the map D : A → A∗, a 	→ φ(a)φ is a derivation. Since D(a0)(a0) = 1
and for each net (ξα) ⊆ A∗, limα(a0.ξα − ξα.a0)(a0) = 0, we have a contra-
diction.

Theorem 2.3. Let A be a Banach algebra with a bounded approximate left
identity, and B be an abstract Segal subalgebra of A. If B is approximately
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weakly amenable, then B = A.B, and B has an approximate left identity that
is also a bounded approximate left identity for A.

Proof. By Proposition 2.2, and Lemma 2.1

B = B2
‖.‖B ⊆ AB

‖.‖B = A.B ⊆ B.

Therefore B = A.B. Now, by Lemma 2.1 there exists an approximate left
identity for B = A.B which is also a bounded approximate left identity for A.
Hence (eα) is an approximate identity for B.

Definition 2.4. Let (A, ‖.‖A) be a Banach algebra. A Banach algebra
(B, ‖.‖B) is a symmetric abstract Segal algebra of A if:

(i) B is a dense ideal in A.
(ii) There exists M > 0 such that ‖b‖A ≤ M‖b‖B for each b ∈ B.

(iii) ‖ab‖B, ‖ba‖B ≤ ‖a‖A‖b‖B (a, b ∈ B).

Lemma 2.5. Let A be a Banach algebra with a bounded approximate
identity, B a symmetric abstract Segal subalgebra of A. Then A.B.A is a
symmetric Segal algebra of A such that there exists an approximate identity
for A.B.A which is also a bounded approximate identity for A.

Proof. It is easy to check that ABA
‖.‖B is a Banach A-bimodule. Let (eα) be

a bounded approximate identity for A. Let (e(α,ε)) be as the proof of Lemma 2.1.

By a similar way as the proof of Lemma 2.1, it can be proved that ABA
‖.‖B =

A.B.A, and (e(α,ε)) is an approximate identity for the Banach algebra A.B.A.
The remainder is proved in a similar manner.

Theorem 2.6. Let A be a Banach algebra with a bounded approximate
identity, B a symmetric abstract Segal subalgebra of A. If B is approximately
weakly amenable, then B = A.B.A, and B has an approximate identity that
is also a bounded approximate identity for A.

Proof. By Proposition 2.2, B2
‖.‖B = B. From this fact, Lemma 2.1, and

Lemma 2.5

B = B2
‖.‖B = B2

‖.‖B

B

‖.‖B

⊆ AB
‖.‖B

A
‖.‖B

= (A.B)A
‖.‖B ⊆ ABA

‖.‖B = A.B.A ⊆ B.

Therefore B = A.B.A. Now, by Lemma 2.5 there exists an approximate
identity for B = A.B.A which is also a bounded approximate identity for A.

It seems that the hypothesis “A is a symmetric abstract Segal algebra, and
B has an approximate identity” in Remark 3.4 of [3] is omitted. The following
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theorem is a correct version of Remark 3.4 of [3] with its inverse. In the next
chapter, an example is given to show that the hypothesis “B has an approximate
identity” can not be removed.

Theorem 2.7. Let A be an amenable Banach algebra, B a symmetric
abstract Segal algebra of A. Then the following statements are equivalent:

(i) B is approximately weakly amenable.
(ii) B has an approximate identity.

Proof. (i) ⇒ (ii): Since A is amenable, so by Proposition 2.2.1 of [8] it has
a bounded approximate identity. Hence by Theorem 2.6, B has an approximate
identity.

(ii) ⇒ (i): The proof is the same as that of Theorem 3.1 of [3].

Corollary 2.8. Let G be an amenable locally compact group, S(G) a
symmetric abstract Segal subalgebra of L1(G). Then S(G) is approximately
weakly amenable, if and only if, S(G) has an approximate identity.

Proof. Note that by Johnson’s Theorem (Theorem 2.1.8 of [8]), L1(G) is
amenable.

Remark 2.9. Let G be a locally compact group, and S(G) be an approx-
imately weakly amenable abstract Segal subalgebra of L1(G), that is also left
invariant, and ‖δx ∗ f ‖S(G) = ‖f ‖S(G) for all x ∈ G and f ∈ S(G). Then
from Theorem 2.3, S(G) = L1(G) ∗ S(G). Hence S(G) is a Segal algebra on
G (note that the continuity of x 	→ δx ∗ f ; G → S(G), where f ∈ S(G), is
follows from the inequality

‖δx ∗ (g ∗ h) − g ∗ h‖S(G) ≤ ‖δx ∗ g − g‖1‖h‖S(G) (g ∈ L1(G), h ∈ S(G)),

and Theorem 20.4 of [6]).

3. Approximate weak amenability of convolution Banach algebras on
compact groups

The following Proposition establishes negatively the Open Question 2 of [3].

Proposition 3.1. Let G be an infinite, abelian, compact group with the
normalized Haar measure. Then the convolution Banach algebras L2(G) and
A(G) are symmetric Segal algebras on G that are not approximately amenable.

Proof. Let Ĝ be the set of all equivalence classes of continuous irreducible
representations of G (see section 27 of [7]). By Remarks 27.4(i) of [7], each
π ∈ Ĝ is one-dimensional. Also, by Lemma 28.1 of [7], Ĝ is infinite. Let
1 ≤ p < ∞. Since Ĝ is infinite, so there exists a continuous epimorphism
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from the Banach algebra �p(Ĝ) with point-wise multiplication into the Banach
algebra �p(N) with point-wise multiplication. Hence by Theorem 4.1 of [2]
and Proposition 2.2 of [5], �p(Ĝ) is not approximately amenable. By the Peter-
Weyl theorem the convolution Banach algebra L2(G) is isometrically algebra
isomorphic with the Banach algebra �2(Ĝ) with point-wise multiplication,
and hence is not approximately amenable. From Theorem 34.35 of [7], the
convolution Banach algebra A(G) is isometrically algebra isomorphic with
the Banach algebra �1(Ĝ) with point-wise multiplication, and hence is not
approximately amenable.

Let G be a compact group. It is evident that the convolution Banach algebra
L∞(G) is a symmetric abstract symmetric Segal subalgebra of L1(G).

Proposition 3.2. Let G be a compact group. Then for the convolution
Banach algebra L∞(G), the notions of approximate weak amenability, and
weak amenability are equivalent to finiteness of G.

Proof. It is clear that if G is finite, then L∞(G) is weakly amenable.
Assume that L∞(G) is approximately weakly amenable. By Theorem 20.16

of [6], and Theorem 2.3, L∞(G) = L1(G) ∗ L∞(G) ⊆ C(G). Now, by Lem-
ma 37.3 of [7], G is finite.

Remark 3.3. By the above proposition, if G is an infinite compact group,
then the symmetric abstract Segal algebra L∞(G) is not approximately weakly
amenable. So Remark 3.4 of [3] are not valid for all abstract Segal subalgebras
of L1(G), even if G is amenable.

Let G be a compact group with the normalized Haar measure. By Corol-
lary 2.8 (see also [3]), the convolution Banach algebras Lp(G) (1 < p < ∞)
are approximately weakly amenable. In the following proposition, the weak
amenability of the convolution Banach algebras Lp(G) (2 ≤ p < ∞) is
studied.

Proposition 3.4. Let G be a compact group and 2 ≤ p < ∞. Then the
convolution algebra Lp(G) is weakly amenable if and only if G is abelian or
finite.

Proof. If G is abelian, then by Corollary 3.4 of [4] the convolution Banach
algebra Lp(G) is weakly amenable. If G is finite, then �p(G) (= �1(G)) is not
only weakly amenable, but also amenable.

If G is an infinite non-abelian compact group, then there exist x, y ∈ G

such that xy 
= yx. Since 2 ≤ p < ∞, so if 1
p

+ 1
q

= 1, then p ≥ q. Hence
Lp(G) ⊆ Lq(G). It follows that the mapping

Dx : Lp(G) → Lq(G), f 	→ δx ∗ f − f ∗ δx,
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defines a well-defined derivation. By a similar method as Remark 3.2 of [4],
we conclude that Dx is not inner. It is easy to check that the well-known
isometrical Banach-space isomorphism T : Lq(G) → Lp(G)∗, that given by

〈g, T (f )〉 =
∫

G

f (x)g(x−1) dx (f ∈ Lq(G), g ∈ Lp(G)),

defines an Lp(G)-module homomorphism. It follows that the convolution
Banach algebra Lp(G) is not weakly amenable.

Question: Is the conclusion of the Proposition 3.4 valid for each 1 <

p < 2? Note that it is well known that for each locally compact group, the
group algebra L1(G) is weakly amenable. Also, in Propositions 3.2 and 3.4,
a necessary and sufficient condition for weak amenability of Banach algebras
Lp(G) (2 ≤ p ≤ ∞) is found.
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