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ON THE HEART OF HYPERMODULES

S. M. ANVARIYEH and B. DAVVAZ

Abstract

This paper presents some types of hypermodules, associated to an arbitrary hypermodule, studying
properties and characterizing their hearts. Also, we establish a few results concerning the sequence
of heart, which can be associated to a hypermodule, in connection with subhypermodules generated
by a non-empty set, by a union of subhypermodules or by the intersection of subhypermodules.
Finally, we study several properties of 1-hypermodules.

1. Introduction

A hypergroupoid (H, ◦) is a non-empty set H with a hyperoperation ◦ defined
on H , that is, a mapping of H × H into the family of non-empty subsets
of H . If A, B are non-empty subsets of H then A ◦ B is given by A ◦ B =⋃{x ◦ y | x ∈ A, y ∈ B}. x ◦ A is used for {x} ◦ A and A ◦ x for A ◦ {x}.
A hypergroupoid (H, ◦) is called a hypergroup in the sense of Marty if for all
x, y, z ∈ H the following two conditions hold: (i) x ◦ (y ◦ z) = (x ◦ y) ◦ z, (ii)
x ◦ H = H ◦ x = H . If (H, ◦) satisfies only the first axiom, then it is called a
semi-hypergroup. An exhaustive review updated to 1992 of hypergroup theory
appears in [2]. A recent book [3] contains a wealth of applications.

Let H be a hypergroup and ρ an equivalence relation on H . Let ρ(a) be
the equivalence class of a with respect to ρ and let H/ρ = {ρ(a) | a ∈ H }.
A hyperoperation ⊗ is defined on H/ρ by ρ(a) ⊗ ρ(b) = {ρ(x) | x ∈
ρ(a)◦ρ(b)}. If ρ is strongly regular, then it readily follows that ρ(a)⊗ρ(b) =
{ρ(x) | x ∈ a ◦ b}. It is well known for ρ strongly regular that (H/ρ, ⊗) is a
group (see Theorem 31 in [2]), that is ρ(a) ⊗ ρ(b) = ρ(c) for all c ∈ a ◦ b.

A hyperring is a multi-valued system (R, +, ◦) which satisfies the ring-like
axioms in the following way: (R, +) is a hypergroup in the sense of Marty,
(R, ◦) is a semi-hypergroup and the multiplication is distributive with respect to
the hyperoperation +. Let R be a hyperring. We recall the relation � defined
as follows: x�y ⇐⇒ ∃n ∈ N, ∃(k1, . . . , kn) ∈ Nn, and [∃(xi1, . . . , xiki

) ∈
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Rki , (i = 1, . . . , n)] such that

x, y ∈
n∑

i=1

( ki∏
j=1

xij

)
.

The relation � is reflexive and symmetric. Let �∗ be the transitive closure
of �, then �∗ is a strongly regular relation both on (R, +) and (R, ·), and the
quotient R/�∗ is a ring [5], [6].

Let (M, +) be a hypergroup and (R, +, ·) be a hyperring. According to [7]
M is said to be a hypermodule over R if there exists

· : R × M → ℘∗(M); (a, m) 
→ a · m

such that for all a, b ∈ R and m1, m2, m ∈ M , we have

(1) a · (m1 + m2) = a · m1 + a · m2,

(2) (a + b) · m = (a · m) + (b · m),

(3) (a · b) · m = a · (b · m).

Let M be an R-hypermodule, N1 and N2 two subhypermodules of M; we
say that N2 is N1-conjugable if N2 as a subhypergroup is conjugable, and an
R-hypermodule M is regular if M as a hypergroup is regular.

Let R be a hyperring and M be a hypermodule over R. Let x, y ∈ M , the
relation ε on M defined as follows [4]:

xεy ⇔ x, y ∈
n∑

i=1

m′
i; m′

i = mi or m′
i =

ni∑
j=1

( kij∏
k=1

xijk

)
zi,

mi ∈ M, xijk ∈ R, zi ∈ M.

If M is an R-hypermodule, then we set

ε0 = {(m, m) | m ∈ M}
and for every integer n ≥ 1, εn is the relation defined as follows:

xεny ⇔ x, y ∈
n∑

i=1

m′
i .

Obviously, for every n ≥ 0, the relation εn is symmetric, and the relation
ε = ⋃

n≥0 εn is reflexive and symmetric.
The fundamental relation ε∗ on M can be defined as the smallest equival-

ence relation such that the quotient M/ε∗ is a module over the corresponding
fundamental ring R/�∗ such that M/ε∗ as a group is not abelian.
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Let M and N be R-hypermodules. A function f : M → N is called an
R-homomorphism, if for every (x, y) ∈ M2 and r ∈ R

f (x + y) = f (x) + f (y) and f (r · x) = r · f (x).

If H is an R-module and f : M → H is an R-homomorphism, we let Ker f =
{m ∈ M | f (m) = 0H }. Moreover, the canonical projection φM : M → M/ε∗
by φM(m) = ε∗(m), is an R-homomorphism and ω(M) := Ker φM = {m ∈
M | φM(m) = 0M/ε∗ }.

If M is a hypermodule and ρ ⊆ M × M is an equivalence relation then for
all pairs (A, B) of non-empty subsets of M , we set AρB if and only if aρb

for all a ∈ A and b ∈ B. The relation ρ is said to be strongly regular to the
right if xρy implies x ◦ aρy ◦ a and x.rρy.r for all x, y, a ∈ M and r ∈ R.
Analogously, we can define strongly regular to the left. Moreover ρ is called
strongly regular if it is strongly regular to the right and to the left.

Theorem 1.1. Let M be an R-hypermodule and ρ be a strongly regular
relation on M . Then (M/ρ, ⊕) is an R-hypermodule if and only if for every
x ∈ M and r ∈ R, r · ρ(x) = ρ(r · x).

Proof. Since ρ is strongly regular, the scalar hyperoperation r · ρ(x) :=
ρ(r · x) is well defined. Since M is an R-hypermodule, the properties of M as
an R-hypermodule, guarantee that the hypergroup M/ρ is an R-hypermodule.

2. Heart of a hypermodule

In the following m′
i , z′

i and y ′
i are the notations in the definition of ε.

Let M be an R-hypermodule and A be a non-empty subset of M . Then the
intersection of the subsets of M which are complete and contain A is called
the complete closure of A in M; it will be denoted C(A). If K1(A) = A, and

Kn+1(A) =
{
x ∈ M

∣∣∣∣ ∃p ∈ N, ∃(m′
1, m

′
2, . . . , m

′
p) : x ∈

p∑
i=1

m′
i ∩ Kn �= ∅

}
,

then K(A) = C(A), and the relation xKy ⇔ x ∈ C({y}) is an equivalence.
Also, for every x, y ∈ M , we have xKy ⇔ xε∗y. Furthermore, if B is a
non-empty subset of M , we have C(B) = ⋃

b∈B C(b), where C(b) = C({b})
[1].

Theorem 2.1. Let M be an R-hypermodule, φM : M → M/K the canon-
ical projection. If N is a hypermodule with ordinary group and f : M → N

is an R-homomorphism, then there exists g : M/K → N such that gφM = f .

Proof. It is enough to observe for every x ∈ M that gφM(x) = f (x). First,
g is well defined: in fact φM(x) = φM(y) ⇒ xKy. Since N is a hypermodule
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(with ordinary group), it follows that f (x) = f (y). Furthermore, g is an
R-homomorphism because for every x, y ∈ M , and u ∈ x + y, we have
g(φM(x) + φM(y)) = gφM(x + y) = gφM(u) = f (u) = f (x + y) =
f (x) + f (y) = gφM(x) + gφM(y). Also, for every r ∈ R, and v ∈ r.x we
have g(φM(r ·x)) = g(φM(v)) = f (v) = f (r ·x) = r ·f (x) = r · (gφM(x)).

Theorem 2.2. Let f : M → M ′ be an R-homomorphism, then:

(1) ∀x ∈ M , f (C(x)) ⊆ C(f (x)).

(2) f determines an R-homomorphism f ∗ : M/K → M ′/K ′ defined by
f ∗(φM(x)) = φM ′(f (x)).

Proof. (1) It is sufficient to observe that for every n ∈ N, the implication
xεny ⇒ f (x)εnf (x) is valid.

(2) f ∗ is well defined, in fact φM(x) = φM(y), i.e., xKy implies by (1)
f (x)Kf (y), hence f ∗(φM(x)) = f ∗(φM(y)). Clearly, f ∗ is an R-homomor-
phism, because for every u ∈ x + y, f ∗(φM(x) + φM(y)) = f ∗(φM(f (x +
y))) = φM ′(f (u)) = φM ′(f (u)) = φM ′(f (x) + f (y)) = φM ′(f (x)) +
φM ′(f (y)) = f ∗(φM(x)) + f ∗(φM(y)), and for every r ∈ R and v ∈ r.x,
we have f ∗(φM(r · x)) = φM ′(f (v)) = φM ′(f (r · x)) = r · φM(f (x)) =
r · f ∗(φM(x)).

Lemma 2.3. For every non empty subset H of an R-hypermodule M , we
have

(1) φ−1
M (φM(H)) = ω(M) + H = H + ω(M).

(2) If H is a complete part of M , then φ−1
M (φM(H)) = H .

Proof. (1) For every x ∈ ω(M)+H , there exists a pair (a, b) ∈ ω(M)×H

such that x ∈ a + b, so φM(x) ⊆ φM(a)+φM(b) = 0M/ε∗ +φM(b) = φM(b).
Therefore x ∈ φ−1

M (φM(b)) ⊆ φ−1
M (φM(H)).

Conversely, for every x ∈ φ−1
M (φM(H)), there exists an element b ∈ H

such that φM(x) = φM(b). By the reproducibility there exists a ∈ M such that
x ∈ a + b, so φM(b) = φM(x) = φM(a) + φM(b), hence φM(a) = 0M/ε∗ and
a ∈ φ−1

M (0M/ε∗) = ω(M). Therefore, x ∈ a + b ⊆ ω(M) + H . This proves
that φ−1

M (φM(M)) = ω(M) + H . In the same way, it is possible to prove that
φ−1

M (φM(H)) = H + ω(M).
(2) It is obvious that H ⊆ φ−1

M (φM(H)). Moreover, if x ∈ φ−1
M (φM(H)),

then there exists an element b ∈ H such that φM(x) = φM(b). Hence x ∈
ε∗(x) = ε∗(b) ⊆ H and φ−1

M (φM(H)) ⊆ H .

Lemma 2.4. Let M be an R-hypermodule. Then ω(M) is the intersection
of all R-subhypermodules of M that are complete parts.
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Proof. By Lemma 2.3, we have ω(M)+ω(M) = ω(M) as a hypermodule.
Let A ∈ ⋂

Mi , where every Mi is a complete part subhypergroup of M . Then
A + ω(M) = A. Also, A is an invertible subhypermodule of M , hence

∀(a, x) ∈ A × ω(M), ∃b ∈ A : a ∈ b + x ⇒ a ∈ A + x ⇒ x ∈ A + a = A.

Therefore ω(M) ⊆ A.

Theorem 2.5. Let M be an R-hypermodule and B the union of summations
of finite numbers of

∑n
i=1 m′

i , containing at least one right and at least one left
identity and be scalar multiplicatively closed. Then B = ω(M).

Proof. We set El (Er ) equal to the set of left (right) identities and T =
{P ∈ B | P ∩ El �= ∅, P ∩ Er �= ∅}. Furthermore, for every x ∈ M , we
denote by il(x) (ir (x)) the set of left (right) inverses of x. First, we prove
that for every a ∈ B, il(a) ⊆ B ⊇ ir (a). Let a ∈ B, then there exists a∑n

i=1 m′
i = P ∈ T such that a ∈ P . If a′ ∈ il(a), then e′ ∈ El exists such

that e′ ∈ a′ + a; if a′′ ∈ il(a), then e′′ ∈ Er exists such that e′′ ∈ a + a′′.
We now consider the P1 = a′ + ∑n

i=1 m′
i + a + a′′, we have P1 ⊆ T , in fact

{e′, e′′} ⊆ e′ + e′′ ⊆ a′ +a +a +a′′ ⊆ P1. Furthermore, {a′, a′′} ⊆ P1; in fact
a′+a+a′′ ⊆ P1 and a′ ∈ a′+e′′ ⊆ a′+a+a′′, also a′′ ∈ e′+a′′ ⊆ a′+a+a′′.

Now, we prove that B is a complete part of M . Let a ∈ ∑n
i=1 m′

i ∩ B �= ∅,
hence a

∑t
i=1 z′

i = P ∈ T exists such that a ∈ P . Now let e′, e′′ be respectively
the left and right identities, a′, a′′ ∈ M , such that e′ ∈ a′ + a, e′′ ∈ a + a′′.
Then

∑n
i=1 m′

i ⊆ e′ + ∑n
i=1 m′

i + e′′ ⊆ a′ + a + ∑n
i=1 m′

i + a + a′′ ⊆
a′ + P + ∑n

i=1 m′
i + P + a′′ ⊇ a′ + a + a + a′′ ⊇ {e′, e′′}, thus a′ + P +∑n

i=1 m′
i + P + a′′ = P1. Therefore

∑n
i=1 m′

i ⊆ P1 ∈ T and for this reason∑n
i=1 m′

i ⊆ B.
Let a, b ∈ M , such that a ∈ P, b ∈ Q where P, Q ∈ T . Then a + b ∈ B.

Also for every r ∈ R, r · a ⊆ B.
Also, B satisfies the conditions of reproducibility. Since M is an R-hyper-

module, the properties of M as an R-hypermodule, guarantee that the hy-
pergroup B is an R-hypermodule. It is clear that B ⊆ ω(M). As seen from
the above, it turns out that B is a complete part subhypermodule, thus by
Lemma 2.4, ω(M) ⊆ B.

We denote by
∑

C(A) the set of hypersums A of elements of M such that
C(A) = A.

Theorem 2.6. Let M be an R-hypermodule and (x ′
1, . . . , x

′
n) such that∑n

i=1 x ′
i ∈ ∑

C(M), then there exists (y ′
1, . . . , y

′
n) such that

∑n
i=1 x ′

i +∑n
i=1 y ′

i = ω(M).
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Proof. We set x ′
i = ∑ni

j=1

(∏kij

k=1 rijk

)
xi . For 1 ≤ t ≤ n, let at be an

element of ω(M), then there exists yt ∈ M such that at ∈ xt + yt , hence

nt∑
j=1

( ktj∏
k=1

rtjk

)
at ⊆

nt∑
j=1

( ktj∏
k=1

rtjk

)
xt +

nt∑
j=1

( ktj∏
k=1

rtjk

)
yt = x ′

t + y ′
t .

Since ω(M) is a complete part, we have x ′
t + y ′

t ⊆ ω(M). Therefore

n∑
i=1

x ′
i + y ′

n = ω(M) +
n∑

i=1

x ′
i + y ′

n =
n−1∑
i=1

x ′
i + ω(M) + x ′

n + y ′
n

=
n−1∑
i=1

x ′
i + ω(M) = ω(M) +

n−1∑
i=1

x ′
i

and so

n∑
i=1

x ′
i + y ′

n + y ′
n−1 = ω(M) +

n−2∑
i=1

x ′
i + x ′

n−1 + y ′
n−1 = ω(M) +

n−2∑
i=1

x ′
i .

Going on the same way one arrives to

n∑
i=1

x ′
i +

n∑
i=1

y ′
i = ω(M) + x ′

1 + y ′
1 = ω(M).

Lemma 2.7. Let (M, +) be an R-hypermodule, then

(1) M − ω(M) is a complete part of M .

(2) If M − ω(M) is a hypersum, then ω(M) is also a hypersum.

Proof. (1) Obvious.
(2) By (1), M − ω(M) is a complete part. Now, by using Theorem 2.6, the

proof is completed.

Remark 2.8. Let M be an R-hypermodule endowed with a complete
hypersum. The following implication is satisfied for every A ∈ ℘∗(M) :
A ∩ ∑n

i=1 m′
i = ∅ ⇒ C(A) ∩ ∑n

i=1 m′
i = ∅.

Suppose that z ∈ C(A) ∩ ∑n
i=1 m′

i . Then a ∈ A exists such that z ∈ C(a),
hence C(a) = C(z). The hypothesis

∑n
i=1 m′

i = C
(∑n

i=1 m′
i

)
implies

C(z) ⊆
⋃

y∈∑n
i=1 m′

i

C(y) = C

( n∑
i=1

m′
i

)
=

n∑
i=1

m′
i .
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Therefore a ∈ A, a ∈ C(z) ⊆ ∑n
i=1 m′

i , where
∑n

i=1 m′
i ∩ A �= ∅ which is

absurd.
Let (M, +) be an R-hypermodule. Let’s consider the sequence

(∗) M ⊇ ω(M) = ω1 ⊇ ω(ω(M)) = ω2 ⊇
· · · ⊇ ωk ⊇ ωk+1 ⊇ · · · ⊇ ωn ⊇ · · ·

Proposition 2.9. Let M be an R-hypermodule. Then the following condi-
tions are equivalent:

(1) The sequence (∗) is finite;

(2) there is (n, k) ∈ N2, where n > k + 1, such that ωn is a complete part
of ωk;

(3) there is (n, k) ∈ N2 where n > k + 1, such that for any (x, y) ∈
(ωk −ωn)×(ωk −ωn); (x+y)∩(ωk −ωn) �= ∅ implies x+y ⊆ ωk −ωn;

(4) there is (n, k) ∈ N2, where n > k + 1, such that for any ωn is a ωk-
conjugable.

Proof. (1) ⇒ (2). If the sequence (∗) is finite, then there is n ∈ N such that
ωn = ωn−1, hence ωn is a complete part of ωn−2.

(2) ⇒ (3). If ωn is a complete part of ωk , then ωk − ωn is a complete part
of ωk .

(3) ⇒ (4). One proves easily that for any s ∈ N, ωs is a closed subhy-
permodule of M . Moreover, for all a, b ∈ ωk , if {a, b} ⊆ ωk − ωn, we have
a+b ⊆ ωk , if a �= b and |{a, b}∩ωn| = 1, we have a+b ⊆ ωk −ωn, since ωn

is a closed subhypermodule of ωk . Then, we obtain that ωn is ωk-conjugable.
(4) ⇒ (1). We know ωn is a complete part subhypermodule of ωk . Hence

ωk+1 = ω(ωk) ⊆ ωn ⊆ ωk+1 from which ωn = ωk+1. So, we have: ωn+1 =
ω(ωn) = ω(ωk+1) = ωk+2 ⊇ ωn = ωk+1 ⊇ ωk+2. Therefore, ωn = ωk+2 =
ωn+1. Let ωn+s = ωk+1. It follows ωn+s+1 = ω(ωn+s) = ω(ωk+1) = ωk+2 =
ωk+1. Then, for any m such that m ≥ n, we have ωm = ωn.

Theorem 2.10. Let (M, +) be an R-hypermodule such that the sequence
(∗) is finite, and let N be a complete part subhypermodule of M . Then there
is p ∈ N such that ωp+1(N) = ωp+1(M).

Proof. Notice that ω(N) is a subhypermodule of ω(M). Indeed, for any
a ∈ ω(N), there is e ∈ N such that a ∈ a + e, it’s clear that a ∈ εN(e) ⊆
εM(e) = ω(M). Moreover, since N is a complete part subhypermodule of
M , we have ω(M) ⊆ N . Then ω1(N) ⊆ ω1(M) ⊆ N . For any s ≥ 1, from
ωs(N) ⊆ ωs(M) ⊆ ωs−1(N), one obtains ωs+1(N) ⊆ ωs+1(M) ⊆ ωs(N),
hence a sequence N ⊇ ω1(M) ⊇ ω1(N) ⊇ ω2(M) ⊇ ω2(N) ⊇ · · ·.
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By Proposition 2.9, there is (n, p) ∈ N × N, where n > p + 1, such that
ωn(M) = ωp+1(M), therefore ωp+1(M) = ωp+1(N).

Remark 2.11. If N1, N2 be subhypermodules of M , then

ω(N1 ∩ N2) ≤ ω(N1) ∩ ω(N2).

Generally, we do not have equality.

Let M be an R-hypermodule, for which ω(M) �= M and let x, y ∈ M be
arbitrary in M . Let’s define on M ′ = M ∪ {b, c, d} ({b, c, d} ∩ M = ∅) the
following hyperoperation:

+′ x b c d

y y + x b c d

b b M d c

c c d M b

d d c b M

and for every r ∈ R, m ∈ M the scalar multiplication r ·′ m = r · m and
r ·′ a = a, r ·′ b = b and r ·′ c = c. We can easily verify (M ′, +) with
scalar multiplication ·′ is an R-hypermodule. We consider subhypermodules
M ′

1 = M ∪{b}, M ′
2 = M ∪{c}, M ′

3 = M ∪{d} of M ′, then ω(M ′
1) = ω(M ′

2) =
ω(M ′

3) = M , ω(M ′
1 ∩ M ′

2 ∩ M ′
3) �= M .

But for anR-hypermoduleM , andN1, N2 ≤ M whose sequence (∗) is finite,
we can find the following relation between ω(N1 ∩ N2) and ω(N1), ω(N2):

Proposition 2.12. If N1, N2 ≤ M , where M has a finite sequence (∗),
then there exist p ∈ N, such that ωp+1(N1 ∩ N2) = ωp+1(ω(N1) ∩ ω(N2)).

Proof. Let’s consider M := N1 ∩ N2 and N := ω(N1) ∩ ω(N2). Then
N is a subhypermodule, complete part of M . (We can verify this using the
definition of a complete part of a hypermodule.) Therefore we use the proof
of Theorem 2.10.

Also, we can give a relation for R-subhypermodule of M :

∃p ∈ N, ωp+1(N1 ∩N2 ∩· · ·∩Nm) = ωp+1(ω(N1)∩ω(N2)∩· · ·∩ω(Nm)).

Remark 2.13. If N1, N2 ≤ M , then ω(N1) ⊆ N1 ∩ ω(〈N1 ∪ N2〉).
Generally, we have not equality. Let M1 and M2 be two R-hypermodules

with the scalar hyperoperation ·1 and .2 respectively. Let m1, n1 arbitrary in M1
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and m2, n2 arbitrary in M2. Let’s define on M = M1 ∪M2 ∪{a} (a /∈ M1 ∪M2)
with the following hyperoperations:

+′ m1 a m2

n1 n1 + m1 a M

a a M1 M

n2 M M n2 + m2

and for every r ∈ R, x ∈ M1 and y ∈ M2 the scalar multiplication r ·′x = r ·1x,
r ·′ y = r ·2 y and r ·′ a = a. We can easily verify (M, +′) with scalar
multiplication ·′ is an R-hypermodule. We consider subhypermodules N1 =
M1 ∪{a}, N2 = M2, N1 ∪N2 = M , 〈N1 ∪N2〉 = M , then ω(〈N1 ∪N2〉) = M .
So

ω(N1) = M1 ⊂ N1 ∩ ω(〈N1 ∪ N2〉) = N1 = M1 ∪ {a}.
Theorem 2.14. Let M be an R-hypermodule with commutative hypergroup

and N1, N2 be subhypermodules of M . If for any a ∈ 〈N1 ∪ N2〉 − (N1 ∪ N2),
there exists (n1, n2) ∈ N1 ×N2, such that a ∈ n1 +n2 and if 〈ω(N1)∪ω(N2)〉
is a closed subhypermodule of ω(〈N1 ∪ N2〉) then

〈ω(N1) ∪ ω(N2)〉 = ω(〈N1 ∪ N2〉).

Proof. We shall prove that 〈ω(N1) ∪ ω(N2)〉 is conjugable in 〈N1 ∪ N2〉
as hypermodule. 〈ω(N1) ∪ ω(N2)〉 is closed in 〈N1 ∪ N2〉 because, from x ∈
a + b, where (a, b) ∈ 〈ω(N1) ∪ ω(N2)〉2 and x ∈ 〈N1 ∪ N2〉, it results
(a, b) ∈ ω(〈N1 ∪ N2〉)2 and so x ∈ ω(〈N1 ∪ N2〉). Using now the condition
given in the proposition, x ∈ 〈ω(N1) ∪ ω(N2)〉.

As regards an arbitrary element a ∈ 〈N1 ∪ N2〉, we have three cases:

a ∈ N1 ⇒ ∃ a′ ∈ N1, a + a′ ⊆ ω(N1) ⊆ 〈ω(N1) ∪ ω(N2)〉;
a ∈ N2 ⇒ ∃ a′ ∈ N2, a + a′ ⊆ ω(N2) ⊆ 〈ω(N1) ∪ ω(N2)〉;

a ∈ 〈N1 ∪ N2〉 − (N1 ∪ N2) ⇒ ∃ n1 ∈ N1, ∃ n2 ∈ N2, a ∈ n1 + n2.

For ni there exists n′
i ∈ Ni , such that ni + n′

i ∈ ωni
, i = 1, 2.

So, a + n′
1 + n′

2 ⊆ (n1 + n′
2) + (n2 + n′

2) ⊆ ω(N1) ⊕ ω(N2) ⊆< ω(N1) ∪
ω(N2) >, whence for every t ∈ n′

1 + n′
2, a + t ⊆< ω(N1) ∪ ω(N2) >.

A hypermodule M is said to be ε∗
n-complete hypermodule if there exists

n ∈ N ∪ {0}, and n is the smallest integer such that ε∗
n = ε∗ and ε∗

n �= ε∗
n−1.

Lemma 2.15. A hypermodule M is ε∗
0 -complete if and only if M is a hyper-

module (with ordinary group).
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Proof. Suppose that M is a ε∗
0 -complete hypermodule, so ε∗

0 = ε∗, hence
ε2 ⊆ ε0 and ε1 ⊆ ε0. Now, for every x, y ∈ m1 +m2, we have xε2y, so x = y.
Also for every x, y ∈ r.m, we have xε1y, so x = y. Therefore m1 + m2 and
r · m both are singletons, and so M is a hypermodule over the hyperring R.

Conversely, if M is a module, then for every
∑n

i=1 m′
i , we have

∣∣∑n
i=1 m′

i

∣∣ =
1. By definition, xεny if and only if x = ∑n

i=1 m′
i = y, thus x = y and xε0y.

Corollary 2.16. If M is a ε∗
n-complete R-hypermodule, then M/ε∗

n is an
R/�∗-module.

Proposition 2.17. Every finite hypermodule is ε∗
n-complete.

Proof. Since M is finite, the chain ε∗
1 ⊆ ε∗

2 ⊆ · · · is stationary. Thus there
exists n ∈ N such that ε∗

n = ε∗ and ε∗
n �= ε∗

n−1.

Theorem 2.18. We have

(1) If ∀(v, w) ∈ (ω(M))2, vεnw, then ε = εn+1.

(2) If ∀(v, w) ∈ (ω(M))2, vε∗
nw, then ε∗ = ε∗

n+1.

Proof. (1) If xεy, since ω(M) + M = M + ω(M) = M then there exists
(v, w) ∈ (ω(M))2 such that y ∈ x + v and y ∈ x + w, by the hypothesis
vεnw. Now, we have (x + v)εn+1(x + w), whence xεn+1y, so ε ⊆ εn+1.

(2) It follows from (1).

Let M be an R-hypermodule. M is called 1-hypermodule if ω(M) is a
singleton.

Theorem 2.19. Let M be an 1-hypermodule and ω(M) = {e}. Then

(1) The ε∗-classes are the summations e + a, where a ∈ M .

(2) Every R-subhypermodule of M is complete part.

(3) If {Mi}i∈I is a family of R-subhypermodules of M , then
⋂

i∈I Mi is an
R-subhypermodule of M .

(4) The direct product of 1-hypermodules is a 1-hypermodule.

Proof. (1) It is clear.
(2) If N is a subhypermodule of M , we have N ∩ω(M) �= ∅, which implies

ω(M) ⊆ N , hence N = N + ω(M) and therefore N is a complete part.
(3) For (2), ∀i ∈ I, e ∈ Mi , we set N = ⋂

i∈I Mi , hence N �= ∅. Then for
every x, y ∈ N there exists b ∈ M such that y ∈ b + x, but Mi is (∀i ∈ I )
a closed submodule by (2), thus b ∈ Mi . Also, for every r ∈ R, m ∈ N , we
have r · m ⊆ N .

(4) Set N = ∏
i∈I Ni, x

′ = (x ′
i )i∈I ∈ N, e = (ei)i∈I . We have xεne

if and only if z′1 = (z′1
i )i∈I , z

′2 = (z′2
i )i∈I , . . . , z

′n = (z′n
i )i∈I exist such
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that x, e ∈ ∑n
i=1 z′k , that is if and only if ∀i ∈ I, x ′

i , ei ∈ ∑n
k=1 z′k

i . Then
z′
i = ∑n

k=1 z′k
i = ei , whence x = e, for this reason ω(N) = {e}.
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