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A BOTT INVERTED MODEL FOR EQUIVARIANT
UNITARY TOPOLOGICAL K-THEORY

MARKUS SPITZWECK and PAUL ARNE ØSTVÆR

Abstract
Let A be an abelian compact Lie group. We show the Bott inverted suspension spectrum of the
projective space that classifies A-equivariant line bundles is a model for A-equivariant unitary
topological K-theory.

1. Introduction

Let A be an abelian compact Lie group. For α ∈ Hom(A, R/Z) let Cα denote
the complex numbers with A-action a.z = e2πiα(a)z. Then Cα ⊗ Cα′ = Cα+α′

and
UA ≡

⊕
α

Cα ⊗ C∞

is a complete A-universe with a contractible space of linear isometries

UA ⊗ UA → UA.

It follows that the projective space P(UA) that classifies A-equivariant line
bundles acquires a natural A-action and also an abelian group structure up to
equivariant homotopy. More generally, recall the nth Grassmannian Grn(UA)

is an A-space that classifies A-equivariant n-dimensional bundles. Denote the
corresponding colimit by Gr(UA). Then the composite map

P(UA) = Gr1(UA) −−→ {1} × Gr(UA) −−→ Z × Gr(UA)

induces, via the adjunction between equivariant spaces and spectra, a map

�∞P(UA)+ −−→ KUA

from the suspension spectrum of the projective space to the representing spec-
trum for A-equivariant unitary topological K-theory.

By inverting the Bott map β for �∞P(UA)+ we show the following result.
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Theorem 1.1. There is an isomorphism

�∞P(UA)+[β−1]
∼=−−→ KUA

in the equivariant stable homotopy category.

The paper is layed out as follows. Section 2 recalls the definition of equivari-
ant oriented cohomology theories. The main examples relevant to this paper
are MUA and KUA. Section 3 introduces Bott inverted �∞P(UA)+ and an A-
equivariant orientation class. A proof of Theorem 1.1 follows by combining
the A-equivariant Conner-Floyd theorem with the above. The details of the
argument are recorded in Section 4.

For legibility we allow a uniform notation for “Bott elements and maps”
trusting that the precise meaning will be clear from the context. The writing
of this paper was inspired by Snaith’s isomorphism for naive equivariant co-
homology theories in [9] and the proof of an analogous motivic result given in
[10].

2. Equivariant oriented cohomology theories

We refer to [4] for background on oriented cohomology theories and formal
group laws in equivariant homotopy theory. Let E∗

A(−) be an A-equivariant
cohomology theory, ε the trivial representation and α some 1-dimensional
representation. There are inclusions

∗ε ≡ P(ε) ⊆ P(ε ⊕ α) ⊆ P(UA).

An element of E∗
A

(
P(UA), ∗ε

)
is called an orientation class for E∗

A(−) if for
every α it restricts to a generator of

E∗
A

(
P(ε ⊕ α), ∗ε

) = Ẽ
∗
A

(
P(ε ⊕ α)

)
.

The homotopical unitary cobordism spectrum MUA has a canonical orient-
ation, and therefore there exists an equivariant formal group law over MU∗

A [4,
§13]. Any degree 2 orientation class for E∗

A(−) determines a unique orientation
preserving ring map between A-spectra MUA → E by [1, Theorem 1.2].

As in [4, §10] one shows the A-equivariant unitary topological K-theory
spectrum acquires a degree 2 orientation class

β−1(1 − L) ∈ KU2
A

(
P(UA), ∗ε

)
.

Here L denotes the canonical line bundle over P(UA). The corresponding coef-
ficient ring RepU(A)[β, β−1] (that is, the Laurent polynomial ring in the vari-
able β over the representation ring) represents A-equivariant strictly multiplic-
ative formal group laws [5].
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3. The Bott inverted equivariant infinite projective space

Denote by ε ⊕ ε the trivial 2-dimensional representation. The identity map on
P(UA) defines classes

ξ∞ ∈ (
�∞P(UA)+

)0
A

(
P(UA)

)
, ξ1 ≡ ξ∞|∗ε⊕ε

∈ (
�∞P(UA)+

)0
A

(
P(ε ⊕ ε)

)
.

Clearly ξ∞ pulls back to the unit element of
(
�∞P(UA)+

)0
A

and the class 1−ξ1

is sent to 1 − L in KU0
A

(
P(ε ⊕ ε)

)
under the naturally induced map

(
�∞P(UA)+

)0
A

(
P(ε ⊕ ε)

) −−→ KU0
A

(
P(ε ⊕ ε)

)
.

We may also consider the image of the reduced cohomology class 1 − ξ1 in
the coefficient ring of P(UA) by virtue of the identification

˜

(
�∞P(UA)+

)0

A

(
P(ε ⊕ ε)

) = (
�∞P(UA)+

)
2.

(Stably we have P(ε ⊕ ε)+ = S0 ∨ S2.) There exists a corresponding map

�∞P(ε ⊕ ε) −−→ �∞P(UA)+

and taking the adjoint of

�∞P(ε⊕ε)∧�∞P(UA)+ −−→ �∞P(UA)+∧�∞P(UA)+ −−→ �∞P(UA)+

yields the Bott map

β: �∞P(UA)+ −−→ �−2�∞P(UA)+.

An inspection reveals that β coincides with the Bott map introduced in [9].

Definition 3.1. The Bott inverted P(UA) is the homotopy colimit

�∞P(UA)+[β−1] ≡ hocolim
(
�∞P(UA)+

β−−→ �−2�∞P(UA)+
�−2β−−→ · · ·).

We note there exists an evident ring structure on �∞P(UA)+[β−1] and also
an associated A-equivariant cohomology theory. Moreover, β maps to the Bott
element for KUA under

(
�∞P(UA)+

)
2 → (KUA)2 since the latter element

corresponds to the virtual vector bundle 1 − L over P(ε ⊕ ε). In what follows,
we denote by the same letters the images of the classes β and ξ∞ under maps
induced by

�∞P(UA)+ −−→ �∞P(UA)+[β−1].
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Lemma 3.2. The class

β−1(1 − ξ∞) ∈ (
�∞P(UA)+[β−1]

)2
A

(
P(UA), ∗ε

)

defines an orientation for Bott inverted P(UA). The corresponding A-equivar-
iant formal group law is strictly multiplicative in the sense that its coproduct
� has the property

�
(
x(ε)

) = 1 ⊗ x(ε) + x(ε) ⊗ 1 − βx(ε) ⊗ x(ε).

Here x(ε) is the coordinate of the formal group law.

Proof. The multiplication map on P(UA) determined by tensor products
of line bundles induces a map

(1)
(
�∞P(UA)+[β−1]

)∗
A

(
P(UA)

)
−−→ (

�∞P(UA)+[β−1]
)∗

A

(
P(UA) × P(UA)

)
.

In cohomology β maps to β1β2, where βi is the image of β under the map
induced by the projection pri : P(UA) × P(UA) → P(UA) on the ith factor. It
follows that the coproduct of the corresponding A-equivariant formal group law
induced by (1) is strictly multiplicative [4, Corollary 9.7], cf. [10, Lemma 3.2].
For the analogous example of A-equivariant unitary topological K-theory, see
also [6, §4].

Remark 3.3. With these definitions the map

(
�∞P(UA)+[β−1]

)∗
A
(−) −−→ KU∗

A(−)

is orientation preserving.

4. Proof of the main result

Proof of Theorem 1.1. Lemma 3.2 implies there exists a unique map
between A-equivariant oriented cohomology theories

MU∗
A(−) −−→ (

�∞P(UA)+[β−1]
)∗

A
(−).

By reference to the universal property of KU∗
A with respect to A-equivariant

strictly multiplicative formal group laws in [5] there exists a unique MU∗
A-

algebra map between A-equivariant coefficient rings

KU∗
A −−→ (

�∞P(UA)+[β−1]
)∗

A
.
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Combining the above with the A-equivariant Conner-Floyd theorem, cf. [2],
[8], yields a canonical map between A-equivariant oriented cohomology the-
ories

KU∗
A(−) = MU∗

A(−)⊗MU∗
A
RepU(A)[β, β−1] −−→ (

�∞P(UA)+[β−1]
)∗

A
(−).

By the universal property of KU∗
A(−) the composite map

KU∗
A(−) −−→ (

�∞P(UA)+[β−1]
)∗

A
(−) −−→ KU∗

A(−)

is the identity.
Denote also by β−1(1 − ξ∞) the map

(
�−2�∞P(UA)+

)∗
A
(−) −−→ (

�∞P(UA)+[β−1]
)∗

A
(−)

corresponding to the orientation class for Bott inverted P(UA), and likewise
for

ξ∞:
(
�∞P(UA)+

)∗
A
(−) −−→ (

�∞P(UA)+[β−1]
)∗

A
(−).

The KU∗
A(−)-module structure on

(
�∞P(UA)+[β−1]

)∗
A
(−) implies the equal-

ity
ξ∞ = 1 − β

(
β−1(1 − ξ∞)

)
.

Now consider the orientation preserving composite map of KU∗
A(−)-modules

ν:
(
�∞P(UA)+[β−1]

)∗
A
(−) −−→ KU∗

A(−) −−→ (
�∞P(UA)+[β−1]

)∗
A
(−).

We have ν ◦ (
β−1(1 − ξ∞)

) = (
β−1(1 − ξ∞)

)
and ν ◦ β

(
β−1(1 − ξ∞)

) =
β
(
β−1(1 − ξ∞)

)
. Hence ν ◦ ξ∞ = ξ∞. From the universal property of(

�∞P(UA)+[β−1]
)∗

A
(−) it follows that ν is the identity map.

To summarize, the above shows there exists an isomorphism of A-equivar-
iant oriented cohomology theories

(2)
(
�∞P(UA)+[β−1]

)∗
A
(−)

∼=−−→ KU∗
A(−).

It remains to show that (2) lifts, uniquely up to isomorphisms, to an iso-
morphism between oriented ring spectra in the equivariant homotopy category.
This follows by observing that there exist no nontrivial phantom maps

(
�∞P(UA)+[β−1]

)∧n −−→ KUA .

To wit, identify
(
�∞P(UA)+[β−1]

)∧n
with the homotopy colimit

(3) hocolim
((

�∞P(UA)+
)∧n β∧n−−→ �−2n

(
�∞P(UA)+

)∧n �−2nβ∧n−−→ · · ·).
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Applying KU∗
A(−) to (3) yields a sequence whose lim1-term vanishes because

the group KU∗
A

(
P(UA)

)
is trivial in odd degrees. Combining Cole’s computa-

tion of the KU∗
A-cohomology of P(UA) [1, Theorem 4.3] and the fact that KU1

A

is the trivial group finishes the proof.

Remark 4.1. The proof given in [10] of the (non-equivariant) motivic ho-
motopy theoretic analog of our main result incited and predates the work
presented here. The reader might want to compare the current results to those
of Gepner and Snaith [3] and also of Naumann, Spitzweck and Østvær [7].

Remark 4.2. We wish to thank the referee for helpful comments that en-
abled us to improve this paper. The referee also pointed out that our main
result cannot be generalized to non-abelian groups, cf. [9, Remark 3.4], and
suggested that, for finite abelian groups, an induction argument might lead to
an alternate proof of our main result.
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