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A CLASS OF HYPERGRAPHS THAT GENERALIZES
CHORDAL GRAPHS

ERIC EMTANDER

Abstract
In this paper we introduce a class of hypergraphs that we call chordal. We also extend the definition
of triangulated hypergraphs, given by H. T. Hà and A. Van Tuyl, so that a triangulated hypergraph,
according to our definition, is a natural generalization of a chordal (rigid circuit) graph. R. Fröberg
has showed that the chordal graphs corresponds to graph algebras, R/I (G), with linear resolu-
tions. We extend Fröberg’s method and show that the hypergraph algebras of generalized chordal
hypergraphs, a class of hypergraphs that includes the chordal hypergraphs, have linear resolutions.
The definitions we give, yield a natural higher dimensional version of the well known flag property
of simplicial complexes. We obtain what we call d-flag complexes.

1. Introduction and preliminaries

Let X be a finite set and E = {E1, . . . , Es} a finite collection of non empty
subsets of X . The pair H = (X, E ) is called a hypergraph. The elements of
X and E , respectively, are called the vertices and the edges, respectively, of
the hypergraph. If we want to specify what hypergraph we consider, we may
write X (H ) and E (H ) for the vertices and edges respectively. A hypergraph
is called simple if: (1) |Ei | ≥ 2 for all i = 1, . . . , s and (2) Ej ⊆ Ei only if
i = j . If the cardinality of X is n we often just use the set [n] = {1, 2, . . . , n}
instead of X .

Let H be a hypergraph. A subhypergraph K of H is a hypergraph such that
X (K ) ⊆ X (H ), and E (K ) ⊆ E (H ). If Y ⊆ X , the induced hypergraph on
Y , HY , is the subhypergraph with X (HY ) = Y and with E (HY ) consisting
of the edges of H that lie entirely in Y . A hypergraph H is said to be d-
uniform if |Ei | = d for every edge Ei ∈ E (H ). By a uniform hypergraph we
mean a hypergraph that is d-uniform for some d. Note that a simple 2-uniform
hypergraph is just an ordinary simple graph.

Throughout the paper we denote by R the polynomial ring k[x1, . . . , xn]
over some field k, where n is the number of vertices of a hypergraph considered
at the moment. By identifying each vertex vi ∈ X (H ) with a variable xi ∈ R,
we may think of an edge Ei of a hypergraph as a monomial xEi = ∏

j∈Ei
xj
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in R. Employing this idea, we may associate to every simple hypergraph H ,
a squarefree monomial ideal in R. The edge ideal I (H ) of a hypergraph H is
the ideal

I (H ) = (
xEi ; Ei ∈ E (H )

) ⊆ R,

generated “by the edges” of H .
The edge ideal was first introduced by R. H. Villarreal [18], in the case

when H = G is a simple graph. After that, hypergraph algebras have been
widely studied. See for instance [5], [7], [10], [11], [12], [13], [14], [16],
[19]. In [10], the authors use certain connectedness properties to determine a
class of hypergraphs such that the hypergraph algebras have linear resolutions.
Furthermore, nice recursive formulas for computing the Betti numbers are
given.

The edge ideal of a hypergraph yields the hypergraph algebra R/I (H ).
In this way we obtain a 1-1 correspondence

{simple hypergraphs on [n]}
� {squarefree monomial ideals I ⊆ R = k[x1, . . . , xn]}.

In Section 2 we will associate to every uniform simple hypergraph a simplicial
complex, the complex of H . Therefore, recall that an (abstract) simplicial
complex on vertex set [n] is a collection, �, of subsets of [n] with the property
that G ⊆ F, F ∈ � ⇒ G ∈ �. The elements of � are called the faces
of the complex and the maximal (under inclusion) faces are called facets. The
dimension, dim F , of a face F in �, is defined to be |F |−1, and the dimension
of � is defined as dim � = max{dim F ; F ∈ �}. Note that the empty set ∅ is
the unique −1 dimensional face of every complex that is not the void complex
{} which has no faces. The dimension of the void complex may be defined as
−∞. The r-skeleton of a simplicial complex �, is the collection of faces of �

of dimension at most r . Let V ⊆ [n]. We denote by �V the simplicial complex

�V = {F ⊆ [n]; F ∈ �, F ⊆ V }.
For convenience, we consider 0 to be a natural number, i.e., N = {0, 1, 2, 3, . . .}.
A vector j = (j1, . . . , jn) ∈ {0, 1}n is called a squarefree vector in Nn. We may
identify j with the set V ⊆ [n], where i ∈ V precisely when ji = 1. Since this
correspondence between the V and the j is bijective, we may also denote �V

by �j.
If H is a simple hypergraph, the complex

�(H ) = {F ⊆ [n]; E �⊆ F, ∀E ∈ E (H )}.
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is called the independence complex of H . Note that the edges in H are precisely
the minimal non faces in �(H ). The connections between a (hyper)graph
and its independence complex are explored in, for example [5], [8], [14]. In
Section 2 we will see that in case of simple uniform hypergraphs H , there is
a very natural connection between the independence complex of H and the
complex of H .

Given a simplicial complex �, we denote by C .(�) its reduced chain com-
plex (see any book on algebraic topology, for example [15], for details), and by
H̃n(�; k) = Zn(�)/Bn(�) its n’th reduced homology group with coefficients
in the field k. In general we could use an arbitrary abelian group instead of
k, but we will only consider the case when the coefficients lie in a field. For
convenience, we define the homology of the void complex to be zero.

Recall the following 1-1 correspondence, called the Stanley-Reisner cor-
respondence:

{simplicial complexes on [n]}
� {squarefree monomial ideals I ⊆ R = k[x1, . . . , xn]}

� � I�.

The ring R/I� is called the Stanley-Reisner ring of �. Observe that a monomial
xF is an element in I� precisely when F is a non face in �. By the above two
1-1 correspondences, we also get a 1-1 correspondence between the class of
simple hypergraphs on [n], and the class of simplicial complexes on [n].

Note that the hypergraph algebra R/I (H ) is precisely the Stanley-Reisner
ring of the independence complex �(H ).

In Section 2, we introduce the classes of chordal and triangulated hyper-
graphs. The definition of triangulated hypergraph is almost identical to Defin-
ition 5.5 in [10], however, ours is more general. These classes of hypergraphs
illustrate that uniform hypergraphs behave much like ordinary simple graphs.
However, there are familiar properties of graphs that do not translate immedi-
ately to uniform hypergraphs. See for instance Remark 2.1 and Example 1.

It is well known, see [9], that chordal graphs are characterized by the fact
that they have perfect elimination orders. We show that this remains true for
hypergraphs.

In Theorem-definition 2.1 we show that the properties of being triangu-
lated, chordal, and having a perfect elimination order, are equivalent also for
hypergraphs.

In Section 4 we introduce the class of generalized chordal hypergraphs,
which includes the chordal hypergraphs, and show that the corresponding
hypergraph algebras, R/I (H ), have linear resolutions. Our method of proof
is a natural generalization of one used by R. Fröberg in [8]. There, Fröberg
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characterizes, in terms of the complementary graphs Gc, precisely for what
graphs G the graph algebras R/I (G) have linear resolutions. Fröberg shows:

Theorem 1.1. Let G be a simple graph on n vertices. Then k[x1, . . . ,

xn]/I (G) has linear resolution precisely when Gc is chordal (rigid circuit,
triangulated, . . . ).

By Theorem 4.1, we obtain a partial generalization of Fröberg’s theorem.
The complementary hypergraph H c, of a d-uniform hypergraph H , is

defined as the hypergraph on the same set of vertices as H , and edge set

E (H c) = {F ⊆ X (H ); |F | = d, F �∈ E (H )}.
The edges of H c may, in a natural way, be thought of as the (d−1)-dimensional
faces in the independence complex �(H ), of H . This is how Fröberg looks
at things when he proves his theorem. We show that the complex �(H ) is
completely determined by the edges in H c, which gives us the notion of d-flag
complexes.

2. The classes of chordal and triangulated hypergraphs

In this section, all hypergraphs are assumed to be simple and uniform.

Definition 2.1. Two distinct vertices x, y of a hypergraph H are neighbors
if there is an edge E ∈ E (H ), such that x, y ∈ E. For any vertex x ∈ X (H ),
the neighborhood of x, denoted N(x), is the set

N(x) = {y ∈ X (H ); y is a neighbor of x}.
If N(x) = ∅, x is called isolated. Furthermore, we let N [x] = N(x) ∪ {x}
denote the closed neighborhood of x.

Remark 2.1. Let H be a hypergraph and V ⊆ X (H ). Denote by NV [x]
the closed neighborhood of x in the induced hypergraph HV . For ordinary
graphs it is clear that NV [x] = N [x] ∩ V . This is not always the case for
hypergraphs, as is shown in the example below. Note that the notation NV [x]
will only occur in this remark and the example below. The fact that we do not
make any greater use of it, is intimately connected to, and in a sense illustrates,
the properties of the hypergraphs that we are to consider.

Example 1. Consider the hypergraph H on vertex set X (H ) = {a, b, c, d,

e} and edge set E (H ) = {{a, b, c}, {a, d, e}, {b, c, d}}. Let V = {a, b, c, d}.
Then NV [a] = {a, b, c} but N [a] ∩ V = {a, b, c, d}.

Recall the definition of the d-complete hypergraph:
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Definition 2.2. The d-complete hypergraph, Kd
n , on a set of n vertices, is

defined by

E (Kd
n ) =

(
[n]

d

)

where
(

F

d

)
denotes the set of all subsets of F , of cardinality d. If n < d, we

interpret Kd
n as n isolated points.

If H is a hypergraph, we associate a simplicial complex �H to it in the
following way:

Definition 2.3. Given a d-uniform hypergraph H = (X (H ), E (H )), the
complex of H , �H , is the simplicial complex

�H =
{
F ⊆ X (H );

(
F

d

)
⊆ E (H )

}

Note that this implies that if F ⊆ X (H ), |F | < d , then F ∈ �H .

Remark 2.2. Note that all simplicial complexes of the form �H have com-
plete (d − 2)-skeleton. Two such simplicial complexes on the same vertex set
thus only differ in which (d − 1)-simplices they contain.

Remark 2.3. Recall that a flag complex is a simplicial complex in which
every minimal non face consists of precisely 2 elements. As one easily sees,
such complex is determined by its 1-skeleton. According to the previous re-
mark, d-flag complexes, i.e., complexes whose minimal non faces all have
cardinality d, in a natural way generalizes flag complexes.

Proposition 2.1. �H = �(H c), where �(H c) is the independence com-
plex of H c.

Proof. The two complexes has the same set of vertices. F ∈ �(H c) pre-

cisely when
(

F

d

)
⊆ E (H ). Furthermore, F ∈ �(H c) for every F ⊆ X (H )

with |F | < d.

Definition 2.4. Let � be a simplicial complex on a finite set, X , of ver-
tices. For any given d ∈ N, the d-uniform hypergraph, Hd(�), of �, is the
hypergraph with vertex set X , and with edge set

Ed(�) = {F ∈ �; |F | = d}.



a class of hypergraphs that generalizes chordal graphs 55

Proposition 2.2. Let H be a hypergraph and � an arbitrary d-flag complex
on X (H ). Then,

• Hd(�H ) = H ,

• �Hd (�) = �.

Proof. This follows directly from Definition 2.2 and Definition 2.3.

Definition 2.5. A hypergraph H is called triangulated if for every non
empty subset V ⊆ X (H ), either there exists a vertex x ∈ V such that the
induced hypergraph HN[x]∩V is isomorphic to a d-complete hypergraph Kd

n ,
n ≥ d, or else the edge set of HV is empty.

This definition is basically due to Hà and Van Tuyl, see [10] Definition 5.5.
However, in [10] the property being triangulated is defined only on a special
class of hypergraphs called properly-connected. For a further discussion see
Section 2.2 below.

Definition 2.6. A hypergraph H is called triangulated* if for every non
empty subset V ⊆ X (H ), either there exists a vertex x ∈ V such that N [x]∩V

is a facet of (�H )V of dimension greater than or equal to d − 1, or else the
edge set of HV is empty.

We will soon show (Theorem-definition 2.1) that the above two definitions
are equivalent.

Definition 2.7. A chordal hypergraph is a d-uniform hypergraph, ob-
tained inductively as follows:

• Kd
n is a chordal hypergraph, n, d ∈ N.

• If G is chordal, then so is H = G ∪Kd
j

Kd
i , for 0 ≤ j < i. (This we

think of as glueing Kd
i to G by identifying some edges, or parts of some

edges, of Kd
i with the corresponding part, Kd

j , of G .)

Remark 2.4. For d = 2 this specializes precisely to the class of generalized
trees, i.e., generalized n-trees for some n, as defined in [8].

Remark 2.5. In the special case of simple graphs, Definition 2.5 specializes
precisely to the ordinary chordal (rigid cicuit) graphs. Recall that a simple
graph is called chordal if every induced cycle of length > 3, has a chord. By
considering minimal cycles, it is clear that a graph that is triangulated according
to Definition 2.5, is chordal. Assume a graph G is chordal. It follows from
Theorems 1 and 2 in [3], that the chordal graphs are precisely the generalized
trees (see Remark 2.4). In a generalized tree we may easily find a vertex x, with
the property that GN[x] is complete, as follows: We know that G = G ′ ∪Kj

Ki ,
0 ≤ j < i. Then, we just pick a vertex x ∈ X (Ki) � X (G ′), since such x
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clearly has the property that GN[x] is complete. Since every induced subgraph
of a chordal graph is chordal, the same thing holds for every GV , V ⊆ X (G).

Another characterization of chordal graphs may be found in [9]. There
it is shown that a simple graph is chordal precisely when it has a perfect
elimination order. Recall that a perfect elimination order of a graph G =
(X , E ) is an ordering of its vertices, x1 < x2 < · · · < xn, such that for each
i, GN [xi ]∩{xi ,xi+1,...,xn} is a complete graph. The concept of perfect elimination
order is well suited for generalizations. We make the following

Definition 2.8. A hypergraph H is said to have a perfect elimination order
if its vertices can be ordered x1 < x2 < · · · < xn, such that for each i, either
HN [xi ]∩{xi ,xi+1,...,xn} is isomorphic to a d-complete hypergraph Kd

n , n ≥ d, or
else xi is isolated in H{xi ,xi+1,...,xn}

Note that this specializes precisely to the definition of perfect elimination
order for simple graphs if we put d = 2.

Lemma 2.1. Let H be a hypergraph and x ∈ V ⊆ X (H ) a vertex such
that HN [x]

∼= Kd
m, m ≥ d. Then HN[x]∩V either is isomorphic to a d-complete

hypergraph Kd
m′ , m′ ≥ d, or else x is isolated in V .

Proof. Either |N [x] ∩ V | ≥ d or else |N [x] ∩ V | < d .

Remark 2.6. The above lemma in some sense explains what goes on in the
proofs hereafter. It also casts some light on the last comment made in Remark
2.1.

Lemma 2.2. If a hypergraph H with E (H ) �= ∅ has a perfect elimination
order, then it has a perfect elimination order x1 < x2 < · · · < xn in which x1

is not isolated.

Proof. Let x1 < x2 < · · · < xn be a perfect elimination order of H , and
put

t = min{i; xi is not isolated}.
We claim that xt < · · · < xn < x1 < · · · < xt−1 also is a perfect elimin-
ation order of H . Since x1, . . . , xt−1 are isolated, we need only verify that
HN [xi ]∩{xi ,xi+1,...,xn,x1,...,xt−1} ∼= Kd

mi
for some mi ≥ d, i = t, . . . , n. However,

this is clear since HN[xi ]∩{xi ,xi+1,...,xn,x1,...,xt−1} = HN[xi ]∩{xi ,xi+1,...,xn}.

Lemma 2.3. If a hypergraph H is triangulated (triangulated*, chordal), or,
has a perfect elimination order, then so does HV for every V ⊆ X (H ).

Proof. Let V ⊆ X (H ). If E (HV ) = ∅, HV clearly is triangulated and
triangulated*. It is also chordal since we can add one vertex at a time until we
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have the desired discrete hypergraph, and any ordering of V yields a perfect
elimination order. Thus we may assume that E (HV ) �= ∅.

The lemma is clear for the classes of triangulated and triangulated* hyper-
graphs, since ifW ⊆ V , we have that (HV )W = HW . Now, let H = G ∪Kd

j
Kd

i ,
0 ≤ j < i, be chordal. If V ⊆ X (G), or if V ⊆ X (Kd

i ), we are done by in-
duction. If this is not the case, it is easy to realize that HV = GV ∪(Kd

j )V
(Kd

i )V .
Since GV is chordal by induction, the result follows. Finally, assume H has
a perfect elimination order x1 < x2 < · · · < xn. Then V inherits an ordering
xi1 < xi2 < · · · < xi|V | . The fact that this is a perfect elimination order of HV

follows from Lemma 2.1.

Theorem-definition 2.1. Let H = (X (H ), E (H )) be a d-uniform hy-
pergraph. Then the following are equivalent.

(i) H is triangulated.
(ii) H is triangulated*.

(iii) H is chordal.
(iv) H has a perfect elimination order.

Proof. Due to Lemma 2.3, we need only consider the full set X (H ) of
vertices in our arguments, and we may assume that E (H ) �= ∅.

(i) ⇒ (ii). Since we assume E (H ) �= ∅ and consider only the case where
V = X (H ), there is a vertex x such that HN[x]

∼= Kd
n , n ≥ d. Then, N [x]

clearly is a face in �H of dimension at least d − 1. Furthermore it has to be a
facet, since if there were a y ∈ X (H ), y �= x, such that N [x] ∪ {y} ∈ �H ,
then there would exist an edge E with x, y ∈ E. Hence, y ∈ N [x].

(ii) ⇒ (i). By assumption, there is a vertex x such that N [x] is a facet in
�H of dimension greater than or equal to d − 1, whence it is clear (from the
definition of �H ) that HN[x]

∼= Kd
n for some n ≥ d.

(i) ⇒ (iii). By assumption there is a vertex x ∈ X (H ) such that HN [x]
∼=

Kd
n , for some n ≥ d. Let G be the induced hypergraph on X (H ) � {x}.

Then E (G) consists of all edges of H , except those that contain x. This yields
H = G ∪K Kd

n , where K = Kd
|N(x)| on vertex set N(x), and by induction we

are done.
(iii) ⇒ (i). Assume H = G ∪Kd

j
Kd

i , 0 ≤ j < i, is chordal, where G

is chordal by construction. If i ≥ d, any vertex x ∈ X (Kd
i ) � X (G) will

do, since HN [x]
∼= Kd

i for such x. If i < d , we find, by induction, a vertex
x ∈ X (G) with the property that HN[x] = GN[x]

∼= Kd
n for some n ≥ d, since

otherwise the edge set of H would be empty, contrary to our assumptions.
(i) ⇒ (iv). By assumption we find a vertex x = x1 such that HN[x1]

∼= Kd
n ,

n ≥ d. Since the induced hypergraph on X (H ) � {x1} is triangulated, by
induction it has a perfect elimination order x2 < · · · < xn. If we put x1 < x2

we are done.
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(iv) ⇒ (i). By Lemma 2.2 there is a perfect elimination order x1 < · · · < xn,
such that HN[x1]∩V

∼= Kd
m for some m ≥ d.

2.1. Examples

In [5], we considered hypergraph generalizations of the well known complete
and complete multipartite graphs. We use these to create some examples of
chordal hypergraphs.

Recall from [5] the definition of the d-complete bipartite hypergraph Kd
n,m:

This is the hypergraph on a vertex set that is a disjoint union, [n] � [m], of two
finite sets. The edge set consists of all sets V ⊆ [n] � [m], |V | = d, such that
V ∩ [n] �= ∅ �= V ∩ [m].

Example 2. Here we consider the complement H = (Kd
n,m)c of Kd

n,m. We
claim that H is chordal. It is easy to see, considering the Stanley-Reisner ring,
that �H looks like

(�n � �m) ∪ �d−2([n] ∪ [m])

where �r is the full simplex on [r], and �d−2([n]∪ [m]) is the (d −2)-skeleton
of the full simplex on [n] � [m].

Clearly, the d-uniform hypergraph of this complex, in other words H , is
the disjoint union two d-complete hypergraphs,

H = Kd
n ∪Kd

0
Kd

m,

so H is chordal.

Example 3. Now consider the complex �Kd
n,m

, of Kd
n,m. If n, m < d, we

have an isomorphism Kd
n,m

∼= Kd
n+m, so in this case Kd

n,m is chordal. If n or m is
greater than or equal to d, Kd

n,m is not chordal. This is because no matter which
vertex x we choose, the induced hypergraph on N [x] cannot be d-complete,
since it would then contain an edge lying entirely in either [n] or [m], which
is impossible.

The general case of the d-complete multipartite hypergraph, Kd
n1,...,nt

, is
similar. Kd

n1,...,nt
is chordal only when ni < d for every i = 1, . . . , t . The

arguments are the same as in the bipartite case.

Another kind of complete hypergraph, is the d(a, b)-complete hypergraph
H = Kd(a,b)

n,m , where d = a + b, a, b ≥ 1. Here X (H ) = [n] � [m], and

E (H ) =
(

[n]
a

)
×

(
[m]
b

)
.

Example 4. Consider the complex of Kd(a,b)
n,m . Pick any vertex x and con-

sider N [x]. If the induced hypergraph (Kd(a,b)
n,m )N[x] is to be complete, both n
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and m must be smaller than d, and at least one of the two equations n = a,
m = b must hold. Otherwise we obtain a contradiction since Kd(a,b)

n,m would
then contain an edge of the wrong shape. If n and m satisfy these conditions,
the hypergraph is chordal.

2.2. About being chordal, triangulated, et cetera

The class of chordal graphs is a well studied class of graphs and indeed turns
out to have many nice properties, graph-theoretical as well as algebraic. The
main reason that chordal graphs behave well in so many respects is perhaps
that they may be described in many equivalent ways.

In recent years several authors have generalized the properties of chordal
graphs and since such generalizations may be made in many different direc-
tions, no particular standard concerning the use of the word “chordal” has been
established. Thus, there is the risk of different concepts getting similar names.
We comment here on a couple of interesting papers in which the concept of
chordality/triangulability has been introduced.

As mentioned after Definition 2.5, the concept of triangulated hypergraph
also occurs in [10]. There the authors (among other things) aim for a generaliz-
ation of Fröberg’s theorem (Theorem 1.1). However, the triangulated property
is used on the complementary (hyper)graphs compared with how Fröberg uses
it (and with how we use it). The class of triangulated hypergraphs in the sense
of [10], is properly included in the class of triangulated (chordal) hypergraphs
considered in this paper.

In [2] the authors (indirectly via matriods) define two classes of uniform
hypergraphs, called D-perfect and triangulable respectively. It is then shown
that a D-perfect hypergraph H is also triangulable.

It can be shown that our class of chordal hypergraphs is properly included
in the class of triangulable hypergraphs in the sense of [2]. However, we do
not think that the class of D-perfect hypergraphs and the class of chordal
hypergraphs coincide. If our supposition holds, it can probably be proved
by considering the ranks of the matroids defining the D-perfect hypergraphs.
Since we are not that accustomed to matroid-theory this is a suitable topic for
future research.

An algebraical aspect of the class of triangulable hypergraphs that should
be mentioned, is that the definition thereof depends on the characteristic of
the base field k. Thus we do not expect results about triangulable hypergraphs
similar to Theorem-definition 2.1 or Theorem 4.1. It is however easy to show
that if in a certain characteristic, char(k) say, a hypergraph H is triangulable,
then the corresponding ideal I�H

has linear resolution in that characteristic.
In [17] the authors note that chordal graphs may be characterized as follows:

A graph G is chordal if and only if its vertices can be labelled by numbers in
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[n] so that G has no induced subgraph G{i<j<k} with edges (i, j), (i, k) but
without the edge (j, k). The authors call a graph with this property perfectly
labelled. This description of chordal graphs is then used to show that (see [17],
Definition 6.1, Example 6.2, Definition 9.2, and Theorem 9.4 for background)
a certain kind of building sets, called graphical building sets, are chordal if
and only if the underlying graph is chordal. It seems possible that chordal
hypergraphs (or some variant thereof) may be connected to chordal building
sets in some way, but at the present it is not clear to us how. This is another
topic for further considerations. The following demonstrates that the problem
is harder than it may first seem.

When first looking at Theorem 9.4 in [17], one gets the feeling that this can
immediately be generalized using chordal hypergrahs. Indeed, let us make the
following

Definition 2.9. A d-uniform hypergraph H on a vertex set of size n is
said to perfectly labelled if its vertices can be labelled by numbers in [n] so
that H has no induced subhypergraph H{i1<···<id+1} with edges

i1 ×
( {i2, . . . , id+1}

d − 1

)

but without the edge {i2, . . . , id+1}.
It is easy to see that this is in fact equivalent to being chordal. Thus one hopes

that the proof of Theorem 9.4 in [17] goes through in an analogous hypergraph
situation as well. What spoils things is the connectedness property for graphs.
This property is central in the definition of graphical building set whereas for
hypergraphs the notion of being connected may be defined in many different
but equally natural ways (see [6] and [10] for examples). It is thus not clear
how to approach the problem.

3. Some algebraic results

In this section we recall some results from commutative and homological
algebra.

3.1. Resolutions and Betti numbers

To every finitely generated graded module M over the polynomial ring R =
k[x1, . . . , xn], we may associate a minimal (N-)graded free resolution

0 →
⊕

j
R(−j)βl,j (M) →

⊕
j
R(−j)βl−1,j (M) →

· · · →
⊕

j
R(−j)β0,j (M) → M → 0
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where l ≤ n and R(−j) is the R-module obtained by shifting the degrees of
R by j . Thus, R(−j) is the graded R-module in which the grade i component
(R(−j))i is Ri−j .

The natural number βi,j (M) is called the ij ’th N-graded Betti number of
M . If M is multigraded we may equally well consider the Nn-graded minimal
free resolution and Betti numbers of M . The difference lies just in the fact that
we now use multigraded shifts R(−j) instead of N-graded ones. The total i’th
Betti number is βi(M) = ∑

j βi,j . For further details on resolutions, graded
rings and Betti numbers, we refer the reader to [1], Sections 1.3 and 1.5.

The Betti numbers of M occur as the dimensions of certain vector spaces
over k = R/m, where m is the unique maximal graded ideal in R. Accordingly,
the Betti numbers in general depend on the characteristic of k.

A minimal free resolution of M is said to be linear if for i > 0, βi,j (M) = 0
whenever j �= i + d − 1 for some fixed natural number d ≥ 1.

In connection to this we mention the Eagon-Reiner theorem.

Theorem 3.1. Let � be a simplicial complex and �∗ its Alexander dual
complex. Then R/I� is Cohen-Macaulay if and only if R/I�∗ has linear min-
imal free resolution.

Proof. See [4], Theorem 3.

3.2. Hochster’s formula and the Mayer-Vietoris sequence

In topology one defines Betti numbers in a somewhat different manner. Hoch-
ster’s formula provides a link between these and the Betti numbers defined
above.

Theorem 3.2 (Hochster’s formula). Let R/I� be the Stanley-Reisner ring
of a simplicial complex �. The non-zero Betti numbers of R/I� are only in
squarefree degrees j and may be expressed as

βi,j(R/I�) = dimk H̃|j|−i−1(�j; k).

Hence the total i’th Betti number may be expressed as

βi(R/I�) =
∑

V ⊆ [n]

dim H̃|V |−i−1(�V ; k).

Proof. See [1], Theorem 5.5.1.

If one has Nn-graded Betti numbers, it is easy to obtain the N-graded ones
via

βi,j (R/I�) =
∑
j′∈Nn

|j′|=j

βi,j′(R/I�).
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Thus,
βi,j (R/I�) =

∑
V ⊆[n]
|V |=j

dim H̃|V |−i−1(�V ; k).

Recall that if we have an exact sequence of complexes,1

0 → L → M → N → 0

there is a long exact (reduced) homology sequence associated to it

· · · → Hr(N) → Hr−1(L) → Hr−1(M) → Hr−1(N) → · · · .
When we prove Theorem 5.1, we will use this homology sequence in the special
case where it is associated to a simplicial complex as follows.

Suppose we have a simplicial complex N and two subcomplexes L and M ,
such that N = L ∪ M . This gives us an exact sequence of (reduced) chain
complexes

0 → C .(L ∩ M) → C .(L) ⊕ C .(M) → C .(N) → 0.

The non trivial maps here are defined by x �→ (x, −x) and (x, y) �→ x + y.
The long exact (reduced) homology sequence associated to this particu-

lar sequence is called the Mayer-Vietoris sequence. More about the Mayer-
Vietoris sequence can be found in [15], Section .

4. Generalized chordal hypergraphs

It is easy to find an example of a uniform hypergraph H that is not chordal,
but such that the Stanley-Reisner ring of �H has linear resolution.

Example 5. Let H be the 3-uniform hypergraph with X (H ) = {a, b, c, d},
and edge set

E (H ) = {{a, b, c}, {a, c, d}, {a, b, d}}.
The following simple picture lets us visualize H .

d

a

b c

R/I�H
has linear resolution, but H is not chordal.

1 That is, complexes of modules over some ring R.
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If � is a simplicial complex on [n] and E is a finite set, we denote by
� ∪ E the simplicial complex on [n] ∪ E whose set of facets, F (� ∪ E), is
F (�) ∪ {E}. Similarly, if H is a (not necessarily d-uniform) hypergraph and
E a finite set, we denote by H ∪ E the hypergraph on X (H ) ∪ E whose edge
set is E (H ∪ E) = E (H ) ∪ {E}.

Definition 4.1. A generalized chordal hypergraph is a d-uniform hyper-
graph, obtained inductively as follows:

• Kd
n is a generalized chordal hypergraph, n, d ∈ N.

• If G is generalized chordal, then so is H = G ∪Kd
j

Kd
i , for 0 ≤ j < i.

• If G is generalized chordal and E ⊆ X (G) a finite set, |E| = d, such

that at least one element of
(

E

d−1

)
is not a subset of any edge of G , then

G ∪ E is generalized chordal.

Remark 4.1. It is clear that every chordal hypergraph is also a generalized
chordal hypergraph. Furthermore, for d = 2 chordal graphs and generalized
chordal graphs are the same.

Theorem 4.1. Let H = (X (H ), E (H )) be a generalized chordal hyper-
graph and k a field of arbitrary characteristic. Then the Stanley-Reisner ring
of �H has linear resolution.

Proof. We consider the three instances of Definition 4.1 one at a time. If
H ∼= Kd

n we are done, since if n ≥ d we have a simplex so the situation is
trivial, and if n < d the claim is proved for example in [5], Theorem 3.1. So,
we may assume H �∼= Kd

n . Let H = G ∪Kd
j

Kd
i , 0 ≤ j < i, where G is

generalized chordal. Let C and B be the simplices determined by Kd
j and Kd

i ,
respectively, and consider the complex �′

H = �G ∪B. Note that B∩�G = C,
B �= C. We first show that �′

H has linear resolution. For every V ⊆ X (H ),
we have an exact sequence of chain complexes

0 → C .(CV ) → C .((�G )V ) ⊕ C .(BV ) → C .((�′
H )V ) → 0.

By induction, via Hochster’s formula, we know that (�G )V can have non zero
homology only in degree d − 2. But then, since both BV and CV are simplices
and accordingly have no homology at all, by considering the Mayer-Vietoris
sequence we conclude that the only possible non zero homologies of (�′

H )V
lie in degree d − 2.

Note that it is not in general true that �H = �′
H . In fact, this holds only

when d = 2. However, the difference between the two complexes is easy to
understand, and we may use the somewhat easier looking �′

H to show that
�H has linear resolution as well.
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To this end, let �d−2(X (H )) be the (d − 2)-skeleton of the full simplex on
vertex set X (H ). Then one sees that

�H = �′
H ∪ �d−2(X (H )).

The (d − 2)-faces that we add to �′
H to obtain �H , can certainly not cause

any homology in degrees greater than d − 2, that did not already exist in �′
H .

Indeed, suppose
∑

i aiσi is a cycle in a degree r > d −2, where ai ∈ k and the
σi’s are faces of �H , of dimension r . Since every face σi actually lies in �′

H ,
it follows that

∑
i aiσi is a cycle also in �′

H . Thus, if �′
H has linear resolution,

so does �H .

Finally, let H = G ∪ E. Let F1, . . . , Ft be the elements of
(

E

d−1

)
that are

not subsets of any edge of G . Note that �H = �G ∪ E. Take V ⊆ X (H ). If
E �⊆ V , then (�H )V = (�G )V , so, by induction we conclude that the only
possible non zero homologies of (�H )V lies in degree d − 2. Hence we may
assume that E ⊆ V . Then we have an exact sequence

0 → C .((�G ∩ E)V ) → C .((�G )V ) ⊕ C .(EV ) → C .((�H )V ) → 0.

Note that EV is a simplex so it has no homology, and, by induction, we know
that R/I�G

has linear resolution. Using Hochster’s formula, we may conclude
that H̃d−1((�G )V ; k) = 0. Hence, the Mayer-Vietoris sequence obtained from
the above exact sequence looks as follows:

0 → H̃d−1((�H )V ) → H̃d−2((�G ∩ E)V )

→ H̃d−2((�G )V ) → H̃d−2((�H )V ) → 0.

Let z = ∑
j ajσj be an element in Zd−1((�H )V ), where σ1 = E. Consider

the expression for the derivative of this cycle

0 = d(z) = · · · +
t∑

i=1

±a1Fi + · · · .

Since
∑t

i=1 ±a1Fi only can come from d(E), we conclude that a1 = 0.
Hence z ∈ Zd−1((�G )V ), and, using Hochster’s formula, we may conclude
that the Stanley-Reisner ring of �H has linear resolution.

Recall that the Alexander dual simplicial complex �∗ to an arbitrary com-
plex �, is defined by

�∗ = {F ⊆ [n]; [n] � F �∈ �}.
Note that (�∗)∗ = �.
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Corollary 4.1. Let H = (X (H ), E (H )) be a generalized chordal hy-
pergraph and k a field of arbitrary characteristic. Then the Stanley-Reisner
ring R/I�∗

H
of the Alexander dual complex �∗

H is Cohen-Macaulay.

Proof. This follows by the Eagon-Reiner theorem.

Corollary 4.2. Theorem 4.1 and Corollary 4.1 in particular applies to
triangulated and triangulated* hypergraphs, and also to hypergraphs that
have perfect elimination orders.

Remark 4.2. In a later work, [6], it is in fact shown that if H is a chordal
hypergraph, then I�H

has linear quotients. In particular, the Alexander dual
simplicial complex �∗

H is shellable. This improves Theorem 4.1 in the case
of chordal hypergraphs. It is still an open question whether this is true for
generalized chordal hypergraphs as well.

Question 1. If H is a generalized chordal hypergraph, are there more
equivalent characterizations of H similar to those for a chordal hypergraph
given in Theorem-definition 2.1?
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