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LINEAR ASSOCIATION BY OPTIMIZATION

TECHNIQUES
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Abstract
The idea of measures of linear association, such as Pearson’s correlation coefficient, can be put in
a general framework by axiomization. Groups of linear transformations on Rn can be exploited to
create new and classify existing measures according to their invariance properties. Thus invariance
under the Euclidean transformation group leads to the class of so-called geometric measures.
Similarly, a measure is called algebraic if it is invariant under scalings. Pearson’s coefficient is
an example of an algebraic measure; it is not geometric. It is proved that, generally, a measure of
linear association cannot possibly be both geometric and algebraic. A procedure is developed to
convert a geometric measure into an algebraic and vice versa. Thus a kind of a duality between
algebraic and geometric measures arises. In this duality measures can be reflexive or not.

1. Introduction

When talking about measures of linear association, the first thing that comes
up in mind is usually Pearson’s correlation coefficient (see for example [10]),
hereafter denoted as ρP . This measure (or better its square) can be useful
to evaluate the fraction of explained variance in an ordinary linear regres-
sion. Besides this, however, Pearson’s coefficient is often used as a kind of
a geometrical quantity that would measure the degree to which the points in
a scatterplot cluster around a straight line. This is really a risky usage, for
the coefficient changes its values when applying simple Euclidean transform-
ations. For example, the value of ρP changes when applying a rotation, say,
around the origin, on the set of points in a scatter plot (see [5], [7], [8], [11],
[12]). In mathematics this is usually referred to by saying that ρP is not invari-
ant under (the group of) rotations. In the following the invariance properties
of Pearson’s coefficient will be discussed in some detail. Besides Pearson’s
coefficient, however, some other measures of linear association will be dis-
cussed. It will appear to be comfortable to capture one thing and another in
a small framework. This framework will allow for a deliberative view on the
position of Pearson’s coefficient relative to various other measures of linear
association.

Received 8 May 2008.



68 wiebe r. pestman

2. Setting the notations

Characters like x, y, z will stand for vectors in Rn, hence one has for example

x =

⎛
⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎠ .

The vector with all components equal to 1 will be denoted as 1. The mean of
the components x1, x2, . . . , xn of x will be denoted by x̄. The covariance of
two vectors x and y will be denoted by cov(x, y), hence one has

cov(x, y) = 1

n

n∑
i=1

(xi − x̄)(yi − ȳ).

The variance of a vector x is by definition the quantity cov(x, x) and will be
denoted by var(x).

Given any set of vectors x1, x2, . . . , xm in Rn, a linear combination

a1x1 + a2x2 + · · · + amxm

will be called spherical if the coefficient vector a = (a1, a2, . . . , am) is of unit
length in Rm, that is, if

‖a‖2 = a2
1 + a2

2 + · · · + a2
m = 1.

As is wellknown (see for example [10]), maximization and minimization of
the expression

(1) var(a1x1 + a2x2 + · · · + amxm)

over all coefficient vectors a of unit length can be carried out through diagon-
alization of the covariance matrix C of the vectors x1, x2, . . . , xm, that is, the
matrix

C =

⎛
⎜⎜⎝

cov(x1, x1) cov(x1, x2) . . . cov(x1, xm)

cov(x2, x1) cov(x2, x2) . . . cov(x2, xm)
...

...
...

cov(xm, x1) cov(xm, x2) . . . cov(xm, xm)

⎞
⎟⎟⎠ .

Thus the maximum and minimum values of (1) are equal to the largest and
smallest eigenvalue of C. The coefficient vectors that bring this about are
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eigenvectors (of unit length) of C. The largest and the smallest eigenvalue of
C will be denoted by λmax and λmin respectively.

The character d, unless otherwise stated, will stand for an n × m matrix.
The rows of such a matrix can be looked upon as being n points in Rm and
these points can be subject of (geometrical) transformations. Row number i of
matrix d will be denoted as di• and column number j as d•j .

A matrix d will be called a datamatrix if there is among the columns of d at
least one that is not constant. An n×m datamatrix d will be called degenerate
if the vectors {1, d•1, d•2, . . . , d•m} form a linear dependent system in Rn in
the sense defined in linear algebra. A datamatrix is degenerate if and only if
the n associated points are situated in an affine subspace of Rm of dimension
strictly less than m. A datamatrix is called centered if the column means are
all zero.

Sometimes the last column in a datamatrix will play a particular role. If so
then the datamatrix will be announced as an n× (m+ 1) matrix. In such cases
the matrix consisting of the first m columns of d will be denoted by x and the
last column of d by y. Hence, when writing out an n × (m + 1) datamatrix d
under these conventions one would have:

d =

⎛
⎜⎜⎜⎜⎜⎜⎝

x11 x12 . . . x1m y1

x21 x22 . . . x2m y2

x31 x32 . . . x3m y3
...

...
...

...

xn1 xn2 . . . xnm yn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In these notations an n × (m + 1) datamatrix d defines a set of n points

(x1•, y1), (x2•, y2), . . . , (xn•, yn)

in Rm+1.
To define the Pearson correlation coefficient of a non-degenerate n×(m+1)

datamatrix d, suppose that in a linear regression the column y is taken as
response variable and the m columns of x as explanatory variables. Pearson’s
correlation coefficient is then by definition the square root of the fraction of
explained variance in this regression. This coefficient will be denoted by ρP (d).
Denoting the residual sum of squares in the regression by SSE one could also
define ρP (d) for non-degenerate datamatrices as (see [10]):

ρP (d) =
√

1 − SSE

n var(y)
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For degenerate datamatrices Pearson’s coefficient will be set to the value 1
by definition. Note that ρP (d) is always a number in between 0 and 1. The
value 1 is only attained in cases where the n points happen to ly in an affine
subspace of dimension less than m. Also note that in the setting above Pearson’s
coefficient can never be negative. In cases where d is a centered datamatrix
Pearson’s coefficient can be regarded (see [10]) as the cosine of the angle
between y and the linear space spanned by the columns of x.

3. Transformation of datasets

Given some n × m matrix a of type

a =

⎛
⎜⎜⎜⎜⎝

a1 a2 . . . am

a1 a2 . . . am

a1 a2 . . . am

...
...

...

a1 a2 . . . am

⎞
⎟⎟⎟⎟⎠

translations of n×m matrices can be presented as a transformation of the form

d �→ d + a.

In terms of matrix products a scaling can be captured as a transformation of
type

d �→ ds

where s is a m×m diagonal matrix with strictly positive entries on the diagonal.
The set of all such matrices will be denoted by D.

Similarly, orthogonal transformations can be captured as:

d �→ dq

where q is a m × m orthogonal matrix. The set of all such matrices will be
denoted by O. Orthogonal transformations (especially those with determinant
equal to 1) are often regarded as generalized rotations. Given a datamatrix d, an
orthogonal matrix that is special to q is presented by a matrix q that consists of
normalized eigenvectors of the covariance matrix of d. For such a particular q
the columns in the datamatrix dq are mutually uncorrelated. Hence, provided
d is non-degenerate, for such q one always has a zero value for ρP (dq). It
follows from this that Pearson’s coefficient changes as a rule when applying
orthogonal transformations on a datamatrix.

General linear transformations can be captured in terms of matrix products
as:

d �→ dg
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where g is an arbitrary m × m invertible matrix.
Note that all these classes of transformations form groups in the sense

of Galois. Actually, with the exception of translations, they all form matrix
multiplication groups.

4. General measures of linear association

In this section a small framework will be set up. This will turn out to be
comfortable in subsequent sections. General measures of linear association
will be defined as being maps d �→ γ (d) that satisfy a suitable set of properties
(see also [9]).

Definition 4.1. A matrix function γ is be said to be continuous in a
datamatrix d if for every sequence d1, d2, . . . of matrices (of the same size)
converging to d the sequence γ (d1), γ (d2), . . . converges to γ (d).

Definition 4.2. An m-dimensional measure of linear association is un-
derstood to be a function d �→ γ (d), defined on the set of all m-column
datamatrices, that has the next six properties:

a) For every d one has 0 ≤ γ (d) ≤ 1.
b) One has γ (d) = 1 if and only if d is degenerate.
c) ] γ is invariant under row permutations.
d) γ is invariant under translations.
e) γ is invariant under scalar multiplication, that is, one has γ (d) = γ (sd)

for every non-zero scalar s.
f) If a datamatrix does not contain columns that are constant then γ is

continuous in it.

A measure will be called symmetric if it is invariant under column permuta-
tions and it will be called continuous if it is continuous in every datamatrix.

In the 2-dimensional case Pearson’s correlation coefficient is an example
of a measure of linear association in the sense of the definition above. In
higher dimensions, however, Pearson’s coefficient fails to meet the necessary
continuity requirements. Nevertheless Pearson’s coefficient will prove to be
useful in the construction of measures of linear association.

Definition 4.3. A measure of linear association γ is said to be invariant
under a matrix multiplication group G if for all possible datamatrices d one
has

γ (d) = γ (dg) for every g ∈ G.

It is difficult to imagine that a measure that is neither invariant under the
diagonal group D nor under the orthogonal group O can serve useful purposes.
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So, starting from this way of thinking, the measures of linear association will be
divided into two classes: a class where the measures are invariant under D and a
class where they are invariant under O. Because (by definition) all measures are
automatically invariant under translations, O-invariant measures are actually
invariant under the Euclidean transformation group. In modern mathematical
terms they therefore present geometric characteristics (see [14]).

Definition 4.4. If a measure of linear association is O-invariant, then it
will be called a geometric measure. If it is D-invariant it will be called an
algebraic measure.

In this terminology, the 2-dimensional Pearson’s correlation coefficient is
algebraic, but not geometric. A question that could arise is whether it is possible
to construct a measure of linear association that is both algebraic and geometric.
The answer to this question turns out to be negative. In proving this it will
appear to be comfortable to have a function ζ defined as:

Definition 4.5. For every n × m matrix the number ζ(d) is defined as

ζ(d) = var(d•1) var(d•2) . . . var(d•m).

Note that ζ(d) = 0 if and only if d has one or more constant columns. The
following property of ζ will be useful:

Lemma 4.6. If the columns of an n × m datamatrix d are not of equal
variance, then there exists an orthogonal matrix q such that

ζ(d) < ζ(dq).

Proof. This lemma will first be proved for cases where d is a 2-column
datamatrix. Define for such matrices the function d �→ f (d) as

f (d) = var(d•1) − var(d•2).

Moreover define for every ϕ ∈ [0, π ] the orthogonal matrix q(ϕ) as

q(ϕ) =
(

cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

)
.

Now the function ϕ �→ f (dq(ϕ)) is continuous and assumes values of opposite
sign in 0 and π/2. It follows that there must be a zero somewhere in between
0 and π/2. Let ϕ be any such zero and let q be the corresponding matrix q(ϕ).
Then dq has columns of equal variance. Set

v1 = var(d•1) and v2 = var(d•2).
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Then the variances of the columns in dq must be equal to (v1 + v2)/2. If
v1 �= v2 then one has

ζ(d) = v1v2 <

(
v1 + v2

2

)(
v1 + v2

2

)
= ζ(dq)

which proves the lemma in cases where d is a 2-column matrix.
Next, let d be an arbitrary n × m matrix the columns of which are not of

equal variance. Without loss of generality one may assume that the first two
columns have different variances. Let d0 be the n × 2 matrix consisting of
these two columns. By the first part of the proof there exists a 2×2 orthogonal
matrix q0 such that

ζ(d0) < ζ(d0q0).

Define q to be the m × m identity matrix in which the left upper 2 × 2 block
has been replaced by q0. For this matrix q one has

ζ(d) = ζ(d0) var(d•3) . . . var(d•m)

< ζ(d0q0) var(d•3) . . . var(d•m) = ζ(dq)

which proves the lemma for the general d.

Leaning on this lemma one can prove:

Theorem 4.7. A geometric measure of linear association is always continu-
ous. An algebraic measure of linear association is necessarily discontinuous
in certain datamatrices that contain one or more constant columns.

Proof. To prove the continuity of geometric measures, let γ be any such
measure. The only point of concern are the datamatrices that contain one or
more constant columns. If d is such a matrix, however, then, by the previ-
ous lemma, there exists an orthogonal matrix q such that dq does not contain
constant columns. Hence γ is continuous in dq. Because γ is O-invariant this
implies that there is also continuity in d. To prove discontinuity of algebraic
measures, suppose that γ is any such measure. Let d0 be a datamatrix that has
one or more constant columns. Assume that d0 is such that the non-constant
columns in it form a non-degenerate datamatrix. Because of the translation
invariance of γ one may assume, without loosing generality, that the con-
stant columns consist of zeros only. Now consider datamatrices that can be
derived from d0 by modifying its zero columns. Among these matrices there
are non-degenerate ones. Choose any such non-degenerate d. Then there exists
a sequence s1, s2, . . . of matrices in the diagonal group D such that

lim
n→∞ dsn = d0.
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However, in virtue of the D-invariance of γ , one has

lim
n→∞ γ (dsn) = γ (d) < 1.

This shows that the limit on the left side cannot possibly be equal to γ (d0),
which has the value 1. It follows that γ is discontinuous in d0.

Corollary 4.8. A measure of linear association cannot possibly be both
algebraic and geometric.

If, for example, as to a set of points in R2 there is a wish to quantify their
degree of clustering around a line then it seems natural to use, rather than
Pearson’s coefficient, a geometric measure. To have an example of a geometric
measure in mind, one could think of the measure defined by:

Definition 4.9. Given an arbitrary n × (m + 1) matrix d its Euclidean
correlation coefficient is given by

ρE(d) = max
q∈O

ρP (dq)

where the maximum is taken over all orthogonal matrices q.

More colloquially, the Euclidean correlation coefficient is the maximum
value of Pearson’s correlation coefficient that can be obtained by transforming
the cloud of points by means of orthogonal matrices. As will be clarified later
on, the map d �→ ρE(d) is a measure of linear association indeed. Besides
this, exploiting the fact that the orthogonal matrices form a group, it is easy to
see that the Euclidean correlation coefficient is geometric. As a consequence
of Corollary 4.8, the Euclidean correlation coefficient cannot possibly be al-
gebraic. For n × 2 datamatrices the maximization above has been studied in
[7]. From the results there one can derive the following explicit expression for
ρE(d) in the case of n × 2 datamatrices:

ρE(d) = λmax − λmin

λmax + λmin

where λmax and λmax are the largest and smallest eigenvalue of the covariance
matrix of d. In a subsequent section it will be proved that the above is generally
valid for arbitrary n×m datamatrices. From this result it follows that ρE meets
the necessary continuity requirements and that it is a proper measure of linear
association by consequence.
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5. Creating invariance through optimization

The maximizing construction, used in the previous section to define the Euc-
lidean correlation coefficient, can easily be captured in a more general setting:

Definition 5.1. For an arbitrary matrix multiplication group G and an
arbitrary measure of linear association γ the G-maximization and G-minimiz-
ation of γ are understood to be the maps

d �→ sup
g∈G

γ (dg) and d �→ inf
g∈G

γ (dg)

These maps will be denoted by supG(γ ) and infG(γ ) respectively.

It should be noted that the maps supG(γ ) and infG(γ ) are always G-invariant,
but that they do not always present measures of linear association. An example
of this emerges when minimizing Pearson’s coefficient over the (compact)
orthogonal group O to get infO(ρP ). This map can only assume the values 0
and 1 and can therefore impossibly meet the necessary continuity conditions.
This negative phenomenon is more generally described by the next theorem:

Theorem 5.2. A D-maximization of a continuous measure or an O-minimiz-
ation of an algebraic measure is never a measure of linear association.

Proof. To prove the first statement, suppose that γ is a continuous measure
of linear association. Choose any non-degenerate datamatrix d. Then there
exists a sequence s1, s2, . . . of matrices in the diagonal group D such that the
sequence

ds1, ds2, ds3, . . .

converges to a degenerate datamatrix. Continuity of γ implies that the sequence

γ (ds1), γ (ds2), γ (ds3), . . .

converges to 1. For this reason the D-maximization ofγ systematically assumes
the value 1 for non-degenerate datamatrices. It is therefore not a measure of
linear association.

To prove the second statement, suppose that γ is an algebraic measure of
linear association. Again, fix any non-degenerate datamatrix d. Then one has

γ (ds) = γ (d) < 1 for all s ∈ D.

It follows from this that

inf
O

(γ )(ds) ≤ γ (ds) ≤ γ (d) < 1 for all s ∈ D.



76 wiebe r. pestman

Now, if infO(γ ) were a measure of linear association, then it would be a
geometric and thus a continuous one. Using the arguments of the first part of
the proof, the inequality above could not be true for all s ∈ D. This proves that
the O-minimization of γ cannot possibly be a measure of linear association.

It will turn out, in contrast to the theorem above, that D-minimization of
geometric measures or O-maximization of algebraic measures results in proper
measures of linear association. In proving this the next topological lemma will
be useful:

Lemma 5.3. Let X and Y be compact metric spaces and let f : X ×Y → R
be a continuous function. Then the maps

x �→ min
y∈Y

f (x, y) and x �→ max
y∈Y

f (x, y)

are continuous on X.

Proof. This can be proved by using standard arguments in mathematical
analysis. See for example [2], [6], [13] for the necessary tools in this.

Theorem 5.4. Let G be an arbitrary compact multiplicative matrix group
and γ an arbitrary measure of linear association. Then the G-maximization of
γ is a G-invariant measure of linear association. If γ is continuous then the
G-minimization of γ is a continuous G-invariant measure of linear association.

Proof. As to sup G(γ ), the only point deserving attention is its continuity in
datamatrices that do not contain constant columns. Let γ be an m-dimensional
measure of linear association and G a compact multiplicative group of m × m

matrices. To prove continuity of supG(γ ) in non-degenerate datamatrices, let
d be any such matrix. The non-degenerate datamatrices can be looked upon
as being an open set in Rn×m. It follows that d has a compact neighborhood X

that exclusively contains non-degenerate datamatrices. Now the map

(x, g) �→ γ (xg)

is continuous on the Cartesian product X×G. Applying the foregoing lemma it
follows that supG(γ ) is continuous on X and thus in d. This proves that supG(γ )

is continuous in all non-degenerate d. Next, let d be a degenerate datamatrix
that contains no constant columns. To prove that supG(γ ) is continuous in d,
let d1, d2, . . . be any sequence that converges to d. Then one evidently has

γ (dn) ≤ sup
G

(γ )(dn) ≤ 1.
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The sequence γ (d1), γ (d2), . . . converging to 1 it follows from this that

lim
n→∞

sup
G

(γ )(dn) = 1 = sup
G

(γ )(d).

This shows that supG(γ ) is continuous in d. It can be proved in very much the
same way that infG(γ ) is a measure of linear association in cases where γ is
continuous.

The theorem above can be successfully applied by taking for G the ortho-
gonal group O, which is a compact group indeed. Thus the theorem provides
a tool to create geometric measures.

In Theorem 5.4 compactness of G is essential. To illustrate this, when max-
imizing a geometric measure γ with respect to the non-compact diagonal group
D the resulting map supD(γ ) is (in virtue of Theorem 5.2) not a measure of
linear association. In contrast to this one has:

Theorem 5.5. Let γ be a continuous measure of linear association. Then
the D-minimization of γ is an algebraic measure of linear association.

Proof. As in the proof of the previous theorem, the only point deserving
attention is the continuity of infD(γ ). To start the proof of this, suppose that
γ is an m-dimensional continuous measure of linear association and that d is
a matrix with ζ(d) > 0. It has to be proved then that γ is continuous in d.
Lemma 5.3 will be used to bring this about. To define the space X in this lemma,
note that the set of all n×m matrices x with ζ(x) > 0 can be considered an open
subset of Rn×m. It follows that d has a compact neighborhood X that consists
exclusively of datamatrices x with ζ(x) > 0. In preparing the definition of Y ,
let D1 be the subset of D defined by

D1 = {g ∈ D | trace(g) = 1}.
Then, because γ is invariant under scalar multiplication, one has

(2). inf
D

(γ )(x) = inf
g∈D

γ (xg) = inf
g∈D1

γ (xg)

Define Y to be the closure of D1. Then Y consists of all m×m diagonal matrices
of trace 1 with with entries ≥ 0. Contrary to D1 the set Y is a compact metric
space. For every x ∈ X and every g ∈ Y the matrix xg is a datamatrix and
therefore γ is continuous in it. It follows that the map

(x, g) �→ γ (xg)

is continuous on the Cartesian product X × Y . Therefore, by Lemma 5.3, the
map

x �→ min
g∈Y

γ (xg)
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is continuous on X and thus in d. However, by (2) and continuity of γ , the
above is just the map infD(γ ). It follows that this map is continuous in d, which
was to be proved.

Remark 5.6. Geometric measures being continuous in every datamatrix,
the result above can be applied to them.

The theorems in this section will be useful in creating examples of invariant
measures of linear association.

6. Shuttling between the algebraic and geometric class

Given an algebraic measure of linear association, it can be turned into a geo-
metric one by means of Theorem 5.4. Given a geometric measure, it can be
turned into an algebraic one by means of Theorem 5.5. This makes shuttling
between the algebraic and geometric class possible. As to this process one
evidently has

inf
D

{sup
O

(γ )} ≥ γ

for algebraic measures and

sup
O

{inf
D

(γ )} ≤ γ

for geometric measures.

Definition 6.1. An algebraic or geometric measure of linear association
will be called reflexive if there is equality in the corresponding inequality above.

In this terminology one has:

Theorem 6.2. An algebraic measure of linear association is reflexive if and
only if it is a D-minimization of a geometric measure. A geometric measure is
reflexive if and only if it is an O-maximization of an algebraic measure.

Proof. To prove the statement about algebraic measures, suppose that γ

is an algebraic measure of the form inf D(δ), where δ is a geometric measure.
Then one evidently has

γ ≤ δ.

It follows from this that

sup
O

(γ ) ≤ sup
O

(δ) = δ.

It thus appears that
inf

D
{sup

O
(γ )} ≤ inf

D
(δ) = γ.
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The opposite inequality being structurally true, it follows that there is actually
equality in the above and thus that γ is reflexive. If, conversely, γ is reflexive,
then it is evidently a measure of the form infD(δ). Just take for δ the measure
sup O(γ ). This proves the statement about algebraic measures. For geometric
measures one can use similar arguments.

The next sections will provide examples of reflexive and non-reflexive meas-
ures.

7. Maximizing the Hadamard coefficient

In this section a useful algebraic measure of linear association will be defined.
The measure will be O-maximized to make it geometric.

Let d be an arbitrary n × m datamatrix and let C = C(d) be its covariance
matrix. By Hadamard’s inequality (see for example [15], p. 119) one then has

det(C) ≤ C11C22 . . . Cmm.

Leaning on this inequality a useful measure of linear association can be defined:

Definition 7.1. For every n × m datamatrix d the Hadamard correlation
coefficient ρH (d) is understood to be:

ρH (d) =
√

1 − det(C)

C11C22 . . . Cmm

.

The Hadamard coefficient is set to 1 if the denominator in the above vanishes.

Note that the Hadamard coefficient is a symmetric algebraic measure. The
symmetry contrasts to Pearson’s coefficient, which is non-symmetric in cases
where m > 2. For m = 2 the Hadamard coefficient is the same as Pearson’s
coefficient.

The remainder of this section is devoted to the maximization of the Hadam-
ard coefficient over the orthogonal group. As before, the character q will sys-
tematically stand for an orthogonal matrix.

Note that the Hadamard coefficient can be expressed in terms of the function
ζ , which was defined in a previous section, as

(3) ρH (d) =
√

1 − det [C(d)]

ζ(d)
.

In maximizing the expression ρH (dq) one should keep in mind that

det[C(dq)] = det [C(d)] .
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Hence maximization of the expression ρH (dq) amounts to the same as max-
imizing ζ(dq).

Theorem 7.2. Let d be an arbitrary n × m matrix and let λ1, λ2, . . . , λm

be the eigenvalues of the covariance matrix of d. Then one has

max
q∈O

ρH (dq) =
√

1 − mm
λ1λ2 . . . λm

(λ1 + λ2 + · · · + λm)m
.

In the above an orthogonal matrix q is maximizing if and only if the columns
in dq are of equal variance.

Proof. Given a fixed n × m matrix d, the map

q �→ ζ(dq)

is a continuous function of q. The orthogonal group being a compact set, it
follows (see [13]) that there is a q that maximizes the expression ζ(dq). Using
Lemma 4.6 and the fact that the orthogonal matrices form a group, such a
maximizing q is necessarily such that dq has columns of equal variance. The
sum of the variances of the columns in the matrix dq is equal to the trace of
the covariance matrix C(dq). The trace of C(dq), however, is the same as the
trace of C(d). It follows that for a maximizing q the variances of the columns
in dq are all equal to

λ1 + λ2 + · · · + λm

m
.

It thus appears that

max
q∈O

ζ(dq) =
(

λ1 + λ2 + · · · + λm

m

)m

.

The theorem follows when plugging the above into (3).

Corollary 7.3. In the case of a 2-column datamatrix d the Euclidean
correlation coefficient ρE(d) can be expressed as

ρE(d) = max
q∈O

ρP (dq) = max
q∈O

ρH (dq) = λmax − λmin

λmax + λmin
.

This corollary has been proved in a somewhat different way in [7]. In the
next section there will be reliance on this specific result in order to generalize
it.
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Remark 7.4. In the notations of the previous section the map

d �→ max
q∈O

ρH (dq)

is just the measure supO(ρH ). By the foregoing theorem one has

sup
O

(ρH )(d) = ρH (d)

if and only if the columns of the datamatrix d are of equal variance. This can be
brought about by multiplying d by a suitable positive diagonal matrix. It fol-
lows that the D-minimization of supO(ρH ) is equal to ρH . Otherwise stated, the
Hadamard coefficient represents an example of a reflexive symmetric algebraic
measure.

8. Maximizing Pearson’s coefficient

This section focuses on the maximization of Pearson’s correlation coefficient
in order to obtain a general explicit expression for the Euclidean coefficient.
Surprisingly this expression turns out to be generally the same as in the case
for 2-column datamatrices in that it only depends on the ratio of λmin and λmax.

Theorem 8.1. For an arbitrary n × m datamatrix d one has

ρE(d) = λmax − λmin

λmax + λmin

where λmin and λmax are the smallest and largest eigenvalue of the covariance
matrix of d.

Proof. First of all note that, because of translation invariance, it suffices to
prove this theorem for centered datamatrices. The particular case of 2-column
datamatrices was already described in the corollary to Theorem 7.2. The proof
of the general case will lean on this. Note that for degenerate datamatrices the
result is trivial. For the case of a non-degenerate datamatrix d the first step in
the proof is to show that for such matrices one has

(4) ρP (d) ≤ λmax − λmin

λmax + λmin
.

To see this, choose an arbitrary n×(m+1) centered non-degenerate datamatrix
d and run a linear regression in which y is taken as the response variable and the
columns of x as explanatory variables. Let, in a self-explanatory notation, the
vector b = (b0, b1, . . . , bm) present the regression coefficients that emanate
in this way. Because d is centered one has b0 = 0. Now set

ŷ = b1x•1 + b2x•2 + · · · + bmx•m.
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The vector ŷ is (see [10]) the orthogonal projection of the vector y on the
linear space spanned by the columns of x and ρP (d) is the cosine of the angle
between y and this linear space. Thus one has

ρP (d) = ρP

(
[ŷ, y]

) = ρP

(
[b1x•1 + b2x•2 + · · · + bmx•m, y]

)
.

In the above, because Pearson’s coefficient is invariant under scaling trans-
formations, the coefficients b1, b2, . . . , bm can be modified in such a way that

b2
1 + b2

2 + · · · + b2
m = 1.

From now on it will be assumed that the b1, b2, . . . , bm satisfy the above.
Denote the largest and the smallest eigenvalue of the covariance matrix of the
n × 2 datamatrix

[b1x•1 + b2x•2 + · · · + bmx•m, y]

by λ̃max and λ̃max. The two eigenvalues λ̃max and λ̃max present the maximum
and minimum value of the expression

var
(
c1(b1x1 + b2x2 + · · · + bmxm) + c2y

)
when optimizing over all coefficient vectors (c1, c2) with c2

1+c2
2 = 1. However,

for every such pair of numbers c1 and c2 one has

(c1b1)
2 + (c1b2)

2 + · · · + (c1bm)2 + c2
2 = 1.

It follows that one necessarily has

λ̃max ≤ λmax and λ̃max ≥ λmin.

Now, glueing the pieces together and applying the corollary to Theorem 7.2,
one arrives at

ρP (d) = ρP

(
[b1x•1 + b2x•2 + · · · + bmx•m, y]

) ≤ λ̃max − λ̃max

λ̃max + λ̃max

≤ λmax − λmin

λmax + λmin
.

This proves (4), which was the first step in the proof of this theorem. To start
the second step, note that for an arbitrary orthogonal matrix q the eigenvalues
of the covariance matrices of d and dq are the same. Hence (4) actually implies
that for all d and all q one has

(5) ρP (dq) ≤ λmax − λmin

λmax + λmin
.
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Taking the maximum over all q it follows that

(6) ρE(d) ≤ λmax − λmin

λmax + λmin
.

This completes the second step in the proof of this theorem. The third and last
step consists of showing that for every d there is an orthogonal matrix q that
comes with equality in (5). To prove this, choose an arbitrary datamatrix d.
Let q0 be an orthogonal matrix such that the columns of

d′ = dq0

are uncorrelated. Without loss of generality one may replace d by d′: if there
is a q′ that makes ρP (d′q′) equal to the right side of (5), then q′q will do the
same job for d. Hence there is no problem in assuming the columns of d to
be uncorrelated. Similar arguments show that permutation of the columns is
allowed. For this reason one may also assume that the two last columns in
d have the lowest and highest variance of all columns respectively. Because
the columns of d are uncorrelated, the variances of the last two columns are
necessarily equal to λmin and λmax. Let d0 be the n × 2 matrix consisting of
the last two columns of d. Then, by Theorem 7.2 and its corollary, there exists
a 2 × 2 orthogonal matrix q0 that makes the variances of the columns in d0q0

equal. For this matrix one has

ρP (d0q0) = ρH (d0q0) = λmax − λmin

λmax + λmin
.

Let d′′ be the matrix d where the last two columns have been replaced by the
two columns in d0q0. Then in d′′ the last two columns are uncorrelated to the
remaining columns. For this reason one has

ρP (d′′) = ρP (d0q0) = λmax − λmin

λmax + λmin
.

Now define q to be the identity matrix in which the lower right 2×2 block has
been replaced by q0. Then q is orthogonal and one evidently has d′′ = dq. In
virtue of the above this is a q that brings equality in (5), thus completing the
proof of the theorem.

Remark 8.2. The eigenvalues λmin and λmax depend in a continuous way on
the underlying datamatrix d. For this reason one may conclude that, in spite of
the fact that Pearson’s coefficient generally does not meet the necessary con-
tinuity requirements to be a measure, the Euclidean correlation coefficient is a
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genuine geometric measure of linear association. By exploiting the inequality

inf
D

(ρE) ≥ ρP

it is easily derived that ρE is reflexive. Note that, for dimensions higher than
two, the algebraic measure infD(ρE) cannot possibly be equal to the non-
measure ρP .

9. A non-reflexive geometric measure

To construct an example of a non-reflexive geometric measure, define for every
2-column datamatrix d the number γ (d) by

γ (d) = inf
O

(ρE)

(
d
(

1 0
0 3

))
= min

q∈O
ρE

(
dq
(

1 0
0 3

))
.

By Theorem 5.4 the map d �→ γ (d) is a geometric measure of linear asso-
ciation. It will be shown in this section that γ is non-reflexive. To start the
reasoning, define for every real number θ the datamatrix e(θ) by

(7) e(θ) =
( cos θ − sin θ

sin θ cos θ

0 0

)
=
( 1 0

0 1
0 0

)(
cos θ − sin θ

sin θ cos θ

)
.

It will turn out that for this type of datamatrices one systematically has

(8) inf
D

(γ )(e(θ)) = 0.

To see this, let C(θ) be the covariance matrix of e(θ) and let for arbitrary s ∈ D
the numbers λmax(θ, s) and λmin(θ, s) be the largest and smallest eigenvalue
of the matrix

(9) sC(θ)s.

Then one may write

λmax(θ, s)
λmin(θ, s)

= 1 + ρE(e(θ)s)
1 − ρE(e(θ)s)

.

From the fact that ρE is the O-maximization of Pearson’s measure ρP and the
fact that Pearson’s measure is reflexive in the 2-dimensional case it follows
that

(10) min
s

λmax(θ, s)
λmin(θ, s)

= 1 + ρP (e(θ))

1 − ρP (e(θ))
.
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Besides this one has
sup

s

λmax(θ, s)
λmin(θ, s)

= +∞.

Denoting the right side of (10) by m(θ), one may conclude that, given any
fixed θ , all values in the interval [m(θ), +∞) are taken on by the expression
λmax(θ, s)/λmin(θ, s) when s runs through D. In virtue of (7) and (10), one has

max
θ

m(θ) = max
θ

min
s

λmax(θ, s)
λmin(θ, s)

= 1 + ρE(e(0))

1 − ρE(e(0))
= 3.

Hence, there is for every θ an s such that the matrix (9) shows the proportion
1 : 9 in its eigenvalues. Consequently there is for every θ an s ∈ D and an
orthogonal matrix q such that the matrix(

1 0
0 3

)†

q†s†C(θ)sq
(

1 0
0 3

)

is proportional to the identity matrix. The above, however, is the covariance
matrix of the datamatrix

e(θ)

(
1 0
0 s

)
q
(

1 0
0 3

)
.

It follows that the value of ρE for the matrix above must be zero. This proves
(8), which, in turn, proves that

sup
O

{inf
D

(γ )}(e(0)) = 0.

Opposite to this, however, one has

γ (e(0)) = 1
2 .

It thus appears that the O-invariant open set of all 3 × 2 datamatrices d such
that

sup
O

{inf
D

(γ )}(d) < γ (d)

is non-empty. For this reason γ cannot possibly be reflexive. As a peculiar
detail, Monte Carlo experiments seem to suggest that the complement of the
set above is of positive Lebesgue measure.
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10. A non-reflexive symmetric algebraic measure

A wellknown way (see [4], [11]) to turn an arbitrary measure of linear as-
sociation into an algebraic measure is by standardizing it. In this section a
non-reflexive algebraic measure will be created in this way. To be more pre-
cise, given an arbitrary datamatrix d that contains no constant columns, one
can define its standardization std(d) as the datamatrix consisting of the stand-
ardized columns of d. For an arbitrary measure of linear association γ one
could thus define a matrix function std(γ ) by setting

std(γ )(d) =
{

γ (std(d)) if d contains no constant columns,

1 if d contains constant columns.

In this way the map d �→ std(γ )(d) presents an algebraic measure of linear
association. From now on γ will stand for the non-reflexive geometric measure
constructed in the previous section. It will be proved that the measure std(γ ) is
not reflexive. Generally, in proving that an algebraic measure δ is not reflexive
it suffices to show that

(11) sup
O

(δ)(e) > δ(e)

where e is an n×m datamatrix in which the upper m×m block consists of the
identity matrix and the lower block of a zero matrix. By symmetry, namely,
one has for such datamatrices that

inf
D

{sup
O

(δ)}(e) = sup
O

(δ)(e).

In order to apply this to the case where δ = std(γ ), the matrix e is set to

e =
( 1 0

0 1
0 0

)
.

Note that, in the notation of the previous section, e = e(0). For this datamatrix
one has

std(γ )(e) = γ (e) = 1
2 .

Now, in the notations of the previous section, define the datamatrix d to be
the matrix e

(
π
4

)
. Then the covariance matrix of the standardization of d is

proportional to the 2 × 2 identity matrix. By exploiting this it is easily derived
that

sup
O

(std(γ ))(e) ≥ std(γ )(d) = 4
5 .

Hence the inequality (11) is valid and for this reason the measure std(γ ) cannot
possibly be reflexive. Note that std(γ ) is symmetric.
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11. Closing remarks

As to the computational aspects, given a datamatrix, minimization of a geo-
metric measure over D can be carried out straightforward. Optimization over
O can be carried out by exploiting the fact that the exponential map maps the
Lie algebra of O onto the set of all special orthogonal matrices (see [3]). Thus,
by using computational software, one could get hints, for example, whether
a measure is reflexive or not in the duality between algebraic and geometric
measures. A software library, working under the free computational program
Scilab, is obtainable by just mailing the author. An accompanying manual goes
with it.
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