A RESULT ON FRACTIONAL k-DELETED GRAPHS

SIZHONG ZHOU*

Abstract

Let $k \geq 2$ be an integer, and let G be a graph of order n with $n \geq 4 k-5$. A graph G is a fractional k-deleted graph if there exists a fractional k-factor after deleting any edge of G. The binding number of G is defined as $$
\operatorname{bind}(G)=\min \left\{\frac{\left|N_{G}(X)\right|}{|X|}: \emptyset \neq X \subseteq V(G), N_{G}(X) \neq V(G)\right\} .
$$

In this paper, it is proved that if $\operatorname{bind}(G)>\frac{(2 k-1)(n-1)}{k(n-2)}$, then G is a fractional k-deleted graph. Furthermore, it is shown that the result in this paper is best possible in some sense.

1. Introduction

We consider only finite undirected simple graph G with vertex set $V(G)$ and edge set $E(G)$. For $x \in V(G)$, we use $N_{G}(x)$ for the set of vertices of $V(G)$ adjacent to x, and $d_{G}(x)$ for the degree of x in G. The minimum vertex degree of G is denoted by $\delta(G)$. For any $S \subseteq V(G)$, we define $N_{G}(S)=\bigcup_{x \in S} N_{G}(x)$. We denote by $G[S]$ the subgraph of G induced by S, by $G-S$ the subgraph obtained from G by deleting vertices in S together with the edges incident to vertices in S. A vertex set $S \subseteq V(G)$ is called independent if $G[S]$ has no edges. The binding number of G is defined as

$$
\operatorname{bind}(G)=\min \left\{\frac{\left|N_{G}(X)\right|}{|X|}: \emptyset \neq X \subseteq V(G), N_{G}(X) \neq V(G)\right\}
$$

Let k be an integer such that $k \geq 1$. Then a spanning subgraph F of G is called a k-factor if $d_{F}(x)=k$ for all $x \in V(G)$. A fractional k-factor is a function h that assigns to each edge of a graph G a number in [0, 1], so that for each vertex x we have $d_{G}^{h}(x)=k$, where $d_{G}^{h}(x)=\sum_{e \ni x} h(e)$ (the sum is taken over all edges incident to x) is a fractional degree of x in G. A graph G is a fractional k-deleted graph if there exists a fractional k-factor after deleting any edge of G. The other terminologies and notations not given in this paper can be found in [1] and [10].

[^0]Many authors have investigated factors [2], [3], [4], [7], [9], [12], and fractional factors [8]. Li, Yan and Zhang gave a necessary and sufficient condition for a graph to be a fractional k-deleted graph [5]. Li, Zhang and Yan showed a sufficient condition for a graph to be a fractional k-deleted graph [6]. Recently, Zhou and Duan obtained a sufficient condition for a graph to be a fractional k-deleted graph [13]. In this paper, we give a new sufficient condition for a graph to be a fractional k-deleted graph.

The following results on fractional k-deleted graphs are known.
Theorem 1.1 ([6]). Let G be a graph, and let $k \geq 2$ be an integer. If $\delta(G) \geq k+1$ and $I(G)>k$, then G is a fractional k-deleted graph.

Theorem 1.2 ([13]). Let G be a graph. Then G is a fractional 2-deleted graph if $\delta(G) \geq 3$ and $\operatorname{bind}(G) \geq 2$.

We prove the following theorem for a graph to be a fractional k-deleted graph, which is an extension of Theorem 1.2.

Theorem 1.3. Let $k \geq 2$ be an integer, and let G be a graph of order n with $n \geq 4 k-5$. If

$$
\operatorname{bind}(G)>\frac{(2 k-1)(n-1)}{k(n-2)}
$$

then G is a fractional k-deleted graph.
The following two results are essential to the proof of Theorem 1.3.
Theorem 1.4 ([5]). A graph G is a fractional k-deleted graph if and only iffor any $S \subseteq V(G)$ and $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq k\right\}$

$$
\delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \geq \varepsilon(S, T)
$$

where $\varepsilon(S, T)$ is defined as follows,

$$
\varepsilon(S, T)= \begin{cases}2, & \text { if } T \text { is not independent, } \\ 1, & \text { if } T \text { is independent, and } e_{G}(T, V(G) \backslash(S \cup T)) \geq 1 \\ 0, & \text { otherwise. }\end{cases}
$$

Theorem 1.5 ([11]). Let G be a graph of order n with $\operatorname{bind}(G)>c$. Then $\delta(G)>n-\frac{n-1}{c}$.

2. Proof of Theorem 1.3

Proof. Suppose that G satisfies the assumption of the theorem, but it is not a fractional k-deleted graph. Then by Theorem 1.4, there exist some $S \subseteq V(G)$ and $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq k\right\}$ such that

$$
\begin{equation*}
\delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \leq \varepsilon(S, T)-1 \tag{1}
\end{equation*}
$$

Claim 1. $|T| \geq k+1$.
Proof. In view of Theorem 1.5, we have

$$
\begin{aligned}
|S|+d_{G-S}(x) & \geq d_{G}(x) \geq \delta(G)>n-\frac{n-1}{\frac{(2 k-1)(n-1)}{k(n-2)}} \\
& =n-\frac{k(n-2)}{2 k-1}=\frac{(k-1) n+2 k}{2 k-1} \\
& \geq \frac{(k-1)(4 k-5)+2 k}{2 k-1}=2(k-1)-\frac{k-3}{2 k-1} .
\end{aligned}
$$

If $k \geq 3$, then according to the integrity of $\delta(G)$ we obtain

$$
\begin{equation*}
|S|+d_{G-S}(x) \geq \delta(G) \geq 2 k-2 \tag{2}
\end{equation*}
$$

If $k=2$, then by the integrity of $\delta(G)$ we get

$$
\begin{equation*}
|S|+d_{G-S}(x) \geq \delta(G) \geq 2 k-1 \tag{3}
\end{equation*}
$$

Let $|T| \leq k$ and $k \geq 3$, then by (1) and (2), we have

$$
\begin{aligned}
\varepsilon(S, T)-1 & \geq \delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \\
& \geq|T||S|+d_{G-S}(T)-k|T| \\
& =\sum_{x \in T}\left(|S|+d_{G-S}(x)-k\right) \geq \sum_{x \in T}(2 k-2-k) \\
& =\sum_{x \in T}(k-2)=(k-2)|T| \geq|T| \geq \varepsilon(S, T),
\end{aligned}
$$

which is a contradiction.
Let $|T| \leq k$ and $k=2$, then by (1) and (3), we have

$$
\begin{aligned}
\varepsilon(S, T)-1 & \geq \delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \\
& \geq|T||S|+d_{G-S}(T)-k|T| \\
& =\sum_{x \in T}\left(|S|+d_{G-S}(x)-k\right) \geq \sum_{x \in T}(2 k-1-k) \\
& =\sum_{x \in T}(k-1)=(k-1)|T|=|T| \geq \varepsilon(S, T),
\end{aligned}
$$

a contradiction.
Claim 2. $S \neq \emptyset$.

Proof. Let $S=\emptyset$. If $k \geq 3$, then by (1) and (2) we get that

$$
\begin{aligned}
\varepsilon(S, T)-1 & \geq \delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \\
& =d_{G}(T)-k|T| \geq(\delta(G)-k)|T| \\
& \geq(2 k-2-k)|T|=(k-2)|T| \geq|T| \geq \varepsilon(S, T)
\end{aligned}
$$

this is a contradiction.
If $k=2$, then by (1) and (3) we have

$$
\begin{aligned}
\varepsilon(S, T)-1 & \geq \delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \\
& =d_{G}(T)-k|T| \geq(\delta(G)-k)|T| \\
& \geq(2 k-1-k)|T|=(k-1)|T|=|T| \geq \varepsilon(S, T)
\end{aligned}
$$

which is a contradiction.
Claim 3. There exists $x \in T$ such that $d_{G-S}(x) \leq k-1$.
Proof. If $d_{G-S}(x) \geq k$ for all $x \in T$, then we get from Claim 2

$$
\delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \geq k|S| \geq k \geq 2 \geq \varepsilon(S, T)
$$

which contradicts (1).
Define

$$
h=\min \left\{d_{G-S}(x) \mid x \in T\right\}
$$

Then by Claim 3, we obtain

$$
0 \leq h \leq k-1
$$

By Theorem 1.5 and $\delta(G) \leq|S|+h$, we get

$$
\begin{equation*}
|S| \geq \delta(G)-h>n-\frac{k(n-2)}{2 k-1}-h=\frac{(k-1) n+2 k}{2 k-1}-h \tag{4}
\end{equation*}
$$

The proof splits into two cases.
Case 1. $h=0$.
First, we prove the following claim.
Claim 4. $\frac{k(n-2)}{n-1} \geq 1$.
Proof. In view of $k \geq 2$ and $n \geq 4 k-5$, we get

$$
k(n-2)-(n-1)=(k-1)(n-2)-1 \geq 0
$$

Thus, we obtain

$$
\frac{k(n-2)}{n-1} \geq 1
$$

Let m be the number of vertices x in T such that $d_{G-S}(x)=0$, and let $Y=V(G) \backslash S$. Then $N_{G}(Y) \neq V(G)$ since $h=0$, and $Y \neq \emptyset$ by Claim 1, and so $\left|N_{G}(Y)\right| \geq \operatorname{bind}(G)|Y|$. Thus

$$
n-m \geq\left|N_{G}(Y)\right| \geq \operatorname{bind}(G)|Y|=\operatorname{bind}(G)(n-|S|)
$$

that is,

$$
\begin{equation*}
|S| \geq n-\frac{n-m}{\operatorname{bind}(G)}>n-\frac{k(n-2)(n-m)}{(2 k-1)(n-1)} \tag{5}
\end{equation*}
$$

According to (1), (5), Claim 4 and $|T| \leq n-|S|$, we have

$$
\begin{aligned}
\varepsilon(S, T)-1 & \geq \delta_{G}(S, T)=k|S|+d_{G-S}(T)-k|T| \\
& \geq k|S|-k|T|+|T|-m \\
& \geq k|S|-(k-1)(n-|S|)-m \\
& =(2 k-1)|S|-k n+n-m \\
& >(2 k-1)\left(n-\frac{k(n-2)(n-m)}{(2 k-1)(n-1)}\right)-k n+n-m \\
& =k n-\frac{k(n-2)(n-m)}{n-1}-m \\
& \geq k n-\frac{k(n-2)(n-1)}{n-1}-1 \\
& =k n-k(n-2)-1=2 k-1>2 \geq \varepsilon(S, T)
\end{aligned}
$$

This is a contradiction.
Case 2. $1 \leq h \leq k-1$.
In view of Claim 1, we obtain

$$
|T| \geq k+1>h+1
$$

Let v be a vertex in T such that $d_{G-S}(v)=h$, and put $Y=T-N_{G-S}(v)$. Then $|Y| \geq|T|-h>1$ and $N_{G}(Y) \neq V(G)$. Thus, we get

$$
\frac{n-1}{|T|-h} \geq \frac{\left|N_{G}(Y)\right|}{|Y|} \geq \operatorname{bind}(G)>\frac{(2 k-1)(n-1)}{k(n-2)}
$$

that is,

$$
\begin{equation*}
|T|<\frac{k(n-2)}{2 k-1}+h \tag{6}
\end{equation*}
$$

By (4) and (6), we have

$$
\begin{aligned}
\delta_{G}(S, T) & =k|S|+d_{G-S}(T)-k|T| \\
& \geq k|S|-k|T|+h|T|=k|S|-(k-h)|T| \\
& >k\left(\frac{(k-1) n+2 k}{2 k-1}-h\right)-(k-h)\left(\frac{k(n-2)}{2 k-1}+h\right)
\end{aligned}
$$

Subcase 2.1. $h=1$.
Obviously, we obtain

$$
\begin{aligned}
\delta_{G}(S, T) & >k\left(\frac{(k-1) n+2 k}{2 k-1}-1\right)-(k-1)\left(\frac{k(n-2)}{2 k-1}+1\right) \\
& =k \cdot \frac{(k-1) n+1}{2 k-1}-(k-1) \cdot \frac{k n-1}{2 k-1}=\frac{2 k-1}{2 k-1}=1
\end{aligned}
$$

According to the integrity of $\delta_{G}(S, T)$, we get that

$$
\delta_{G}(S, T) \geq 2 \geq \varepsilon(S, T)
$$

this contradicts (1).
Subcase 2.2. $2 \leq h \leq k-1$.
Clearly, $k \geq 3$. Let $f(h)=k\left(\frac{(k-1) n+2 k}{2 k-1}-h\right)-(k-h)\left(\frac{k(n-2)}{2 k-1}+h\right)$. Then

$$
\begin{equation*}
\delta_{G}(S, T)>f(h), \tag{7}
\end{equation*}
$$

and

$$
f^{\prime}(h)=-2 k+2 h+\frac{k(n-2)}{2 k-1}
$$

Since $2 \leq h \leq k-1$ and $n \geq 4 k-5$, we have

$$
\begin{aligned}
f^{\prime}(h) & \geq-2 k+4+\frac{k(n-2)}{2 k-1}=\frac{-4 k^{2}+2 k+8 k-4+k n-2 k}{2 k-1} \\
& =\frac{k n-4 k^{2}+8 k-4}{2 k-1} \geq \frac{k(4 k-5)-4 k^{2}+8 k-4}{2 k-1}=\frac{3 k-4}{2 k-1}>0
\end{aligned}
$$

Thus, we get

$$
\begin{equation*}
f(h) \geq f(2) \tag{8}
\end{equation*}
$$

From (7), (8) and $k \geq 3$, we obtain

$$
\begin{aligned}
\delta_{G}(S, T) & >f(h) \geq f(2) \\
& =k\left(\frac{(k-1) n+2 k}{2 k-1}-2\right)-(k-2)\left(\frac{k(n-2)}{2 k-1}+2\right) \\
& =\frac{k(k-1) n+2 k^{2}-4 k^{2}+2 k-k(k-2) n-2 k^{2}+6 k-4}{2 k-1} \\
& =\frac{k n-4 k^{2}+8 k-4}{2 k-1} \geq \frac{k(4 k-5)-4 k^{2}+8 k-4}{2 k-1} \\
& =\frac{3 k-4}{2 k-1}=1+\frac{k-3}{2 k-1} \geq 1 .
\end{aligned}
$$

By the integrity of $\delta_{G}(S, T)$, we have

$$
\delta_{G}(S, T) \geq 2 \geq \varepsilon(S, T),
$$

which contradicts (1).
From all the cases above, we deduced the contradiction. Hence, G is a fractional k-deleted graph. This completes the proof of Theorem 1.3.

Remark 1. Let us show that the condition $\operatorname{bind}(G)>\frac{(2 k-1)(n-1)}{k(n-2)}$ in Theorem 1.3 can not be replaced by $\operatorname{bind}(G) \geq \frac{(2 k-1)(n-1)}{k(n-2)}$. Let $r \geq 1, k \geq 3$ be two odd positive integer and let $l=\frac{5 k r+1}{2}$ and $m=5 k r-5 r+1$, so that $n=m+2 l=10 k r-5 r+2$. Let $H=K_{m} \bigvee l K_{2}$ and $X=V\left(l K_{2}\right)$. Then for any $x \in X,\left|N_{H}(X \backslash x)\right|=n-1$. By the definition of $\operatorname{bind}(H)$, $\operatorname{bind}(H)=\frac{\left|N_{H}(X \backslash x)\right|}{|X \backslash x|}=\frac{n-1}{2 l-1}=\frac{n-1}{5 k r}=\frac{(2 k-1)(n-1)}{k(n-2)}$. Let $S=V\left(K_{m}\right) \subseteq V(H)$, $T=V\left(l K_{2}\right) \subseteq V(H)$. Then $|S|=m,|T|=2 l$. Obviously, T is not independent, then $\varepsilon(S, T)=2$. Thus, we obtain

$$
\begin{aligned}
\delta_{H}(S, T) & =k|S|-k|T|+d_{H-S}(T) \\
& =k|S|-k|T|+|T|=k|S|-(k-1)|T| \\
& =k m-2(k-1) l=k(5 k r-5 r+1)-(k-1)(5 k r+1) \\
& =1<2=\varepsilon(S, T) .
\end{aligned}
$$

By Theorem 1.4, H is not a fractional k-deleted graph. In the above sense, the result in Theorem 1.3 is best possible.

Remark 2. We don't know whether the result can be strengthened to the form that if $\operatorname{bind}(G)>\frac{(2 k-1)(n-1)}{k(n-2)}$ then G is k-deleted. We guess that the above result can hold for $k n$ even.

Acknowledgments. The author would like to express his gratitude to the anonymous referees for their very helpful comments and suggestions in improving this paper.

REFERENCES

1. Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, Macmillan, London 1976.
2. Kano, M., Matsuda, H., A neighborhood condition for graphs to have $[a, b]$-factors, pp. 7078 in: Discrete Geometry, Combinatorics and Graph Theory, Lecture Notes in Comput. Sci. 4381, Springer, Berlin 2007.
3. Katerinis, P., Woodall, D. R., Binding numbers of graphs and the existence of k-factors, Quart. J. Math. Oxford (2) 38 (1987), 221-228.
4. Li, Y., Cai, M., A degree condition for a graph to have $[a, b]$-factors, J. Graph Theory 27 (1998), 1-6.
5. Li, Z., Yan, G., Zhang, X., On fractional (g, f)-deleted graphs, Math. Appl. (Wuhan) 16 (2003), 148-154.
6. Li, Z., Zhang, X., Yan, G., Isolated toughness and fractional k-deleted graphs (Chinese), Acta Math. Appl. Sin. 27 (2004), 593-598.
7. Liu, G., Zang, W., f-Factors in bipartite (mf)-graphs, Discrete Appl. Math. 136 (2004), 45-54.
8. Liu, G., Zhang, X., Fractional factors and fractional Hamilton graphs, Adv. Math. (China) 35 (2006), 257-264.
9. Matsuda, H., Fan-type results for the existence of [a, b]-factors, Discrete Math. 306 (2006), 688-693.
10. Scheinerman, Edward R., Ullman, D. H., Fractional Graph Theory, Wiley, New York 1997.
11. Woodall, D. R., The binding number of a graph and its Anderson number, J. Combinatorial Theory (B) 15 (1973), 225-255.
12. Zhou, S., Some sufficient conditions for graphs to have (g, f)-factors, Bull. Austral. Math. Soc. 75 (2007), 447-452.
13. Zhou, S., Duan, Z., Binding numbers conditions for fractional k-deleted graphs (Chinese), Pure Appl. Math. (Xi'an) 24 (2008), 551-554.

SCHOOL OF MATHEMATICS AND PHYSICS
JIANGSU UNIVERSITY OF SCIENCE AND TECHNOLOGY
MENGXI ROAD 2
ZHENJIANG
JIANGSU 212003
PEOPLE'S REPUBLIC OF CHINA
E-mail: zsz_cumt@163.com

[^0]: * This research was supported by Jiangsu Provincial Educational Department (07KJD110048) and was sponsored by Qing Lan Project of Jiangsu Province.

 Reveived 31 May 2008.

