ON THE HEART OF HYPERMODULES

S. M. ANVARIYEH and B. DAVVAZ

Abstract

This paper presents some types of hypermodules, associated to an arbitrary hypermodule, studying properties and characterizing their hearts. Also, we establish a few results concerning the sequence of heart, which can be associated to a hypermodule, in connection with subhypermodules generated by a non-empty set, by a union of subhypermodules or by the intersection of subhypermodules. Finally, we study several properties of 1-hypermodules.

1. Introduction

A hypergroupoid (H, \circ) is a non-empty set H with a hyperoperation \circ defined on H, that is, a mapping of $H \times H$ into the family of non-empty subsets of H. If A, B are non-empty subsets of H then $A \circ B$ is given by $A \circ B = \bigcup \{x \circ y \mid x \in A, y \in B\}$. $x \circ A$ is used for $\{x\} \circ A$ and $A \circ x$ for $A \circ \{x\}$. A hypergroupoid (H, \circ) is called a hypergroup in the sense of Marty if for all $x, y, z \in H$ the following two conditions hold: (i) $x \circ (y \circ z) = (x \circ y) \circ z$, (ii) $x \circ H = H \circ x = H$. If (H, \circ) satisfies only the first axiom, then it is called a semi-hypergroup. An exhaustive review updated to 1992 of hypergroup theory appears in [2]. A recent book [3] contains a wealth of applications.

Let *H* be a hypergroup and ρ an equivalence relation on *H*. Let $\rho(a)$ be the equivalence class of *a* with respect to ρ and let $H/\rho = \{\rho(a) \mid a \in H\}$. A hyperoperation \otimes is defined on H/ρ by $\rho(a) \otimes \rho(b) = \{\rho(x) \mid x \in \rho(a) \circ \rho(b)\}$. If ρ is strongly regular, then it readily follows that $\rho(a) \otimes \rho(b) = \{\rho(x) \mid x \in a \circ b\}$. It is well known for ρ strongly regular that $(H/\rho, \otimes)$ is a group (see Theorem 31 in [2]), that is $\rho(a) \otimes \rho(b) = \rho(c)$ for all $c \in a \circ b$.

A *hyperring* is a multi-valued system $(R, +, \circ)$ which satisfies the ring-like axioms in the following way: (R, +) is a hypergroup in the sense of Marty, (R, \circ) is a semi-hypergroup and the multiplication is distributive with respect to the hyperoperation +. Let *R* be a hyperring. We recall the relation Γ defined as follows: $x\Gamma y \iff \exists n \in \mathbb{N}, \exists (k_1, \ldots, k_n) \in \mathbb{N}^n$, and $[\exists (x_{i1}, \ldots, x_{ik_i}) \in$

Received 29 February 2008, in revised form 5 December 2008.

 $R^{k_i}, (i = 1, ..., n)$] such that

$$x, y \in \sum_{i=1}^{n} \left(\prod_{j=1}^{k_i} x_{ij} \right).$$

The relation Γ is reflexive and symmetric. Let Γ^* be the transitive closure of Γ , then Γ^* is a strongly regular relation both on (R, +) and (R, \cdot) , and the quotient R/Γ^* is a ring [5], [6].

Let (M, +) be a hypergroup and $(R, +, \cdot)$ be a hyperring. According to [7] M is said to be a hypermodule over R if there exists

$$\cdot : R \times M \to \wp^*(M); \qquad (a,m) \mapsto a \cdot m$$

such that for all $a, b \in R$ and $m_1, m_2, m \in M$, we have

(1)
$$a \cdot (m_1 + m_2) = a \cdot m_1 + a \cdot m_2$$
,

(2)
$$(a+b) \cdot m = (a \cdot m) + (b \cdot m),$$

(3) $(a \cdot b) \cdot m = a \cdot (b \cdot m)$.

Let *M* be an *R*-hypermodule, N_1 and N_2 two subhypermodules of *M*; we say that N_2 is N_1 -conjugable if N_2 as a subhypergroup is conjugable, and an *R*-hypermodule *M* is regular if *M* as a hypergroup is regular.

Let *R* be a hyperring and *M* be a hypermodule over *R*. Let $x, y \in M$, the relation ϵ on *M* defined as follows [4]:

$$x \in y \Leftrightarrow x, y \in \sum_{i=1}^{n} m'_{i}; \quad m'_{i} = m_{i} \quad \text{or} \quad m'_{i} = \sum_{j=1}^{n_{i}} \left(\prod_{k=1}^{k_{ij}} x_{ijk}\right) z_{i},$$
$$m_{i} \in M, \quad x_{ijk} \in R, \quad z_{i} \in M.$$

If *M* is an *R*-hypermodule, then we set

$$\epsilon_0 = \{ (m, m) \mid m \in M \}$$

and for every integer $n \ge 1$, ϵ_n is the relation defined as follows:

$$x\epsilon_n y \Leftrightarrow x, y \in \sum_{i=1}^n m'_i.$$

Obviously, for every $n \ge 0$, the relation ϵ_n is symmetric, and the relation $\epsilon = \bigcup_{n>0} \epsilon_n$ is reflexive and symmetric.

The fundamental relation ϵ^* on M can be defined as the smallest equivalence relation such that the quotient M/ϵ^* is a module over the corresponding fundamental ring R/Γ^* such that M/ϵ^* as a group is not abelian.

40

Let *M* and *N* be *R*-hypermodules. A function $f : M \to N$ is called an *R*-homomorphism, if for every $(x, y) \in M^2$ and $r \in R$

f(x + y) = f(x) + f(y) and $f(r \cdot x) = r \cdot f(x)$.

If *H* is an *R*-module and $f : M \to H$ is an *R*-homomorphism, we let Ker $f = \{m \in M \mid f(m) = 0_H\}$. Moreover, the canonical projection $\phi_M : M \to M/\epsilon^*$ by $\phi_M(m) = \epsilon^*(m)$, is an *R*-homomorphism and $\omega(M) := \text{Ker } \phi_M = \{m \in M \mid \phi_M(m) = 0_{M/\epsilon^*}\}$.

If *M* is a hypermodule and $\rho \subseteq M \times M$ is an equivalence relation then for all pairs (A, B) of non-empty subsets of *M*, we set $A\overline{\rho}B$ if and only if $a\rho b$ for all $a \in A$ and $b \in B$. The relation ρ is said to be *strongly regular to the right* if $x\rho y$ implies $x \circ a\overline{\rho}y \circ a$ and $x.r\overline{\rho}y.r$ for all $x, y, a \in M$ and $r \in R$. Analogously, we can define *strongly regular to the left*. Moreover ρ is called *strongly regular* if it is strongly regular to the right and to the left.

THEOREM 1.1. Let M be an R-hypermodule and ρ be a strongly regular relation on M. Then $(M/\rho, \oplus)$ is an R-hypermodule if and only if for every $x \in M$ and $r \in R$, $r \cdot \rho(x) = \rho(r \cdot x)$.

PROOF. Since ρ is strongly regular, the scalar hyperoperation $r \cdot \rho(x) := \rho(r \cdot x)$ is well defined. Since *M* is an *R*-hypermodule, the properties of *M* as an *R*-hypermodule, guarantee that the hypergroup M/ρ is an *R*-hypermodule.

2. Heart of a hypermodule

In the following m'_i, z'_i and y'_i are the notations in the definition of ϵ .

Let *M* be an *R*-hypermodule and *A* be a non-empty subset of *M*. Then the intersection of the subsets of *M* which are complete and contain *A* is called the complete closure of *A* in *M*; it will be denoted C(A). If $K_1(A) = A$, and

$$K_{n+1}(A) = \left\{ x \in M \mid \exists p \in \mathsf{N}, \exists (m'_1, m'_2, \dots, m'_p) : x \in \sum_{i=1}^p m'_i \cap K_n \neq \emptyset \right\},\$$

then K(A) = C(A), and the relation $xKy \Leftrightarrow x \in C(\{y\})$ is an equivalence. Also, for every $x, y \in M$, we have $xKy \Leftrightarrow x\epsilon^*y$. Furthermore, if *B* is a non-empty subset of *M*, we have $C(B) = \bigcup_{b \in B} C(b)$, where $C(b) = C(\{b\})$ [1].

THEOREM 2.1. Let M be an R-hypermodule, $\phi_M : M \to M/K$ the canonical projection. If N is a hypermodule with ordinary group and $f : M \to N$ is an R-homomorphism, then there exists $g : M/K \to N$ such that $g\phi_M = f$.

PROOF. It is enough to observe for every $x \in M$ that $g\phi_M(x) = f(x)$. First, *g* is well defined: in fact $\phi_M(x) = \phi_M(y) \Rightarrow x K y$. Since *N* is a hypermodule

(with ordinary group), it follows that f(x) = f(y). Furthermore, g is an *R*-homomorphism because for every $x, y \in M$, and $u \in x + y$, we have $g(\phi_M(x) + \phi_M(y)) = g\phi_M(x + y) = g\phi_M(u) = f(u) = f(x + y) = f(x) + f(y) = g\phi_M(x) + g\phi_M(y)$. Also, for every $r \in R$, and $v \in r.x$ we have $g(\phi_M(r \cdot x)) = g(\phi_M(v)) = f(v) = f(r \cdot x) = r \cdot f(x) = r \cdot (g\phi_M(x))$.

THEOREM 2.2. Let $f : M \to M'$ be an *R*-homomorphism, then:

- (1) $\forall x \in M, f(C(x)) \subseteq C(f(x)).$
- (2) f determines an R-homomorphism $f^* : M/K \to M'/K'$ defined by $f^*(\phi_M(x)) = \phi_{M'}(f(x)).$

PROOF. (1) It is sufficient to observe that for every $n \in N$, the implication $x\epsilon_n y \Rightarrow f(x)\epsilon_n f(x)$ is valid.

(2) f^* is well defined, in fact $\phi_M(x) = \phi_M(y)$, i.e., xKy implies by (1) f(x)Kf(y), hence $f^*(\phi_M(x)) = f^*(\phi_M(y))$. Clearly, f^* is an *R*-homomorphism, because for every $u \in x + y$, $f^*(\phi_M(x) + \phi_M(y)) = f^*(\phi_M(f(x + y))) = \phi_{M'}(f(u)) = \phi_{M'}(f(u)) = \phi_{M'}(f(x) + f(y)) = \phi_{M'}(f(x)) + \phi_{M'}(f(y)) = f^*(\phi_M(x)) + f^*(\phi_M(y))$, and for every $r \in R$ and $v \in r.x$, we have $f^*(\phi_M(r \cdot x)) = \phi_{M'}(f(v)) = \phi_{M'}(f(r \cdot x)) = r \cdot \phi_M(f(x)) = r \cdot f^*(\phi_M(x))$.

LEMMA 2.3. For every non empty subset H of an R-hypermodule M, we have

- (1) $\phi_M^{-1}(\phi_M(H)) = \omega(M) + H = H + \omega(M).$
- (2) If H is a complete part of M, then $\phi_M^{-1}(\phi_M(H)) = H$.

PROOF. (1) For every $x \in \omega(M) + H$, there exists a pair $(a, b) \in \omega(M) \times H$ such that $x \in a + b$, so $\phi_M(x) \subseteq \phi_M(a) + \phi_M(b) = 0_{M/\epsilon^*} + \phi_M(b) = \phi_M(b)$. Therefore $x \in \phi_M^{-1}(\phi_M(b)) \subseteq \phi_M^{-1}(\phi_M(H))$.

Conversely, for every $x \in \phi_M^{-1}(\phi_M(H))$, there exists an element $b \in H$ such that $\phi_M(x) = \phi_M(b)$. By the reproducibility there exists $a \in M$ such that $x \in a + b$, so $\phi_M(b) = \phi_M(x) = \phi_M(a) + \phi_M(b)$, hence $\phi_M(a) = 0_{M/\epsilon^*}$ and $a \in \phi_M^{-1}(0_{M/\epsilon^*}) = \omega(M)$. Therefore, $x \in a + b \subseteq \omega(M) + H$. This proves that $\phi_M^{-1}(\phi_M(M)) = \omega(M) + H$. In the same way, it is possible to prove that $\phi_M^{-1}(\phi_M(H)) = H + \omega(M)$.

(2) It is obvious that $H \subseteq \phi_M^{-1}(\phi_M(H))$. Moreover, if $x \in \phi_M^{-1}(\phi_M(H))$, then there exists an element $b \in H$ such that $\phi_M(x) = \phi_M(b)$. Hence $x \in \epsilon^*(x) = \epsilon^*(b) \subseteq H$ and $\phi_M^{-1}(\phi_M(H)) \subseteq H$.

LEMMA 2.4. Let M be an R-hypermodule. Then $\omega(M)$ is the intersection of all R-subhypermodules of M that are complete parts.

PROOF. By Lemma 2.3, we have $\omega(M) + \omega(M) = \omega(M)$ as a hypermodule. Let $A \in \bigcap M_i$, where every M_i is a complete part subhypergroup of M. Then $A + \omega(M) = A$. Also, A is an invertible subhypermodule of M, hence

 $\forall (a, x) \in A \times \omega(M), \exists b \in A : a \in b + x \Rightarrow a \in A + x \Rightarrow x \in A + a = A.$

Therefore $\omega(M) \subseteq A$.

THEOREM 2.5. Let *M* be an *R*-hypermodule and *B* the union of summations of finite numbers of $\sum_{i=1}^{n} m'_{i}$, containing at least one right and at least one left identity and be scalar multiplicatively closed. Then $B = \omega(M)$.

PROOF. We set $E_l(E_r)$ equal to the set of left (right) identities and $T = \{P \in B \mid P \cap E_l \neq \emptyset, P \cap E_r \neq \emptyset\}$. Furthermore, for every $x \in M$, we denote by $i_l(x)$ $(i_r(x))$ the set of left (right) inverses of x. First, we prove that for every $a \in B$, $i_l(a) \subseteq B \supseteq i_r(a)$. Let $a \in B$, then there exists a $\sum_{i=1}^{n} m'_i = P \in T$ such that $a \in P$. If $a' \in i_l(a)$, then $e' \in E_l$ exists such that $e' \in a' + a$; if $a'' \in i_l(a)$, then $e'' \in E_r$ exists such that $e'' \in a + a''$. We now consider the $P_1 = a' + \sum_{i=1}^{n} m'_i + a + a''$, we have $P_1 \subseteq T$, in fact $\{e', e''\} \subseteq e' + e'' \subseteq a' + a + a + a'' \subseteq P_1$. Furthermore, $\{a', a''\} \subseteq P_1$; in fact $a' + a + a'' \subseteq P_1$ and $a' \in a' + e'' \subseteq a' + a + a''$.

Now, we prove that *B* is a complete part of *M*. Let $a \in \sum_{i=1}^{n} m'_i \cap B \neq \emptyset$, hence a $\sum_{i=1}^{t} z'_i = P \in T$ exists such that $a \in P$. Now let e', e'' be respectively the left and right identities, $a', a'' \in M$, such that $e' \in a' + a$, $e'' \in a + a''$. Then $\sum_{i=1}^{n} m'_i \subseteq e' + \sum_{i=1}^{n} m'_i + e'' \subseteq a' + a + \sum_{i=1}^{n} m'_i + a + a'' \subseteq$ $a' + P + \sum_{i=1}^{n} m'_i + P + a'' \supseteq a' + a + a + a'' \supseteq \{e', e''\}$, thus $a' + P + \sum_{i=1}^{n} m'_i + P + a'' = P_1$. Therefore $\sum_{i=1}^{n} m'_i \subseteq P_1 \in T$ and for this reason $\sum_{i=1}^{n} m'_i \subseteq B$.

Let $a, b \in M$, such that $a \in P, b \in Q$ where $P, Q \in T$. Then $a + b \in B$. Also for every $r \in R, r \cdot a \subseteq B$.

Also, *B* satisfies the conditions of reproducibility. Since *M* is an *R*-hypermodule, the properties of *M* as an *R*-hypermodule, guarantee that the hypergroup *B* is an *R*-hypermodule. It is clear that $B \subseteq \omega(M)$. As seen from the above, it turns out that *B* is a complete part subhypermodule, thus by Lemma 2.4, $\omega(M) \subseteq B$.

We denote by $\sum_{C} (A)$ the set of hypersums *A* of elements of *M* such that C(A) = A.

THEOREM 2.6. Let M be an R-hypermodule and (x'_1, \ldots, x'_n) such that $\sum_{i=1}^n x'_i \in \sum_C (M)$, then there exists (y'_1, \ldots, y'_n) such that $\sum_{i=1}^n x'_i + \sum_{i=1}^n y'_i = \omega(M)$.

PROOF. We set $x'_i = \sum_{j=1}^{n_i} (\prod_{k=1}^{k_{ij}} r_{ijk}) x_i$. For $1 \le t \le n$, let a_t be an element of $\omega(M)$, then there exists $y_t \in M$ such that $a_t \in x_t + y_t$, hence

$$\sum_{j=1}^{n_t} \left(\prod_{k=1}^{k_{tj}} r_{tjk} \right) a_t \subseteq \sum_{j=1}^{n_t} \left(\prod_{k=1}^{k_{tj}} r_{tjk} \right) x_t + \sum_{j=1}^{n_t} \left(\prod_{k=1}^{k_{tj}} r_{tjk} \right) y_t = x_t' + y_t'.$$

Since $\omega(M)$ is a complete part, we have $x'_t + y'_t \subseteq \omega(M)$. Therefore

$$\sum_{i=1}^{n} x'_i + y'_n = \omega(M) + \sum_{i=1}^{n} x'_i + y'_n = \sum_{i=1}^{n-1} x'_i + \omega(M) + x'_n + y'_n$$
$$= \sum_{i=1}^{n-1} x'_i + \omega(M) = \omega(M) + \sum_{i=1}^{n-1} x'_i$$

and so

$$\sum_{i=1}^{n} x'_{i} + y'_{n} + y'_{n-1} = \omega(M) + \sum_{i=1}^{n-2} x'_{i} + x'_{n-1} + y'_{n-1} = \omega(M) + \sum_{i=1}^{n-2} x'_{i}.$$

Going on the same way one arrives to

$$\sum_{i=1}^{n} x_i' + \sum_{i=1}^{n} y_i' = \omega(M) + x_1' + y_1' = \omega(M).$$

LEMMA 2.7. Let (M, +) be an R-hypermodule, then

- (1) $M \omega(M)$ is a complete part of M.
- (2) If $M \omega(M)$ is a hypersum, then $\omega(M)$ is also a hypersum.

PROOF. (1) Obvious.

(2) By (1), $M - \omega(M)$ is a complete part. Now, by using Theorem 2.6, the proof is completed.

REMARK 2.8. Let *M* be an *R*-hypermodule endowed with a complete hypersum. The following implication is satisfied for every $A \in \wp^*(M)$: $A \cap \sum_{i=1}^n m'_i = \emptyset \Rightarrow C(A) \cap \sum_{i=1}^n m'_i = \emptyset.$

Suppose that $z \in C(A) \cap \sum_{i=1}^{n} m'_i$. Then $a \in A$ exists such that $z \in C(a)$, hence C(a) = C(z). The hypothesis $\sum_{i=1}^{n} m'_i = C(\sum_{i=1}^{n} m'_i)$ implies

$$C(z) \subseteq \bigcup_{y \in \sum_{i=1}^{n} m'_i} C(y) = C\left(\sum_{i=1}^{n} m'_i\right) = \sum_{i=1}^{n} m'_i.$$

Therefore $a \in A$, $a \in C(z) \subseteq \sum_{i=1}^{n} m'_i$, where $\sum_{i=1}^{n} m'_i \cap A \neq \emptyset$ which is absurd.

Let (M, +) be an *R*-hypermodule. Let's consider the sequence

(*)
$$M \supseteq \omega(M) = \omega_1 \supseteq \omega(\omega(M)) = \omega_2 \supseteq$$

 $\cdots \supseteq \omega_k \supseteq \omega_{k+1} \supseteq \cdots \supseteq \omega_n \supseteq \cdots$

PROPOSITION 2.9. Let M be an R-hypermodule. Then the following conditions are equivalent:

- (1) The sequence (*) is finite;
- (2) there is $(n, k) \in \mathbb{N}^2$, where n > k + 1, such that ω_n is a complete part of ω_k ;
- (3) there is $(n, k) \in \mathbb{N}^2$ where n > k + 1, such that for any $(x, y) \in (\omega_k \omega_n) \times (\omega_k \omega_n)$; $(x + y) \cap (\omega_k \omega_n) \neq \emptyset$ implies $x + y \subseteq \omega_k \omega_n$;
- (4) there is $(n, k) \in \mathbb{N}^2$, where n > k + 1, such that for any ω_n is a ω_k -conjugable.

PROOF. (1) \Rightarrow (2). If the sequence (*) is finite, then there is $n \in \mathbb{N}$ such that $\omega_n = \omega_{n-1}$, hence ω_n is a complete part of ω_{n-2} .

(2) \Rightarrow (3). If ω_n is a complete part of ω_k , then $\omega_k - \omega_n$ is a complete part of ω_k .

 $(3) \Rightarrow (4)$. One proves easily that for any $s \in \mathbb{N}$, ω_s is a closed subhypermodule of M. Moreover, for all $a, b \in \omega_k$, if $\{a, b\} \subseteq \omega_k - \omega_n$, we have $a+b \subseteq \omega_k$, if $a \neq b$ and $|\{a, b\} \cap \omega_n| = 1$, we have $a+b \subseteq \omega_k - \omega_n$, since ω_n is a closed subhypermodule of ω_k . Then, we obtain that ω_n is ω_k -conjugable.

 $(4) \Rightarrow (1)$. We know ω_n is a complete part subhypermodule of ω_k . Hence $\omega_{k+1} = \omega(\omega_k) \subseteq \omega_n \subseteq \omega_{k+1}$ from which $\omega_n = \omega_{k+1}$. So, we have: $\omega_{n+1} = \omega(\omega_n) = \omega(\omega_{k+1}) = \omega_{k+2} \supseteq \omega_n = \omega_{k+1} \supseteq \omega_{k+2}$. Therefore, $\omega_n = \omega_{k+2} = \omega_{n+1}$. Let $\omega_{n+s} = \omega_{k+1}$. It follows $\omega_{n+s+1} = \omega(\omega_{n+s}) = \omega(\omega_{k+1}) = \omega_{k+2} = \omega_{k+1}$. Then, for any *m* such that $m \ge n$, we have $\omega_m = \omega_n$.

THEOREM 2.10. Let (M, +) be an *R*-hypermodule such that the sequence (*) is finite, and let *N* be a complete part subhypermodule of *M*. Then there is $p \in N$ such that $\omega_{p+1}(N) = \omega_{p+1}(M)$.

PROOF. Notice that $\omega(N)$ is a subhypermodule of $\omega(M)$. Indeed, for any $a \in \omega(N)$, there is $e \in N$ such that $a \in a + e$, it's clear that $a \in \epsilon_N(e) \subseteq \epsilon_M(e) = \omega(M)$. Moreover, since N is a complete part subhypermodule of M, we have $\omega(M) \subseteq N$. Then $\omega_1(N) \subseteq \omega_1(M) \subseteq N$. For any $s \ge 1$, from $\omega_s(N) \subseteq \omega_s(M) \subseteq \omega_{s-1}(N)$, one obtains $\omega_{s+1}(N) \subseteq \omega_{s+1}(M) \subseteq \omega_s(N)$, hence a sequence $N \supseteq \omega_1(M) \supseteq \omega_1(N) \supseteq \omega_2(M) \supseteq \omega_2(N) \supseteq \cdots$.

By Proposition 2.9, there is $(n, p) \in \mathbb{N} \times \mathbb{N}$, where n > p + 1, such that $\omega_n(M) = \omega_{p+1}(M)$, therefore $\omega_{p+1}(M) = \omega_{p+1}(N)$.

REMARK 2.11. If N_1 , N_2 be subhypermodules of M, then

$$\omega(N_1 \cap N_2) \le \omega(N_1) \cap \omega(N_2).$$

Generally, we do not have equality.

Let *M* be an *R*-hypermodule, for which $\omega(M) \neq M$ and let $x, y \in M$ be arbitrary in *M*. Let's define on $M' = M \cup \{b, c, d\} (\{b, c, d\} \cap M = \emptyset)$ the following hyperoperation:

+'	x	b	С	d
y	y + x	b	с	d
b	b	M	d	С
с	с	d	М	b
d	d	с	b	М

and for every $r \in R$, $m \in M$ the scalar multiplication $r \cdot m = r \cdot m$ and $r \cdot a = a$, $r \cdot b = b$ and $r \cdot c = c$. We can easily verify (M', +) with scalar multiplication $\cdot a$ is an *R*-hypermodule. We consider subhypermodules $M'_1 = M \cup \{b\}, M'_2 = M \cup \{c\}, M'_3 = M \cup \{d\}$ of M', then $\omega(M'_1) = \omega(M'_2) = \omega(M'_3) = M, \omega(M'_1 \cap M'_2 \cap M'_3) \neq M$.

But for an *R*-hypermodule *M*, and $N_1, N_2 \leq M$ whose sequence (*) is finite, we can find the following relation between $\omega(N_1 \cap N_2)$ and $\omega(N_1), \omega(N_2)$:

PROPOSITION 2.12. If $N_1, N_2 \leq M$, where M has a finite sequence (*), then there exist $p \in \mathbb{N}$, such that $\omega_{p+1}(N_1 \cap N_2) = \omega_{p+1}(\omega(N_1) \cap \omega(N_2))$.

PROOF. Let's consider $\overline{M} := N_1 \cap N_2$ and $\overline{N} := \omega(N_1) \cap \omega(N_2)$. Then \overline{N} is a subhypermodule, complete part of \overline{M} . (We can verify this using the definition of a complete part of a hypermodule.) Therefore we use the proof of Theorem 2.10.

Also, we can give a relation for R-subhypermodule of M:

 $\exists p \in \mathsf{N}, \ \omega_{p+1}(N_1 \cap N_2 \cap \dots \cap N_m) = \omega_{p+1}(\omega(N_1) \cap \omega(N_2) \cap \dots \cap \omega(N_m)).$

REMARK 2.13. If $N_1, N_2 \leq M$, then $\omega(N_1) \subseteq N_1 \cap \omega(\langle N_1 \cup N_2 \rangle)$.

Generally, we have not equality. Let M_1 and M_2 be two *R*-hypermodules with the scalar hyperoperation \cdot_1 and \cdot_2 respectively. Let m_1 , n_1 arbitrary in M_1

and m_2 , n_2 arbitrary in M_2 . Let's define on $M = M_1 \cup M_2 \cup \{a\}$ ($a \notin M_1 \cup M_2$) with the following hyperoperations:

+'	m_1	а	m_2
n_1	$n_1 + m_1$	а	М
а	a	M_1	М
n_2	М	М	$n_2 + m_2$

and for every $r \in R$, $x \in M_1$ and $y \in M_2$ the scalar multiplication $r \cdot x = r \cdot x$, $r \cdot y = r \cdot y$ and $r \cdot a = a$. We can easily verify (M, +') with scalar multiplication $\cdot x$ is an *R*-hypermodule. We consider subhypermodules $N_1 = M_1 \cup \{a\}, N_2 = M_2, N_1 \cup N_2 = M, \langle N_1 \cup N_2 \rangle = M$, then $\omega(\langle N_1 \cup N_2 \rangle) = M$. So

$$\omega(N_1) = M_1 \subset N_1 \cap \omega(\langle N_1 \cup N_2 \rangle) = N_1 = M_1 \cup \{a\}.$$

THEOREM 2.14. Let M be an R-hypermodule with commutative hypergroup and N_1 , N_2 be subhypermodules of M. If for any $a \in \langle N_1 \cup N_2 \rangle - (N_1 \cup N_2)$, there exists $(n_1, n_2) \in N_1 \times N_2$, such that $a \in n_1 + n_2$ and if $\langle \omega(N_1) \cup \omega(N_2) \rangle$ is a closed subhypermodule of $\omega(\langle N_1 \cup N_2 \rangle)$ then

$$\langle \omega(N_1) \cup \omega(N_2) \rangle = \omega(\langle N_1 \cup N_2 \rangle).$$

PROOF. We shall prove that $\langle \omega(N_1) \cup \omega(N_2) \rangle$ is conjugable in $\langle N_1 \cup N_2 \rangle$ as hypermodule. $\langle \omega(N_1) \cup \omega(N_2) \rangle$ is closed in $\langle N_1 \cup N_2 \rangle$ because, from $x \in a + b$, where $(a, b) \in \langle \omega(N_1) \cup \omega(N_2) \rangle^2$ and $x \in \langle N_1 \cup N_2 \rangle$, it results $(a, b) \in \omega(\langle N_1 \cup N_2 \rangle)^2$ and so $x \in \omega(\langle N_1 \cup N_2 \rangle)$. Using now the condition given in the proposition, $x \in \langle \omega(N_1) \cup \omega(N_2) \rangle$.

As regards an arbitrary element $a \in \langle N_1 \cup N_2 \rangle$, we have three cases:

$$a \in N_1 \Rightarrow \exists a' \in N_1, a + a' \subseteq \omega(N_1) \subseteq \langle \omega(N_1) \cup \omega(N_2) \rangle;$$

$$a \in N_2 \Rightarrow \exists a' \in N_2, a + a' \subseteq \omega(N_2) \subseteq \langle \omega(N_1) \cup \omega(N_2) \rangle;$$

$$a \in \langle N_1 \cup N_2 \rangle - (N_1 \cup N_2) \Rightarrow \exists n_1 \in N_1, \exists n_2 \in N_2, a \in n_1 + n_2.$$

For n_i there exists $n'_i \in N_i$, such that $n_i + n'_i \in \omega_{n_i}$, i = 1, 2.

So, $a + n'_1 + n'_2 \subseteq (n_1 + n'_2) + (n_2 + n'_2) \subseteq \omega(N_1) \oplus \omega(N_2) \subseteq \langle \omega(N_1) \cup \omega(N_2) \rangle$, whence for every $t \in n'_1 + n'_2$, $a + t \subseteq \langle \omega(N_1) \cup \omega(N_2) \rangle$.

A hypermodule *M* is said to be ϵ_n^* -complete hypermodule if there exists $n \in \mathbb{N} \cup \{0\}$, and *n* is the smallest integer such that $\epsilon_n^* = \epsilon^*$ and $\epsilon_n^* \neq \epsilon_{n-1}^*$.

LEMMA 2.15. A hypermodule M is ϵ_0^* -complete if and only if M is a hypermodule (with ordinary group). PROOF. Suppose that *M* is a ϵ_0^* -complete hypermodule, so $\epsilon_0^* = \epsilon^*$, hence $\epsilon_2 \subseteq \epsilon_0$ and $\epsilon_1 \subseteq \epsilon_0$. Now, for every $x, y \in m_1 + m_2$, we have $x \epsilon_2 y$, so x = y. Also for every $x, y \in r.m$, we have $x \epsilon_1 y$, so x = y. Therefore $m_1 + m_2$ and $r \cdot m$ both are singletons, and so *M* is a hypermodule over the hyperring *R*.

Conversely, if *M* is a module, then for every $\sum_{i=1}^{n} m'_i$, we have $\left|\sum_{i=1}^{n} m'_i\right| = 1$. By definition, $x \epsilon_n y$ if and only if $x = \sum_{i=1}^{n} m'_i = y$, thus x = y and $x \epsilon_0 y$.

COROLLARY 2.16. If M is a ϵ_n^* -complete R-hypermodule, then M/ϵ_n^* is an R/Γ^* -module.

PROPOSITION 2.17. Every finite hypermodule is ϵ_n^* -complete.

PROOF. Since *M* is finite, the chain $\epsilon_1^* \subseteq \epsilon_2^* \subseteq \cdots$ is stationary. Thus there exists $n \in \mathbb{N}$ such that $\epsilon_n^* = \epsilon^*$ and $\epsilon_n^* \neq \epsilon_{n-1}^*$.

THEOREM 2.18. We have

- (1) If $\forall (v, w) \in (\omega(M))^2$, $v \epsilon_n w$, then $\epsilon = \epsilon_{n+1}$.
- (2) If $\forall (v, w) \in (\omega(M))^2$, $v \epsilon_n^* w$, then $\epsilon^* = \epsilon_{n+1}^*$.

PROOF. (1) If $x \in y$, since $\omega(M) + M = M + \omega(M) = M$ then there exists $(v, w) \in (\omega(M))^2$ such that $y \in x + v$ and $y \in x + w$, by the hypothesis $v \in w$. Now, we have $(x + v)\overline{\overline{e}}_{n+1}(x + w)$, whence $x \in w_{n+1}$, so $\epsilon \subseteq \epsilon_{n+1}$.

(2) It follows from (1).

Let *M* be an *R*-hypermodule. *M* is called 1-hypermodule if $\omega(M)$ is a singleton.

THEOREM 2.19. Let M be an 1-hypermodule and $\omega(M) = \{e\}$. Then

- (1) The ϵ^* -classes are the summations e + a, where $a \in M$.
- (2) Every R-subhypermodule of M is complete part.
- (3) If $\{M_i\}_{i \in I}$ is a family of *R*-subhypermodules of *M*, then $\bigcap_{i \in I} M_i$ is an *R*-subhypermodule of *M*.
- (4) The direct product of 1-hypermodules is a 1-hypermodule.

PROOF. (1) It is clear.

(2) If *N* is a subhypermodule of *M*, we have $N \cap \omega(M) \neq \emptyset$, which implies $\omega(M) \subseteq N$, hence $N = N + \omega(M)$ and therefore *N* is a complete part.

(3) For (2), $\forall i \in I, e \in M_i$, we set $N = \bigcap_{i \in I} M_i$, hence $N \neq \emptyset$. Then for every $x, y \in N$ there exists $b \in M$ such that $y \in b + x$, but M_i is ($\forall i \in I$) a closed submodule by (2), thus $b \in M_i$. Also, for every $r \in R, m \in N$, we have $r \cdot m \subseteq N$.

(4) Set $N = \prod_{i \in I} N_i, x' = (x'_i)_{i \in I} \in N, e = (e_i)_{i \in I}$. We have $x \in e_n e_i$ if and only if $z'^1 = (z'_i)_{i \in I}, z'^2 = (z'^2_i)_{i \in I}, \dots, z'^m = (z'^m_i)_{i \in I}$ exist such

that $x, e \in \sum_{i=1}^{n} z^{ik}$, that is if and only if $\forall i \in I, x'_i, e_i \in \sum_{k=1}^{n} z^{ik}$. Then $z'_i = \sum_{k=1}^{n} z^{ik}_i = e_i$, whence x = e, for this reason $\omega(N) = \{e\}$.

ACKNOWLEDGEMENT. The authors are highly grateful to referees for their valuable comments and suggestions for improving the paper.

REFERENCES

- Anvariyeh, S. M., and Davvaz, B., θ-Closure and θ-parts of hypermodules, Algebra Colloq (to appear).
- 2. Corsini, P., Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo 1993.
- Corsini, P., and Leoreanu, V., *Applications of Hyperstructure Theory*, Advances in Math. 5, Kluwer, Dordrecht 2003.
- 4. Davvaz, B., Remark on weak hypermodules, Bull. Korean Math. Soc. 36 (1999), 599-608.
- 5. Davvaz, B., and Vougiouklis, T., *Commutative rings obtained from hyperrings* (H_{v} *-rings*) with α^{*} *-relations*, Comm. Algebra 35 (2007), 3307–3320.
- Vougiouklis, T., *The fundamental relation in hyperrings. The general hyperfield*, pp. 203– 211 in: Algebraic Hyperstructures and Applications, Proc. Xánthi 1990, World Scientific, Teaneck, NJ 1991.
- Vougiouklis, T., Hyperstructures and their Representations, Hadronic Press, Palm Harber, FL 1994.

DEPARTMENT OF MATHEMATICS YAZD UNIVERSITY YAZD IRAN *E-mail:* davvaz@yazduni.ac.ir