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THE NONCOMMUTATIVE CHOQUET BOUNDARY III:
OPERATOR SYSTEMS IN MATRIX ALGEBRAS

WILLIAM ARVESON

Abstract

We classify operator systems S € Z(H) that act on finite dimensional Hilbert spaces H by
making use of the noncommutative Choquet boundary. S is said to be reduced when its boundary
ideal is {0}. In the category of operator systems, that property functions as semisimplicity does in
the category of complex Banach algebras.

We construct explicit examples of reduced operator systems using sequences of “parameter-
izing maps” I'y : " — B(Hy), k = 1, ..., N. We show that every reduced operator system is
isomorphic to one of these, and that two sequences give rise to isomorphic operator systems if
and only if they are “unitarily equivalent” parameterizing sequences.

Finally, we construct nonreduced operator systems S that have a given boundary ideal K
and a given reduced image in C*(S)/K, and show that these constructed examples exhaust the
possibilities.

1. Introduction

This paper continues the series [2] and [3] by addressing the problem of clas-
sifying operator spaces that generate finite dimensional C*-algebras. While
this is a restricted class of operator spaces in which many subtle topological
obstructions disappear, one can also argue that it contains all of the noncom-
mutativity. Correspondingly, our classification results will make essential use
of the noncommutative Choquet boundary.

An operator space is a norm closed linear subspace of the algebra % (H)
of bounded operators on a Hilbert space H. Operator spaces are the objects of
a category that refines the classical category of Banach spaces in a significant
way, the refinement being that morphisms in the category of operator spaces
are completely bounded linear maps rather than bounded linear maps. In the
operator space category, maps are typically endowed with their completely
bounded norm. If one restricts to the smaller category of operator spaces with
completely contractive linear maps, one obtains a noncommutative refinement
of the category of Banach spaces in which the term classification means clas-
sifying operator spaces up to completely isometric isomorphism. As we have
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said above, this paper addresses (somewhat indirectly) the problem of classi-
fying operator spaces that can be realized as subspaces of %(H) where H is
a finite dimensional Hilbert space.

We say indirectly because we do not deal directly with operator spaces
below, but rather with operator systems. An operator system is an operator
space that is closed under the *-operation of % (H) and which contains the
identity operator. Throughout the matrix hierarchy over an operator system
S there are enough positive operators to generate the space of self adjoint
matrices over S. Correspondingly, the morphisms of the category of operator
systems are the unit-preserving completely positive (UCP) linear maps. An
isomorphism of operator systems S;, S> is a UCP map ¢ : S| — S, that has
a UCP inverse ¢! : S, — S); and it is known that this is equivalent to the
existence of a completely isometric linear map of S; on S, that carries the unit
of S; to the unit of S,.

Paulsen’s device (see p. 104 of [8] or p. 21 of [6]) allows one to associate an
operator system S C B(H @ H) with an arbitrary operator space S € %(H)
in the following way

= Al s
S_{( e M_l).s,teS,A,ueC},

and this association of S with S is functorial in that completely contractive
maps of operator spaces S give rise to UCP maps of operator systems S. In
this way, many if not most results about operator systems lead directly to results
in the somewhat broader category of operator spaces. Consequently, we shall
work exclusively with operator systems throughout this paper.

The fundamental fact about general operator systems is that there is a largest
closed two-sided ideal K in the C*-subalgebra C*(S) generated by S such that
the natural map x € C*(S) — x € C*(S)/K is completely isometric on S. In
this paper we will follow [3] by referring to this ideal K as the boundary ideal
for S. The associated embedding § € C*(S)/K is called the C*-envelope of
S.

DEFINITION 1.1. An operator system S € C*(S) is said to be reduced if its
boundary ideal is {0}.

We have found it useful to view the property of Definition 1.1 as the proper
counterpart for operator systems of the semisimplicity property of complex
Banach algebras. Thus, the boundary ideal functions for operator systems in
much the same way as the radical does for Banach algebras.

Our main results address the problem of classifying reduced operator sys-
tems S C ZB(H) that act on a finite dimensional Hilbert space H, and can be
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summarized as follows. The C*-algebra generated by such an operator system
decomposes uniquely into a central direct sum of matrix algebras

(1.1) C*S) =A@ P Ay, A = B(Hy)

and it has several integer invariants associated with it: the dimension d of §
itself, the number N of mutually inequivalent irreducible representations of
its generated C*-algebra ; : C*(S) — %B(H,), and the dimensions n; =
dim Hi, 1 <k < N of these representations. These numbers satisfy only one
obvious constraint, namely

(1.2) dimm(S) <ni, k=1,...,N,

and consequently d < n? + .- + n%\,.

Given a set of numbers d, N, ny, ..., ny, we first show how one constructs
examples of reduced operator systems S of dimension d that have these integer
invariants. By a *-vector space we mean a finite dimensional complex vector
space that has been endowed with a distinguished conjugation (an antilinear
map z — z* satisfying z** = z), and a distinguished “unit” 1 — a nonzero self
adjoint element of Z. Nothing is lost if one thinks of Z as the x-vector space
¢? with involution (zy, ..., z4)* = (Z1,...,2¢) and unit 1 = (1,1, ..., 1).
Forevery k =1, ..., N let H; be a Hilbert space of dimension 7y, and let

Fk 1 Z — .%’(Hk)

be a linear map that preserves the x-operation and maps the unit of Z to the
identity operator of % (H;). We assume further that these maps I satisfy the
following three requirements:

(1) Irreducibility: Foreachk =1, ..., N, I't(Z) is an irreducible space of
operators in % (Hy).

(1) Faithfulness: kerI'y N ---Nker 'y = {0}

(iii) Strong separation: For every k = 1, ..., N, there is a positive integer
p = p(k)and a p x p matrix (z;;) = (z;;(k)) € M,(Z) with entries in
Z such that

(1.3) I(Te DI > max (T (i), k=1,2,...,N.

Property (i) simply means that C*(I'x(Z)) = AB(H,), and property (ii) can be
arranged in general by replacing A = C? with a suitably smaller parameter
space, if necessary. Property (iii) is critical, and as we shall see, it connects
with the noncommutative Choquet boundary in an essential way.
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The N-tuple of operator mappings I' = (I'y,..., 'y) gives rise to an
operator system Sy acting on H; @ - - - @ Hy as follows

(1.4) Sr={lM@ & - dlInk:z€Z}

and by property (ii), we have dim(St) = dim Z = 4.

THEOREM 1.2. The operator system St is reduced, the center of C*(Sr) is
CV, and the numbers ny, ..., ny are given by n; = dim Hy fork =1,..., N.
Conversely, every reduced operator system with the same integer invariants is
isomorphic to an Sy constructed in this way from an N-tuple of linear maps
I'y:Z— %’(I:Ik), k =1,..., N satisfying properties (i), (ii), (iii).

Theorem 1.2 reduces the classification problem for reduced operator sys-
tems acting on finite dimensional Hilbert spaces to the problem of determining
when two sequences of parameterizing maps give rise to isomorphic operator
systems. Notice that the operator space St does not change if we compose each
map of the sequence I' = (I'y, ..., I'y) with a single automorphism of the
unital * structure of the parameter space Z. Moreover, it is easy to check that
the isomorphism class of St does not change if we replace each I'y with a unit-
arily equivalent map Ty, or if we permute the component maps 'y, ..., T'y.
Thus we say that two parameterizing sequences are equivalent if they have
the same length I' = (I'y, ..., T'y) and T = (fl, e, f‘N), there is a unit-
preserving x-automorphism 6 : Z — Z of the parameter space, a permutation
o of {1,2,..., N}, and a sequence of unitary operators Uy : H, — ﬁg(k),
k=1,..., N, such that

Tow0() = UL @U;',  z€Z, k=1,...N.

The following result completes the classification picture:

THEOREM 1.3. Let S and S be two reduced operator systems of the same
dimension d and having the same set of integer invariants. Let Z = C? and let T
and T be two N -tuples of maps satisfying (i)—(iii) such that S = Sy and § = Si.
Then S and S are isomorphic operator systems iff the two parameterizing
sequences T and T are equivalent.

REMARK 1.4 (About the term “classification”). The combined statements
of Theorems 1.2 and 1.3 amount to a classification of reduced operator sys-
tems that generate finite dimensional C*-algebras. It seems appropriate to offer
some support for that claim, since the invariants of this classification, namely
equivalence classes of parameterizing sequences I' = (I}, ..., I'y) that sat-
isfy properties (i), (ii) and (iii), are somewhat unusual.
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Consider first the simplest case N = 1. Here we have a single self adjoint
linear map I" from the parameter space Z = C to operators on a finite dimen-
sional Hilbert space H such that I'(Z) is an irreducible set of operators, and
which carries the unit of Z to the identity operator. Such a map I" automatically
satisfies property (i), property (ii) can obviously be arranged, and property (iii)
is satisfied vacuously. Given a second map I" : Z — Z(H) with that property,
then I and I are equivalent iff there is a unitary operator U : H — H and an
automorphism 6 of the unital *-structure of Z such that

FO)=0r@u", zez.

Thus, in the case N = 1, Theorems 1.2 and 1.3 make the assertion that two
irreducible operator systems are isomorphic as operator systems iff they are
unitarily equivalent. One can appreciate the content of that statement by con-
sidering that it has the following implication for two dimensional operator
spaces: Given two irreducible n x n matrices a and b, the map

Al4+pu-a—>r-14+pu-b, A, pmeC

is completely isometric iff the operators a and b are unitarily equivalent.

In more complex situations where N > 2, the assertion is that a) every
operator system is made up of irreducible ones with N = 1, and b) there is no
obstruction to assembling the irreducible pieces into a larger operator system
other than the requirements of the strong separation property (iii) above. In par-
ticular, the notion of equivalence for parameter sequences I' = (I'y, ..., I'y)
primarily involves conditions on the individual coordinate maps I'y, with no
interaction between different coordinates.

Needless to say, this paper does not represent the only attempt to look ser-
iously at operator systems in matrix algebras; indeed, experience with com-
pletely positive maps of operator systems shows that corresponding finite di-
mensional issues arise frequently and naturally. For example, see Theorem
4.2 of [5]. On the other hand, the structure and classification of such operator
systems has not been addressed before, and Theorems 1.2 and 1.3 are new.

2. Brief on the noncommutative Choquet boundary

A boundary representation for an operator system S € C*(S) is an irredu-
cible representation 7 : C*(S) — % (H) with the property that the only UCP
map ¢ : C*(S) — ZB(H) that agrees with 7 on S is 7 itself. It was shown
in [2] that every separable operator system has sufficiently many boundary
representations; and when compact operators are involved, it was shown in [3]
that boundary representations are the noncommutative counterparts of peak
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points of function systems. In this section we summarize that material in a
form suitable for the analysis of operator systems in matrix algebras, referring
the reader to [2] and [3] for more detail and history. While it is true that these
results can be simplified very substantially for operator systems in matrix al-
gebras, much of the subtlety persists even in the finite dimensional context (see
Remark 2.4 below). Consequently, we have not attempted to make the follow-
ing discussion of matrix algebras and their operator systems self-contained.
We now summarize some general results of [1], [2] and [3] in the form we
require.

Much of the discussion to follow rests on the main result of [2] (The-
orem 7.1), which we repeat here for reference:

THEOREM 2.1. Every separable operator system S C C*(S) has sufficiently
many boundary representations in the sense that for every n > 1 and every
n x n matrix (s;;) with components s;; € S, one has

2.1) [ (sip) Il = sup || (si;))]l

the supremum on the right taken over all boundary representations 7 for S.

In Theorem 2.2.3 of [1], it was shown that in all cases where sufficiently
many boundary representations exist, the boundary ideal is the intersection
of the kernels of all boundary representations. This leads to the following
characterization of reduced operator systems in matrix algebras:

COROLLARY 2.2. An operator system S C B(H) acting on a finite dimen-
sional Hilbert space H is reduced iff every irreducible representation of C*(S)
is a boundary representation for S.

Proofr. If every irreducible representation is a boundary representation for
S, then the result from [1] cited above implies that the boundary ideal is trivial.

Conversely, assume that the boundary ideal for S is trivial and consider the
decomposition (1.1)

(2.2) C*S) =A@ - DAy, A = B(Hy)

of the C*-algebra generated by S into a direct sum of full matrix algebras. If
one of the associated irreducible representations, say ;. : C*(S) — ZB(Hy),
1 < k < N, were not a boundary representation, then every boundary repres-
entation would annihilate the ideal

K = ()kerm; # (0}
J#k
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and therefore would correspond to an irreducible representation of the quo-
tient C*-algebra C*(S)/K. In that event, Theorem 2.1 above implies that the
quotient map x € C*(S) — x € C*(S)/K restricts to a completely isometric
map on S, contradicting the hypothesis that S is reduced.

COROLLARY 2.3. Every irreducible operator system S C B (H) acting on a
finite dimensional Hilbert space is reduced in the sense of Definition 1.1, and
the identity representation of B(H) is a boundary representation for S.

ProoF. Since S is an irreducible self adjoint family of operators that con-
tains 1, the double commutant theorem implies C*(S) = Z(H). Every op-
erator system that generates a simple C*-algebra must be reduced, since the
only candidate for the boundary ideal is {0}. In this case, the identity repres-
entation of C*(S) is, up to equivalence, the only irreducible representation, so
that Theorem 2.1 implies that it must be a boundary representation.

ReEMARK 2.4 (Fixed points of UCP maps on matrix algebras). Corollary 2.3
is equivalent to the following assertion: If ¢ : B(H) — B(H) is a UCP map
on a matrix algebra that fixes an irreducible set S of operators, then ¢ is the
identity map. When S = {a} consists of a single irreducible operator a, for
example, there appears to be no direct route to a proof of the assertion. In the
special case where ¢ preserves the tracial state of B(H), a straightforward
application of the Schwarz inequality implies that the operator system S =
{x € B(H) : ¢(x) = x} is closed under operator multiplication, and that
implies ¢ is the identity map when S is irreducible.

But in general, the best one can say is that there is a UCP idempotent E
with the same fixed elements — recall that the set of accumulation points of
the sequence ¢>k, k =1,2,...contains a unique idempotent E. Once one has
such an E one can introduce the Choi-Effros multiplication [7] on S to make
it into a C*-algebra. However, since the Choi-Effros multiplication need not
be the ambient multiplication in B (H), this fails to address the issue. Thus,
Theorem 2.1 and Corollary 2.3 make significant assertions even for operator
systems in matrix algebras.

Finally, we recall the key property of reduced operator systems in general,
which follows from Theorem 2.2.5 of [1] together with Theorem 2.1:

THEOREM 2.5. Let S| € C*(Sy) and S, € C*(S3) be two reduced separable
operator systems. Then every isomorphism of operator systems 6 : S; — S,
extends uniquely to a x-isomorphism of C*-algebras 0 : C*(S1) — C*(Sy).

3. Peaking and boundary representations

Let X be a compact Hausdorft space. A function system is a linear subspace of
C(X) that separates points, is closed under complex conjugation, and contains
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the constants. A peak point for a function system S € C(X) is a point x € X
with the property that there is a “peaking function” f € S (which of course
depends on x) such that

IfOI=>1fODL YyeX\({x]

Since function systems are spanned by their real functions, one can reformulate
this condition so as to get rid of absolute values; but the form given is the one
that we choose for the following discussion. For separable function algebras, a
theorem of Bishop and de Leeuw [4] asserts that the peak points are exactly the
points of the Choquet boundary, while for the more general separable function
systems, the peak points are dense in the Choquet boundary (see [9] or [10],
pp. 39-40 and Corollary 8.4).

We now recall the definition of peaking representations from [3]. Given an
operator system § C C*(S), every representation 7 of C*(S) on a Hilbert
space K gives rise to a representation of the matrix hierarchy over C*(S), in
which for an n x n matrix (x;;) of elements of C*(S), the n x n operator matrix
(7 (x;;)) represents an operator on the direct sum n - K of n copies of K, and
the map (x;;) — (7 (x;;)) € PB(n - K) is a representation of M,(C*(S)) on
n-K.

DEFINITION 3.1. An irreducible representation 7 : C*(S) — AB(K) is
said to be peaking for S if there is an n = 1,2,... and an n X n matrix
(sij) € M,(S) with entries in § that has the following property: For every
irreducible representation o of C*(S) that is inequivalent to , one has

(3.1 |Gz Csi)Il > ll(o (si)II.
Such an operator matrix (s;;) € M, (S) is called a peaking operator for 7.

Actually, in [3] it was necessary to employ a stronger variant of this concept,
called strong peaking. That stronger property will not be required here since
the C*-algebras of this paper are finite dimensional, with only a finite number
of inequivalent irreducible representations. We will make use the following
special case of a general result in [3]:

THEOREM 3.2. Let S be an operator system that generates a finite dimen-
sional C*-algebra C*(S). Anirreducible representation of C*(S) is a boundary
representation for S iff it is peaking for S.

ProoF. The decomposition (2.2) of C*(S) into a central direct sum of matrix
algebras implies that there are exactly N mutually inequivalent irreducible
representations 7y, ..., wy of C*(S). So for example, m; is peaking for S iff
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thereisa p > 1 and a p x p matrix (s;;) over S such that
(1 Csip Dl > Iax, Il i Csip )

Theorem 6.2 of [3] implies that this assertion is equivalent to the assertion that
71 is a boundary representation for S.

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. Choose an N-tuple of unit preserving
self adjoint linear maps 'y : Z — AB(H;),k =1, ..., N, satisfying properties
(1)—(ii) of Section 1, let I' = (I'y, ..., I'y) and consider the operator system
Sr CAB(H, @ --- @ Hy) defined by

Sr=T@Q® - dT,(z):z€Z}.
We will show that
4.1 C*(Sr) = B(H)) @ --- & B(Hy),
that each of the visible irreducible representations 7y : C*(S) — %B(Hy)
(X1 D -+ B xp) = xp, k=1,...,N

is a boundary representation for Sr, and we will deduce that Sr is a reduced
operator system with the asserted integer invariants.

To prove (4.1), note first that each of the representations my, ..., wy of
C*(St) is irreducible, since m; (C*(St)) contains the irreducible space of op-
erators 'y (Z) € B(H,). Moreover, the strong separation property (iii) implies
that the representations 7 are mutually inequivalent. It follows that they are
mutually disjoint; and since the identity representation of C*(Sr) is the direct
sum | @ - - - @ my, it follows that the projection p; of H; & --- & Hy onto
each summand H; belongs to C*(Sr). Formula (4.1) follows.

Finally,let L : Z — %B(H; & - - - & Hy) be the linear map

L=T1@)& - &Iy, z€Z.
We have St = L(Z) by definition of St, and moreover
[y (z) = m (L(2)), z€Z, k=1,...,N.

Using the latter formula, one finds that the strong separation property (iii)
implies that each representation ;. is peaking for Sr. Theorem 3.2 implies
that each m; is a boundary representation for S, and since {7y, ..., 7y} is a
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complete list of the irreducible representations of C*(Sr) up to equivalence,
Corollary 2.2 implies that St is reduced.

To prove the converse assertion of Theorem 1.2, let S € % (H ) be areduced
operator system acting on a finite dimensional Hilbert space H. We have to
show that there is an N-tuple I' = (I'y, ..., I'y) of linear maps with the stated
properties such that § and Sr are isomorphic operator systems.

To do that, consider the natural decomposition of C*(S)

C'S) =A@ @ An, Ay =RBH), k=1,...,N

into finite dimensional subfactors. We first exhibit an appropriate parameter-
ization for S in terms of the parameter space Z = C?, d = dim S. For that
we claim that there is a linear basis sy, ..., s for S consisting of self adjoint
operators s; that satisfies s; + --- 4+ s; = 1. Indeed, if we choose a d — 1
dimensional subspace Sy of S such that S5 = Sy and 1 ¢ S, then we obtain
such a basis by choosing a linear basis sy, ..., s;—; for Sy consisting of self
adjoint operators and setting s; = 1 —(s;+---+s54-1). Set Z = . Then we
have arranged that the linear map L : Z — S defined by

L(zi,....,z2a) =211+ 4+ 2454

is linear isomorphism of vector spaces that preserves the * operation and carries
(1,1, ..., 1) to the identity operator of S.

Let m; : C*(S) — ZB(Hy) be the representation associated with the kth
term in the decomposition (4.1) and define I'y : Z — B(H,) by

4.2) I'e(z2) = M (L(2)), zeZ.

Each I'y is a linear map that preserves the x-operation and maps the vec-
tor (1,1,...,1) € Z to the operator 1y,. We have I'y(Z) = mx(S), so that
C*(T'k(2)) = m,(C*(S)) = B(Hy), and hence I'y(Z) is an irreducible oper-
ator systemin B(H;),k = 1, ..., N. Notetoo that these maps I'y, ..., ['y sat-
isfy property (ii) of Section 1 since if I';(z) = O forevery k, then 7 (L(z)) =0
forevery k = 1,..., N, hence L(z) = O since kerm; N --- Nkery = {0},
and finally z = O since L is an isomorphism of vector spaces.

We claim that the N-tuple I' = (I'y, ..., I'y) satisfies property (iii) of Sec-
tion 1. Indeed, by Corollary 2.2, every representation my : C*(S) — B(Hy)
is a boundary representation for S which, by Theorem 3.2, is a peaking rep-
resentation for S. Property (iii) now follows after one unravels that assertion
through each of the parameterizations I'x(z) = mx(L(2)), k = 1,..., N, in
terms of the basicmap L : Z — S.
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Thus if we form the operator system associated with the N-tuple I' =
Ty, ..., Ty)

Sr=l@Q® - ®I'yk):2€Z} S BH, @D ---® Hy),
then formula (4.1) implies that
C*(Sr) = B(H) @ --- © B(Hy).

Now for each k = 1, ..., N, the irreducible representation m; : Ay —
9B (H,) is an isomorphism of C*-algebras, so we can define a x-isomorphism
of C*-algebras = : C*(S) — C*(Sr) by way of

TxX1 D Pxy)=m(x1)B---Praylxy), x€Ar, k=1,...,N.

This isomorphism satisfies m(L(z)) =1'1(z2) ®--- @& 'y(z) forall z € Z, and
therefore 7 (S) = Sr. Hence S and St are isomorphic operator systems.

5. Proof of Theorem 1.3

LetIT = (I',...,I'y) and I = (Ty,...,Ty) be two parameterizing se-
quences of linear maps defined on Z = C? of the same length that satisfy (i),
(ii), (iii) of Section 1, and assume that Sy and S are isomorphic operator sys-
tems. We will show that T’ and T are equivalent parameter sequences. Since
Sr and Sy are reduced operator systems, Theorem 2.5 implies that there is
a x-isomorphism 6 : C*(Syr) — C*(Sy) such that 8(Sr) = Sj. After con-
sideration of the central decompositions of these C*-algebras into full matrix
algebras

C*Sp)=A1® - ® A, C*(Sf-)zzil@"'@AN’

Ay = B(H), A = %(I-?k), it follows that there is a permutation o of
{1,2,..., N}suchthat 6(A;) = A(,(k), k=1,..., N.Foreach k, the restric-
tion of 6 to Ay = JB(Hy) can be viewed as a *-isomorphism of % (H}) onto
,%’(I:I,,(k)), which is implemented by a unitary operator Uy : H; — I:I(,(k)

0(a) = UpaU;',  ae Ay, k=1,...,N.
We conclude that
0(St) = {UIT1(QU; ' @ - ® UNT'y(2)Uy' : z € Z}

=S; ={loy@) @ & Tou(2) : 2 € Z}.
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Sinceker['; N---NkerTy = ker['; N---Nker[y = {0}, the equality of
these two spaces of operators implies that for every z € Z there is a unique
vector a(z) € Z such that

(5.1) o (@(2)) = Ul (2)U; z€Z, k=1,...,N.

Moreover, since all of the maps I’y and T are complex linear, preserve the s
operation and map the unit of Z to the corresponding identity operator, (5.1)
implies that & must in fact be a unit preserving automorphism of the x-vector
space structure of Z. Hence (5.1) shows that the two parameter sequences I'
and T are equivalent.

The proof of the converse is a straightforward reversal of this argument.

6. Structure of nonreduced operator systems

We conclude with a discussion of how one constructs nonreduced operator
systems using these methods. We will outline the construction — giving precise
definitions but no proofs — sketching the proof of only a single key lemma to
illustrate the technique.

Let S be an operator system that generates a finite dimensional C*-algebra
C*(S), let K be the boundary ideal for S, let Sccx (S)/K be the correspond-
ing reduced operator system in the C*-envelope of S, and consider the central
decomposition of C*(S) into factors

C'S) =A@ - D A, Ay = B(HY).

A complete list of irreducible representations 7y : C*(S) — AB(H;) of C*(S)
is associated with the minimal central projections. Some of these repres-
entations are boundary representations and others are not. Let us relabel so
as to collect the boundary representations together with the first N of the
summands Ay, ..., Ay and the others as the remaining n — N = M terms
AN+1s - - -5 Aysuy. It follows that the boundary ideal is ker 7wy N - - - N ker my,

K=0&® - - 08 AN+1D - D ANtm,

and the quotient C*(S)/K is, in this finite dimensional setting, isomorphic to
the remaining summand

CSKZAD ®ANDOD - DO,

the quotient map being identified with the obvious homomorphism of C*(S§)
on this initial segment. We conclude from these observations that the most
general nonreduced operator system is obtained in the following way: Let
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A @ K be a direct sum of two finite dimensional C*-algebras, and let S be a
linear subspace of A @ K with the following properties:

(i) A @ K is the C*-algebra generated by S.

(i1) Every irreducible representation of A is a boundary representation for
S.

(iii)) No irreducible representation of K is a boundary representation for S.

Then as we have argued above, the boundary ideal for S is K and A is identified
with the C*-envelope of S.

Of course, we have not spelled out explicitly how one constructs all such
configurations, but it is not hard to do so. To sketch the details, let Z = C“ be
a unital %-vector space as in Section 1, and let

r=(Ty,...,Tn), R =(Q,...,Q)

be two tuples of unit-preserving *-preserving linear maps from the parameter
space Z to B(Hy), ..., B(Hy) and B (K1), ..., B(Ky) respectively, such
that the range of each of the M + N maps is an irreducible operator system.
Onecanuse I' = (I'f, ..., ['y) to construct the C*-envelope of an operator
systemand £ = (21, ..., Q) to construct its boundary ideal in the following
way. The required properties are:

(a) (Subordinationof toI') Foreveryr =1,..., M,everyp=1,2,...,
and every p X p matrix (z;;) over Z,

1082 (i) Il = max 1 (Te (i)l

(b) (Strong separation in the components of I') Forevery k = 1,..., N,
thereisa p = p(k) =1,2,...and a p X p matrix (z;;) = (z;;(k)) with
components in Z such that

Tk i) > fgg} 1Tz )l

(c) (Weak separation in all components) For every 1 <r < s < M, there
isap=ps)=12,...anda p x p matrix (z;;) = (z;;(r, s)) over

Z such that
€S2, (zig DT 7 1(S25(zi DI,

andforevery 1 <r < M andevery 1 <k < N,thereisap = p(r, k) =
1,2,...and a p x p matrix (z;;) = (z;;(r, k)) over Z such that

(€2 i)l # 1(Tezi)I,
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We can assemble the component maps of I' and €2 to define an operator system
(6.1). The following result shows that the C*-algebra generated by this operator
system is the expected direct sum of matrix algebras:

LEMMA 6.1. Let T’ = (I'y,...,I'y) and = (24, ..., Q) be two se-
quences of self adjoint unit preserving linear maps

Tv:Z — B(H), Q Z— BK,)

such that each T (Z) and each 2. (Z) is an irreducible operator system, and
which together satisfy the weak separation property (c). Let Sr g be the as-
sociated operator system in B(H @ --- ® Hy ® K| ® --- ® Ky) defined
by

6.1) Sre={I"@& - &I'n@®RLE D - ®Lu():zeZ}
Then C*(Sr.0) = BH,) ® --- & B(Hy) ® BK) @ - -- & B(K ).

SKETCH OF PROOF. Foreveryr =1,..., M 4+ N, let , be the represent-
ation of C*(Sr @) defined by

(6.2) T (X1 D - - D XpyynN) = X, l<r<M+N.

7, is an irreducible representation because its range contains the irreducible
operator system I',(Z) if 1l <r < Nor Q._ny(Z)if N <r < M+ N.
The hypothesis (c) implies that 7y, ..., my4y are mutually inequivalent, so
by irreducibility, they are mutually disjoint. It follows that for every r, the
projection corresponding to the rth summand of the C*-algebra

BH)SD - ®B(HN) B RBK) D DB(Ky)

belongs to the center of C*(St ). The assertion is now immediate.

Now assume that properties (a), (b) and (c) are satisfied, let St o be the
operator system (6.1) and let A and K be the summands of C*(Sr g) defined
by

A=BH)D--- ®DABHN) DO0D---®O0

K=0®--- 00 RBK)D - ®RB(Kum),

and let 7y, ..., Ty be the list of irreducible representations (6.2). Then
minor variations of arguments already given show that y, . .., my are all peak-
ing representations for Sr g, whereas none of {mn4y, ..., Ty+um} is peaking

for Sr . It follows from Corollary 2.2 and Theorem 3.2 that K is the bound-
ary ideal for Sr ¢ and that A is identified with the C*-envelope of Sr g in
the manner described above. Moreover, every (nonreduced) operator system
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which generates a finite dimensional C*-algebra is isomorphic to one obtained
from the above construction. We omit those details.
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