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EDGE IDEALS OF CLIQUE CLUTTERS OF COMPARA-
BILITY GRAPHS AND THE NORMALITY OF

MONOMIAL IDEALS

LUIS A. DUPONT and RAFAEL H. VILLARREAL∗

Abstract
The normality of a monomial ideal is expressed in terms of lattice points of blocking polyhedra
and the integer decomposition property. For edge ideals of clutters this property characterizes
normality. Let G be the comparability graph of a finite poset. If cl(G) is the clutter of maximal
cliques of G, we prove that cl(G) satisfies the max-flow min-cut property and that its edge ideal
is normally torsion free. Then we prove that edge ideals of complete admissible uniform clutters
are normally torsion free.

1. Introduction

Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let I be
a monomial ideal of R. We are interested in determining what families of
monomial ideals have the property that I is normal or normally torsion free.
An aim here is to explain how these two algebraic properties interact with
combinatorial optimization and linear programming problems. Recall that I

is called normal (resp. normally torsion free) if I i = I i (resp. I i = I (i)) for
all i ≥ 1, where I i and I (i) denote the integral closure of the ith power of I

and the ith symbolic power of I respectively (see the beginning of Sections 2
and 4 for the precise definitions of I i and I (i)). If I = I , the ideal I is called
integrally closed.

The contents of this paper are as follows. In Section 2 we study the normal-
ity of monomial ideals. We are able to characterize this property in terms of
blocking polyhedra and the integer decomposition property (see Theorem 2.1).
For integrally closed ideals this property characterizes normality (see Corol-
lary 2.2). As a consequence, using a result of Baum and Trotter [2], we describe
the normality of a monomial ideal in terms of the integer rounding property
(see Corollary 2.5).

Before introducing the main results of Sections 3 and 4, let us recall some
notions that will play an important role in what follows. Let C be a clutter with
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finite vertex set X = {x1, . . . , xn}, that is, C is a family of subsets of X, called
edges, none of which is included in another. The set of vertices and edges of C

are denoted by V (C ) and E(C ) respectively. The incidence matrix of C is the
vertex-edge matrix whose columns are the characteristic vectors of the edges
of C . The edge ideal of C , denoted by I (C ), is the ideal of R generated by all
monomials

∏
xi∈e xi such that e ∈ E(C ).

Let P = (X, ≺) be a partially ordered set (poset for short) on the finite
vertex set X and let G be its comparability graph. Recall that the vertex set
of G is X and the edge set of G is the set of all unordered pairs of vertices
{xi, xj } such that xi and xj are comparable. A clique of G is a subset of the
set of vertices of G that induces a complete subgraph. The clique clutter of G,
denoted by cl(G), is the clutter with vertex set X whose edges are exactly the
maximal cliques of G (maximal with respect to inclusion).

Our main algebraic result is presented in Section 4. It shows that the edge
ideal I = I (cl(G)) of cl(G) is normally torsion free (see Theorem 4.2). To
prove this result we first show that the clique clutter of G has the max-flow
min-cut property (see Theorem 3.7). Then we use a remarkable result of [7]
showing that an edge ideal I (C ), of a clutter C , is normally torsion free if
and only if C has the max-flow min-cut property. As an application, we prove
that edge ideals of complete admissible uniform clutters are normally torsion
free (see Theorem 4.3). This interesting family of clutters was introduced and
studied in [5].

Along the paper we introduce most of the notions that are relevant for our
purposes. Our main references for combinatorial optimization and commutat-
ive algebra are [3], [12], [14], [15]. In these references the reader will find the
undefined terminology and notation that we use in what follows.

2. Normality of monomial ideals

Let R = K[x1, . . . , xn] be a polynomial ring over a field K , let I be a monomial
ideal of R generated by xv1 , . . . , xvq , and let A be the n×q matrix with column
vectors v1, . . . , vq . As usual, we will use xa as an abbreviation for x

a1
1 . . . xan

n ,
where a = (ai) is a vector in Nn. Recall that the integral closure of I i , denoted
by I i , is the ideal of R given by

(1) I i = ({xa ∈ R | ∃ p ∈ N \ {0}; (xa)p ∈ Ipi}),
see for instance [15, Proposition 7.3.3]. The ideal I is called normal if I i = I i

for i ≥ 1. In this section we give a characterization of the normality of I in
terms of lattice points of blocking polyhedra. The polyhedron

Q = Q(A) = {x | x ≥ 0; xA ≥ 1}
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is called the covering polyhedron of I . As usual, we denote the vector (1, . . . , 1)

by 1. If a = (a1, . . . , an) and b = (b1, . . . , bn) are vectors, we write a ≤ b if
ai ≤ bi for all i. The polyhedron

B(Q) = {z | z ≥ 0; 〈z, x〉 ≥ 1 for all x in Q}
is called the blocking polyhedron of Q = Q(A). Here 〈 , 〉 denotes the standard
inner product in Rn. The polyhedron B(Q) is said to have the integer decom-
position property if for each natural number k and for each integer vector a in
kB(Q), a is the sum of k integer vectors in B(Q); see [12, pp. 66–82].

Theorem 2.1. The ideal I is normal if and only if the blocking polyhedron
B(Q) of Q = Q(A) has the integer decomposition property and all minimal
integer vectors of B(Q) are columns of A (minimal with respect to ≤).

Proof. First we show the equality B(Q) = Rn+ + conv(v1, . . . , vq), where
“conv” stands for convex hull and R+ = {x ∈ R | x ≥ 0}. The right hand
side is clearly contained in the left hand side. Conversely take z in B(Q), then
〈z, x〉 ≥ 1 for all x ∈ Q(A) and z ≥ 0. Let �1, . . . , �r be the vertex set of
Q(A). In particular 〈z, �i〉 ≥ 1 for all i. Then 〈(z, 1), (�i, −1)〉 ≥ 0 for all i.
From [7, Theorem 3.2] we get that (z, 1) belongs to the cone generated by

A ′ = {e1, . . . , en, (v1, 1), . . . , (vq, 1)}.
Thus z is in Rn+ + conv(v1, . . . , vq). This completes the proof of the asserted
equality. Hence B(Q)∩Qn = Qn++convQ(v1, . . . , vq) because the polyhedron
B(Q) is rational. Using this equality and the description of the integral closure
given in Eq. (1), we readily obtain the equality

(2) I k = ({xa | a ∈ kB(Q) ∩ Zn})
for 0 �= k ∈ N. Assume that I is normal, i.e., I k = I k for k ≥ 1. Let a be
an integer vector in kB(Q). Then xa ∈ I k and consequently a is the sum of k

integer vectors in B(Q), that is, B(Q) has the integer decomposition property.
Take a minimal integer vector a in B(Q). Then xa ∈ I = I and we can write
a = δ +vi for some vi and for some δ ∈ Nn. Thus a = vi by the minimality of
a. Conversely assume that B(Q) has the integer decomposition property and
all minimal integer vectors of B(Q) are columns of A. Take xa ∈ I k , i.e., a is
an integer vector of kB(Q). Hence a is the sum of k integer vectors α1, . . . , αk

in B(Q). Since any minimal vector of B(Q) is a column of A we may assume
that αi = ci + vi for i = 1, . . . , k. Hence xa ∈ I k , as required.

Corollary 2.2. If I = I , then I is normal if and only if the blocking
polyhedron B(Q) has the integer decomposition property.
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Proof. ⇒) If I is normal, by Theorem 2.1 the blocking polyhedron B(Q)

has the integer decomposition property.
⇐) Take xa ∈ I k . From Eq. (2) we get that a is an integer vector of kB(Q).

Hence a is the sum of k integer vectors α1, . . . , αk in B(Q). Using Eq. (2) with
k = 1, we get that α1, . . . , αk are in I = I . Hence xa ∈ I k , as required.

Corollary 2.3. If I = I (C ) is the edge ideal of a clutter C , then I is nor-
mal if and only if the blocking polyhedron B(Q) has the integer decomposition
property.

Proof. Recall that I is an intersection of prime ideals (see [15, Corol-
lary 5.1.5]). Thus it is seen that I = I . Then the result follows from Corol-
lary 2.2.

Definition 2.4. The system x ≥ 0; xA ≥ 1 of linear inequalities is said
to have the integer rounding property if

max{〈y, 1〉 | y ≥ 0; Ay ≤ w; y ∈ Nq} = �max{〈y, 1〉 | y ≥ 0; Ay ≤ w}�
for each integer vector w for which the right hand side is finite.

Systems with the integer rounding property have been widely studied; see
for instance [11, Chapter 22, pp. 336–338], [12, pp. 82–83], and the references
there.

Corollary 2.5. I is a normal ideal if and only if the system xA ≥ 1; x ≥ 0
has the integer rounding property.

Proof. According to [2] the systemxA ≥ 1; x ≥ 0 has the integer rounding
property if and only if the blocking polyhedron B(Q) of Q = Q(A) has the
integer decomposition property and all minimal integer vectors of B(Q) are
columns of A (minimal with respect to ≤) (cf. [12, p. 82, Eq. (5.80)]). Thus
the result follows at once from Theorem 2.1.

There are some other useful characterizations of the normality of a mono-
mial ideal [4, Theorem 4.4].

3. Maximal cliques of comparability graphs

In this section we introduce the max-flow min-cut property and prove our main
combinatorial result, that is, we prove that the clique clutter of a comparability
graph satisfies the max-flow min-cut property.

Definition 3.1. Let C be a clutter and let A be its incidence matrix. The
clutter C satisfies the max-flow min-cut property if both sides of the LP-duality
equation

(3) min{〈w, x〉 | x ≥ 0; xA ≥ 1} = max{〈y, 1〉 | y ≥ 0; Ay ≤ w}
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have integer optimum solutions x and y for each non-negative integer vector
w.

Let C be a clutter on the vertex set X = {x1, . . . , xn}. A set of edges of C

is called independent or stable if no two of them have a common vertex. A
subset C ⊂ X is called a minimal vertex cover of C if: (i) every edge of C

contains at least one vertex of C, and (ii) there is no proper subset of C with
the first property. We denote the smallest number of vertices in any minimal
vertex cover of C by α0(C ) and the maximum number of independent edges
of C by β1(C ). These two numbers satisfy β1(C ) ≤ α0(C ).

Definition 3.2. If β1(C ) = α0(C ), we say that C has the König property.

Let xi be a vertex of C . Then duplicating xi means extending X by a new
vertex x ′

i and replacing E(C ) by

E(C ) ∪ {(e \ {xi}) ∪ {x ′
i} | xi ∈ e ∈ E(C )}.

The deletion of xi , denoted by C \{xi}, is the clutter formed from C by deleting
the vertex xi and all edges containing xi . A clutter obtained from C by a
sequence of deletions and duplications of vertices is called a parallelization.
If w = (wi) is a vector in Nn, we denote by C w the clutter obtained from C by
deleting any vertex xi with wi = 0 and duplicating wi − 1 times any vertex xi

if wi ≥ 1.
The notion of parallelization can be used to give the following character-

ization of the max-flow min-cut property which is suitable to study the clique
clutter of the comparability graph of a poset.

Theorem 3.3. [12, Chapter 79, Eq. (79.1)] Let C be a clutter. Then C

satisfies the max-flow min-cut property if and only if β1(C
w) = α0(C

w) for all
w ∈ Nn.

Lemma 3.4. Let cl(G) be the clutter of maximal cliques of a graph G. If
G1 (resp. cl(G)1) is the graph (resp. clutter) obtained from G (resp. cl(G)) by
duplicating the vertex x1, then cl(G)1 = cl(G1).

Proof. Let y1 be the duplication of x1. Set C = cl(G). First we prove
that E(C 1) ⊂ E(cl(G1)). Take e ∈ E(C 1). Case (i): Assume y1 /∈ e. Then
e ∈ E(C ). Clearly e is a clique of G1. If e /∈ E(cl(G1)), then e can be
extended to a maximal clique of G1. Hence e ∪ {y1} must be a clique of G1.
Note that x1 /∈ e because {x1, y1} is not an edge of G1. Then e ∪ {x1} is a
clique of G, a contradiction. Thus e is in E(cl(G1)). Case (ii): Assume y1 ∈ e.
Then there is f ∈ E(cl(G)), with x1 ∈ f , such that e = (f \ {x1}) ∪ {y1}.
Since {x, x1} ∈ E(G) for any x in f \ {x1}, one has that {x, y1} ∈ E(G1) for
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any x in f \ {x1}. Then e is a clique of G1. If e is not a maximal clique of
G1, there is x /∈ e which is adjacent in G to any vertex of f \ {x1} and x is
adjacent to y1 in G1. In particular x �= x1. Then x is adjacent in G to x1 and
consequently x is adjacent in G to any vertex of f , a contradiction because
f is a maximal clique of G. Thus e is in cl(G1). Next we prove the inclusion
E(cl(G1)) ⊂ E(C 1). Take e ∈ E(cl(G1)), i.e., e is a maximal clique of G1.
Case (i): Assume y1 /∈ e. Then e is a maximal clique of G, and so an edge of C 1.
Case (ii): Assume y1 ∈ e. Then e \ {y1} is a clique of G and {x, y1} ∈ E(G1)

for any x in e \ {y1}. Then {x, x1} is in E(G) for any x in e \ {y1}. Hence
f = (e \ {y1}) ∪ {x1} is a clique of G. Note that f is a maximal clique of
G. Indeed if f is not a maximal clique of G, there is x ∈ V (G) \ f which is
adjacent in G to every vertex of e \ {y1} and to x1. Thus x is adjacent to y1 in
G1 and to every vertex in e\{y1}, i.e., e∪{x} is a clique of G1, a contradiction.
Thus f ∈ cl(G). Since e = (f \ {x1}) ∪ {y1} we obtain that e ∈ E(C 1).

Unfortunately we do not have an analogous version of Lemma 3.4 valid for
a deletion. In other words, if G is a graph, the equality cl(G)w = cl(Gw), with
w an integer vector, fails in general (see Remark 3.5).

Remark 3.5. Let G be a graph. Let G1 = G \ {x1} (resp. cl(G)1 =
cl(G) \ {x1}) be the graph (resp. clutter) obtained from G (resp. cl(G)) by
deleting the vertex x1. The equality cl(G)1 = cl(G1) fails in general. For
instance if G is a cycle of length three, then E(cl(G)1) = ∅ and cl(G1) has
exactly one edge.

Let D be a digraph, that is, D consists of a finite set V (D) of vertices
and a set E(D) of ordered pairs of distinct vertices called edges. Let A, B be
two sets of vertices of D . For use below recall that a (directed) path of D is
called an A–B path if it runs from a vertex in A to a vertex in B. A set C of
vertices is called an A–B disconnecting set if C intersects each A–B path. For
convenience we recall the following classical result.

Theorem 3.6. (Menger’s theorem, see [12, Theorem 9.1]) Let D be a di-
graph and let A, B be two subsets of V (D). Then the maximum number of
vertex-disjoint A–B paths is equal to the minimum size of an A–B disconnect-
ing vertex set.

We come to the main result of this section.

Theorem 3.7. LetP = (X, ≺)be a poset on the vertex setX = {x1, . . . , xn}
and let G be its comparability graph. If C = cl(G) is the clutter of maximal
cliques of G, then C satisfies the max-flow min-cut property.

Proof. We can regard P as a transitive digraph without cycles of length
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two with vertex set X and edge set E(P ), i.e., the edges of P are ordered pairs
(a, b) of distinct vertices with a ≺ b such that:

(i) (a, b) ∈ E(P ) and (b, c) ∈ E(P ) ⇒ (a, c) ∈ E(P ) and

(ii) (a, b) ∈ E(P ) ⇒ (b, a) /∈ E(P ).

Note that because of these two conditions, P is in fact an acyclic digraph, that
is, it has no directed cycles. Let x1 be a vertex of P and let y1 be a new vertex.
Consider the digraph P 1 with vertex set X1 = X ∪ {y1} and edge set

E(P 1) = E(P ) ∪ {(y1, x) | (x1, x) ∈ E(P )} ∪ {(x, y1) | (x, x1) ∈ E(P )}.
The digraph P 1 is transitive. Indeed let (a, b) and (b, c) be two edges of
P 1. If y1 /∈ {a, b, c}, then (a, c) ∈ E(P ) ⊂ E(P 1) because P is transitive.
If y1 = a, then (x1, b) and (b, c) are in E(P ). Hence (x1, c) ∈ E(P ) and
(y1, c) ∈ E(P 1). The cases y1 = b and y1 = c are treated similarly. Thus P 1

defines a poset (X1, ≺1). The comparability graph H of P 1 is precisely the
graph G1 obtained from G by duplicating the vertex x1 by the vertex y1. To
see this note that {x, y} is an edge of G1 if and only if {x, y} is an edge of G

or y = y1 and {x, x1} is an edge of G. Thus {x, y} is an edge of G1 if and
only if x is related to y in P or y = y1 and x is related to y in P 1, i.e., {x, y}
is an edge of G1 if and only if {x, y} is an edge of H . From Lemma 3.4 we
get that cl(G)1 = cl(G1), where cl(G)1 is the clutter obtained from cl(G) by
duplicating the vertex x1 by the vertex y1. Altogether we obtain that the clutter
cl(G)1 is the clique clutter of the comparability graph G1 of the poset P 1.

By Theorem 3.3 it suffices to prove that cl(G)w has the König property
for all w ∈ Nn. Since duplications commute with deletions, by permuting
vertices, we may assume that w = (w1, . . . , wr, 0, . . . , 0), where wi ≥ 1
for i = 1, . . . , r . Consider the clutter C1 obtained from cl(G) by duplicating
wi − 1 times the vertex xi for i = 1, . . . , r . We denote the vertex set of C1 by
X1. By successively applying the fact that cl(G)1 = cl(G1), we conclude that
there is a poset P1 with comparability graph G1 and vertex set X1 such that
C1 = cl(G1). As before we regard P1 as a transitive acyclic digraph.

Let A and B be the set of minimal and maximal elements of the poset P1,
i.e., the elements of A and B are the sources and sinks of P1 respectively. We set
S = {xr+1, . . . , xn}. Consider the digraph D whose vertex set isV (D) = X1\S
and whose edge set is defined as follows. A pair (x, y) in V (D) × V (D) is
in E(D) if and only if (x, y) ∈ E(P1) and there is no vertex z in X1 with
x ≺ z ≺ y. Notice that D is a sub-digraph of P1 which is not necessarily the
digraph of a poset. We set A1 = A\S and B1 = B \S. Note that C w = C1 \S,
the clutter obtained from C1 by removing all vertices of S and all edges sharing
a vertex with S. If every edge of C1 intersects S, then E(C w) = ∅ and there is
nothing to prove. Thus we may assume that there is a maximal clique K of G1
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disjoint form S. Note that by the maximality of K and by the transitivity of P1

we get that K contains at least one source and one sink of P1, i.e., A1 �= ∅ and
B1 �= ∅ (see argument below).

The maximal cliques of G1 not containing any vertex of S correspond
exactly to the A1–B1 paths of D . Indeed let c = {v1, . . . , vs} be a maximal
clique of G1 disjoint from S. Consider the sub-poset Pc of P1 induced by c.
Note that Pc is a tournament, i.e., Pc is an oriented graph (no-cycles of length
two) such that any two vertices ofPc are comparable. By [1, Theorem 1.4.5] any
tournament has a Hamiltonian path, i.e., a spanning oriented path. Therefore
we may assume that

v1 ≺ v2 ≺ · · · ≺ vs−1 ≺ vs

By the maximality of c we get that v1 is a source of P1, vs is a sink of P1, and
(vi, vi+1) is an edge of D for i = 1, . . . , s − 1. Thus c is an A1–B1 path of D ,
as required. Conversely let c = {v1, . . . , vs} be an A1–B1 path of D . Clearly c

is a clique of P1 because P1 is a poset. Assume that c is not a maximal clique
of G1. Then there is a vertex v ∈ X1 \ c such that v is related to every vertex of
c. Since v1, vs are a source and a sink of P1 respectively we get v1 ≺ v ≺ vs .
We claim that vi ≺ v for i = 1, . . . , s. By induction assume that vi ≺ v for
some 1 ≤ i < s. If v ≺ vi+1, then vi ≺ v ≺ vi+1, a contradiction to the
fact that (vi, vi+1) is an edge of D . Thus vi+1 ≺ v. Making i = s we get
that vs ≺ v, a contradiction. This proves that c is a maximal clique of G1.
Therefore, since the maximal cliques of G1 not containing any vertex in S are
exactly the edges of C w = C1 \ S, by Menger’s theorem (see Theorem 3.6)
we obtain that β1(C

w) = α0(C
w), i.e., C w satisfies the König property.

Let G be a graph. The matrix A whose column vectors are the characteristic
vectors of the maximal cliques of G is called the vertex-clique matrix of G.
It is well known that if G is a comparability graph and A is the vertex-clique
matrix of G, then G is perfect [12, Corollary 66.2a] and the polytope

P(A) = {x | x ≥ 0; xA ≤ 1}
is integral [12, Corollary 65.2e]. The next result complement this fact.

Corollary 3.8. Let G be a comparability graph and let A be the vertex-
clique matrix of G. Then the polyhedron Q(A) = {x | x ≥ 0; xA ≥ 1} is
integral.

Proof. By Theorem 3.7 the clique clutter cl(G) has the max-flow min-
cut property. Thus the system xA ≥ 1; x ≥ 0 is totally dual integral, i.e.,
the maximum in Eq. (3) has an integer optimum solution y for each integer
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vector w with finite maximum. Hence Q(A) has only integer vertices by [12,
Theorem 5.22].

4. Normally torsion freeness and normality

Let R = K[x1, . . . , xn] be a polynomial ring over a field K , let C be a clutter
on the vertex set X = {x1, . . . , xn}, and let I = I (C ) ⊂ R be the edge ideal
of C . Recall that � is a minimal prime of I if and only if � = (C) for some
minimal vertex cover C of C [15, Proposition 6.1.16]. Thus if C1, . . . , Cs are
the minimal vertex covers of C , then the primary decomposition of I is

(4) I = �1 ∩ �2 ∩ · · · ∩ �s ,

where �i is the prime ideal of R generated by Ci . The ith symbolic power of
I , denoted by I (i), is given by I (i) = �i

1 ∩ · · · ∩ �i
s .

Theorem 4.1 ([7]). Let C be a clutter, let A be the incidence matrix of C ,
and let I = I (C ) be its edge ideal. Then the following are equivalent:

(i) I is normal and Q(A) = {x | x ≥ 0; xA ≥ 1} is an integral polyhedron.

(ii) I is normally torsion free, i.e., I i = I (i) for i ≥ 1.

(iii) C has the max-flow min-cut property.

There are some other nice characterizations of the normally torsion free
property that can be found in [6], [9].

Our main algebraic result is:

Theorem 4.2. If G is a comparability graph and cl(G) is its clique clutter,
then the edge ideal I = I (cl(G)) of cl(G) is normally torsion free and normal.

Proof. It follows from Theorems 3.7 and 4.1.

Complete admissible uniform clutters

In this paragraph we introduce a family of clique clutters of comparability
graphs. Let d ≥ 2, g ≥ 2 be two integers and let

X1 = {x1
1 , . . . , x

1
g}, X2 = {x2

1 , . . . , x2
g}, . . . , Xd = {xd

1 , . . . , xd
g }

be disjoint sets of variables. The clutter C with vertex set X = X1 ∪ · · · ∪ Xd

and edge set

E(C ) = {{x1
i1
, x2

i2
, . . . , xd

id
} | 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ g}

is called a complete admissible uniform clutter. The edge ideal of this clutter
was introduced and studied in [5]. This ideal has many good properties, for
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instance I (C ) and its Alexander dual are Cohen-Macaulay and have linear
resolutions (see [5, Proposition 4.5, Lemma 4.6]). For a thorough study of
Cohen-Macaulay admissible clutters see [8], [10].

Theorem 4.3. If C is a complete admissible uniform clutter, then its edge
ideal I (C ) is normally torsion free and normal.

Proof. Let P = (X, ≺) be the poset with vertex set X and partial order
given by x�

k ≺ xm
p if and only if 1 ≤ � < m ≤ d and 1 ≤ k ≤ p ≤ g. We

denote the comparability graph of P by G. We claim that E(C ) = E(cl(G)),
where cl(G) is the clique clutter of G. Let f = {x1

i1
, x2

i2
, . . . , xd

id
} be an edge

of C , i.e., we have 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ g. Clearly f is a clique of G.
If f is not maximal, then there is a vertex x�

k not in f which is adjacent in
G to every vertex of f . In particular x�

k must be comparable to x�
i�

, which is
impossible. Thus f is an edge of cl(G). Conversely let f be an edge of cl(G).
We can write f = {xk1

i1
, x

k2
i2

, . . . , x
ks

is
}, where k1 < · · · < ks and i1 ≤ · · · ≤ is .

By the maximality of f we get that s = d and ki = i for i = 1, . . . , d. Thus
f is an edge of C . Hence by Theorem 4.2 we obtain that I (C ) is normally
torsion free and normal.
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