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A HIGH INDICES THEOREM WITHOUT A
NONTRIVIAL SOLUTION

BO I. JOHANSSON

Abstract
In this paper we will extend the high indices Theorem by Hardy-Littlewood, which says that an
Abel summable series, where the exponents fulfil a Hadamard gap criterion, is convergent and it
converges to its Abel sum. The focus here is concerning a class of summability methods and their
critical rate of convergence, i.e. for a given summability method what is its rate of convergence
implying that the series must be identically constant.

1. Introduction

In this article we consider different summability methods of a series. As an
example we have the well known Abel summability which says: For a series∑∞

n=1 an to be Abel summable with the sum 0 we mean that
limx→0+

∑∞
n=1 ane

−pnx = 0, where pn = n usually. Under what conditions
this implies that the original series converges to zero was first studied by Tauber.
Since then there has been an extensive study of generalizations of similar prob-
lem settings. Here we rather study for what rate of decay certain summability
methods force the coefficients in the series to be identically zero. Also, we
restrict the indices {pn}∞n=1 to be a Hadamard sequence, i.e., the indices sat-
isfy the gap condition pn+1/pn ≥ δ > 1 for all consecutive indices. The case
pn = n has been studied in [7] and [6]. In the article Remarks to a paper by
D. Gaier on gap theorems, see [3], Hálasz proved the following result. In fact,
he had a less restricted gap condition.

Theorem A. If

∞∑
n=1

ane
−pnx = O(e−s(x)) as x → 0+, pn+1/pn ≥ δ > 1,

where s is a convex function satisfying
∫ 1

0

√−s ′(x) dx = ∞,
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then
an = 0 for n = 1, 2, . . . .

In this article our goal is to generalize the above result by including a class
of summability methods. Our result in the case of Abel summability is the next
result. We have

Theorem 1. If

(1)

∞∑
n=1

an e−pnx = O(e−s(x)) as x → 0+, pn+1/pn ≥ δ > 1,

where s is a twice differentiable function satisfying

(2)

∫ 1

0

√−s ′(x) dx = ∞,

and

(3) x(xs ′(x))′ ≥ a > 0

for x > 0, then

(4) an = 0 for n = 1, 2, 3, . . . .

Above we have referred to Abel summability, i.e., we have considered the
exponential kernel, x �→ e−x , x > 0. There are other interesting kernels such
as the Lambert kernel x �→ xe−x/(1 − e−x), x > 0, and the Rényi kernel
x �→ e−x/(1 + e−x), x > 0. The main result in this article can also be applied
to those summability methods. To exemplify this, we state the following result
which essentially is a direct application of Theorem 4. We have

Theorem 2. If

(5)

∞∑
n=1

an

e−pnx

1 + e−pnx
= O(e−s(x)) as x → 0+, pn+1/pn ≥ δ > eπ/uo ,

where uo = min
{
u > 0; ζ

(
1
2 + iu

) = 0
}

and s is a twice differentiable
function satisfying

(6)

∫ 1

0
s(x) dx = ∞,
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and
x(xs ′(x))′ ≥ a > 0

for x > 0, then
an = 0 for n = 1, 2, 3, . . . .

Remark. We know that uo = 14.1347 . . .. From this we get eπ/uo =
1.2489 . . ..

We could equally well have formulated Theorem 2 in terms of the Lambert
kernel instead of the Rényi kernel, as we have done, and still got the same
result. More generally, an interesting class of functions falling into the frame
of this paper will be the family K , where

K =
{
f ∈ C(0, ∞) ; f (x) = xρ

∞∑
m=1

αm exp(−mx),

ρ ≥ 0, αm = O(mγ ), γ < ∞, f �≡ 0, f ′ ∈ L1(0, ∞)

}
.

2. Preliminaries

Before we formulate our result we like to reformulate the problem by trans-
forming it to the real axis in the following way, i.e., formula (1) becomes

∞∑
n=1

an

∫ ∞

log pn−x

d

dy
(−e−ey

) dy = O(e−s(e−x )) as x → ∞,

where the the sequence {pn} satisfies log pn+1 − log pn ≥ log δ > 0. Here we
have transformed the positive real axis to the real axis by the inverse function
of x �→ e−x , x > 0. A general setting with f ∈ K and k(x) = d

dx
(−f (ex)),

x ∈ R, will be

(7)

∞∑
n=1

an

∫ ∞

λn−x

k(y) dy = O(e−s(e−x )) as x → ∞,

where the the sequence {λn} satisfies λn+1 −λn ≥ δ > 0. The kernel connected
to Abel summability as in formula (1) is k(x) = exp(− exp(x) + x), where
x ∈ R. The kernel k(x) = e−ex+x/(1 + e−ex

)2, x ∈ R is connected to the
summability method in Theorem 2.

We now introduce another class of kernels. After the natural transformation
the three kernels in the introduction, among many others, are included in this
class. Next we use the notation kα(x) = k(x) exp(αx), x ∈ R.
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Definition 3. Suppose that k is a function such that kα ∈ L1(R) for some
α ∈ R, and that its Fourier transform k̂α(u) = ∫ ∞

−∞ kα(x) exp (−i ux) dx,
u ∈ R, has an extension, which is analytic in the open upper halfplane and
continuous in the closed one, and that k̂′

α(u) exists for u ∈ R. Let β > 0 and ξ

be real, and suppose further that

max|ξ |≤β

∣∣∣∣ k̂α(u + ξ)

k̂α(u)

∣∣∣∣ ≤ exp(θ(u)),

max|ξ |≤β

∣∣∣∣ k̂α(w + ξ)

k̂α(w)

∣∣∣∣ ≤ C exp(C|w|), �(w) ≥ 0

and ∣∣∣∣ k̂
′
α(u)

k̂α(u)

∣∣∣∣ ≤ exp(θ(u)),

where C is a constant, θ(u) is a positive even function of u, monotonically
increasing for u > 0 and ∫ ∞

1

θ(u)

u2
du < ∞.

Then we say that k ∈ Lα .

This definition was introduced in [4].

3. The main result

In this section we state our main result, which forces a restriction for the rate
of convergence for a summability method with a non-identically zero series.
The two theorems stated in the introduction are corollaries of this result. In
fact, we have a general result concerning identically vanishing high indices
series. It can be formulated as follows:

Theorem 4. Let {λn} be a sequence of positive numbers satisfying

(8) λn+1 − λn ≥ c > 0, n = 1, 2, 3, . . . .

Suppose there exists an α ≥ 0 and an εo > 0 such that k ∈ Lα and that

(9) exp(−(α + ε)x)

∞∑
n=1

an

∫ ∞

λn−x

k(y) dy

converges uniformly on every set {x : x < xo}, xo < ∞ and for ε ∈ [0, εo],
and defines a bounded function on R. Suppose further that

(10) k̂α has a meromorphic extension into the lower halfplane,
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(11)
on every line �(w) = σ , σ ≤ α, there exists a closed interval I

such that k̂(u + iσ ) �= 0 if u ∈ I , where |I | = 2π/c,

(12) (1/k̂)(−i(βo + mβ)) = 0, β > 0, βo > −β, m = 1, 2, 3, . . . ,

and

(13) (1/k̂)(u + iv) = O(exp(|v|η(|v|)), v → −∞, |u| ≤ 2π

c
,

where η(v) is nondecreasing. Let q(x) be a positive and twice differentiable
function with

(14) q ′′(x) ≥ δ > 0 for x ≥ 0,

and satisfying

(15)

∫ ∞
exp

(
−β

2
(x + η(q ′(x)))

)
q ′′(x) dx = ∞.

Then

(16)

∞∑
n=1

an

∫ ∞

λn−x

k(y) dy = O(exp(−q(x))), x → ∞

implies that

(17) an = 0, n = 1, 2, 3, . . . .

In order to prove the above theorem, we need some known results. We
formulate them in the next six lemmas. Let us start by defining a specific
function and use a theorem by Fuchs, see [2], to get our result. We have

Lemma 5. The function

(18) H(z) =
∞∏

k=1

βo + kβ − z

βo + kβ + z
exp

(
2z

βo + kβ

)
, β > 0, βo > −β,

is analytic in �(z) ≥ 0 and satisfies there

(19) |H(z)| ≥ (B|z|)2�(z)/β

for all z outside circles of radius β/3 with centers at the points {βo + kβ}∞k=1,
where B is a constant.
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The next lemma is formulated and proved by Ostrowski in [9]. It can be
written as follows.

Lemma 6. Let f ∈ C∞[0, ∞) be a non–identically vanishing function
satisfying

f (n)(0) = 0, n = 0, 1, 2, . . . ,

and
sup
x≥0

|f (n)(x)| ≤ mn for n = 0, 1, 2, . . . .

A necessary and sufficient condition for the existence of such a function f is
that

(20)

∫ ∞

1
log T (r)

dr

r2
< ∞,

where T (r) = supn≥1
rn

mn
.

In order to use Lemma 6 we need an equivalent way to verify the condition
(20). For that purpose we introduce the concept of Faberian minorant for a
function m, which is the largest function m∗ fulfilling both the conditions
m(λ) ≥ m∗(λ) for all λ ≥ 0 and log m∗(λ)/λ is monotonically increasing
for λ ≥ 0. Particularly, log m∗(λ)

λ
= infμ≥λ

log m(μ)

μ
. In our case we restrict

the sequence {mn} in the above Lemma to be increasing. Also, let m be an
increasing function satisfying m(n) = mn for all non-negative integers n.

Further, we introduce the function β(λ) = λ
√

m∗(λ) for λ ≥ 0 and its
(pseudo)inverse ρ(r) = inf{λ; β(λ) ≥ r}. We can now formulate more easily
handled equivalent conditions than the one in (20). This result is also included
in the same paper [9] by Ostrowski. We have

Lemma 7. The convergence of
∫ ∞

log T (r)
dr

r2

is equivalent to the convergence of both the integrals
∫ ∞ ρ(r)

r2
dr and

∫ ∞ dρ

β(ρ)
.

Our interest in Lemma 6 is its negative part, i.e., that part where the integral
in (20) is divergent. From Lemma 7 this is true if anyone of the two last integrals
diverges, especially the last one. This is used in the next lemma, which is a
fundamental part in the proof of our main theorem. We get
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Lemma 8. Suppose f (z) is an analytic function in �(z) > 0 satisfying

(21) f (βo + kβ) = 0, k = 1, 2, 3, . . . , β > 0, βo > −β,

and

(22) |f (x + iy)| ≤ C exp(θ(x)), x ≥ 0,

for some increasing function θ . Suppose further that

(23)

∫ ∞
exp

(
−β

2

θ∗(x)

x

)
dx = ∞,

where θ∗ is the greatest minorant of the function θ satisfying x �→ θ∗(x)/x,
x > 0, is monotonically increasing.

Then

(24) f = 0.

Proof. Let us define a function �̃ by

(25) �̃(z) = f (z)(H(z))−1(1 + z)−2, �(z) > 0,

where H is the function constructed in Lemma 5. From the definition of the
function H , see formula (18), and property (21) for the function f , it follows
that the function �̃(z) is analytic for �(z) > 0. Using the estimates in (19)
and (22), we conclude that �̃(x + iy) is bounded by

(26) |�̃(x + iy)| ≤ Ceθ(x)(Br)
− 2x

β (1 + r2)−1 (r = |x + iy|).

Because of the inequality (26), we can form a function �(s) defined for s ≥ 0
by

(27) �(s) = 1

2πi

∫ x+i∞

x−i∞
�̃(z)s2z/β dz (x > 0).

Since the above integral obviously is independent of x, let x ≥ n · β/2. Then
we can calculate the n:th derivative of �(s). From (27) it follows that

�(n)(s) = 1

2πi

∫ x+i∞

x−i∞
�̃(z)

2z

β

(
2z

β
− 1

)
. . .

(
2z

β
− n + 1

)
s

2z
β

−n
dz.
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Using the estimate (26) in the above formula, we get

(28)

|�(n)(s)| ≤ C

2π
eθ(x)B

− 2x
β

∫ ∞

−∞
r

− 2x
β

(
2r

β

)n

s
2x
β

−n dy

1 + r2

= C

2π
eθ(x)B

− 2x
β

(
2

β

)n

s
2x
β

−n

∫ ∞

−∞
r

n− 2x
β

dy

1 + r2
.

For x > nβ/2 the inequality (28) implies immediately that

(29) �(n)(0) = 0, n = 0, 1, 2, . . . .

Letting x = nβ/2 in the estimate (28), we get

(30) max
s≥0

|�(n)(s)| = O

((
2

βB

)n

eθ(
nβ

2 )

)
.

Using Lemma 6 combined with Lemma 7, it follows from (29) and (30) that

�(s) = 0, s ≥ 0,

because∫ ∞
exp

(
− 1

x
θ∗

(
xβ

2

))
dx = 2

β

∫ ∞
exp

(
− β

2x
θ∗(x)

)
dx = ∞,

where θ∗ is the largest minorant of the function θ satisfying that x �→ θ∗(x)/x,
x > 0, is increasing. But since the function �̃(z), �(z) > 0, is the Mellin
transform of s �→ �(s−β/2), i.e.,

�̃(z) =
∫ ∞

0
�(s−β/2)sz−1ds,

it follows that the function �̃ must be identically zero. From the definition of
�̃ in (25) it implies that f is identically zero, i.e., (24) is true which completes
the proof of the lemma.

The next lemma is the starting point in the proof of Theorem 4 and it is
formulated as follows. For a proof see [4].

Lemma 9. Let {λn} be a sequence of positive numbers satisfying

λn+1 − λn ≥ c > 0, n = 1, 2, 3, . . . .

Suppose there exists an α ≥ 0 such that k ∈ Lα and that

exp(−(α + ε)x)

∞∑
n=1

an

∫ ∞

λn−x

k(y) dy
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converges uniformly on every set {x : x < xo}, xo < ∞ and defines a bounded
function on R. Then

an = O(exp(αλn)), n = 1, 2, 3, . . . .

We also need a theorem by Pólya, see Levinson [8] Theorem XXIX. This
result is stated in the next lemma.

Lemma 10. Let

h(w) =
∞∑

n=1

ane
iwλn

be a Dirichlet series. Suppose {λn}∞n=1 satisfies

λn+1 − λn ≥ c > 0.

Then on the axis of convergence the function h has at least one singularity in
every closed interval of length 2π/c.

Now we are ready to prove the main result in this paper, i.e., to prove
Theorem 4.

Proof of Theorem 4. Let

F(x) =
∞∑

n=1

an

∫ ∞

λn−x

k(y) dy.

First we observe that the conditions (8) and (9) combined with the fact that
k ∈ Lα imply, from Lemma 9, that the coefficients {an}∞n=1 satisfy

(31) an = O(exp(αλn)), n = 1, 2, 3, . . . .

The above estimate can be found in an article by Johansson, see [4]. Moreover,
it follows directly from (8) and (31) in combination with the fact that k ∈ Lα ,
that the function

w �→ k̂(w)h(w),

is analytic for �(w) > α, where w �→ h(w) is the function defined by the
Dirichlet series

(32) h(w) =
∞∑

n=1

ane
iwλn, �(w) > α.

The fact that (9), (14) and (16) hold implies that the Fourier transform w �→
F̂ (−w) is analytic for �(w) < α+εo. Furthermore, combining the above with
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condition (9) and k ∈ Lα , more precisely kα ∈ L1(R), we easily see that in
the strip α < �(w) < α + εo the relation

(33) F̂ (−w) = i k̂(w)h(w)

w

holds. Using the fact thatw �→ k̂(w)h(w) is analytic in the halfplane�(w) > α

and w �→ F(−w) is analytic in the halfplane �(w) < α + εo implies that
the equality in (33) can be extended to the entire complex plane. This, in
combination with (10) implies that h(w) has a meromorphic extension into
�(w) ≤ α. But the sequence {λn} satisfies (8), so from Lemma 10 it follows
that the Dirichlet series (32) must have a pole in each closed interval of length
2π/c on the axis of convergence. The condition (11) and formula (33) then
says that h(w) has an analytic extension as a Dirichlet series into the entire
complex plane.

Next, we want to estimate the growth of the function v �→ h(u + iv) as
v → −∞, by using
(34)

1

C

(∑
|ane

−vλn |2
) 1

2

≤
(∫

I

|h(u + iv)|2 du

) 1
2

≤ C

(∑
|ane

−vλn |2
) 1

2

,

where I is an interval with length |I | > 2π/c, and C is a constant only
depending on I and {λn}. For a proof of (34) see [5]. Let us fix the interval
I centered around the origin. First, we want to estimate the growth of the
Dirichlet series h(u + iv) in the u-direction. We start with

h(u + iv) =
∫ u

0
h′(s + iv) ds + h(iv).

Without loss of generality, suppose u is positive, and let n be the smallest
integer greater than u/|I |. We get

|h(u + iv)| ≤
n−1∑
k=0

∫ (k+1)|I |

k|I |
|h′(s + iv)| ds + |h(iv)|

≤
n−1∑
k=0

|I |1/2

(∫ (k+1)|I |

k|I |
|h′(s + iv)|2 ds

)1/2

+ |h(iv)|

≤ n|I |1/2 max
0≤k≤n−1

‖h′(· + iv)‖L2(k|I |,(k+1)|I |) + |h(iv)|

≤ 2u|I |−1/2 max
0≤k≤n−1

‖h′(· + iv)‖L2(k|I |,(k+1)|I |) + |h(iv)|
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and

(∫ (k+1)|I |

k|I |
|h′(s + iv)|2 ds

)1/2

≤ C

(∑
|anλne

−vλn |2
) 1

2

≤ C

(∑
|ane

λne−vλn |2
) 1

2

≤ C2

(∫
I

|h(s + i(v − 1))|2 ds

)1/2

≤ C2|I |1/2‖h(· + i(v − 1))‖L∞(I ).

Thus

(35) |h(u + iv)| ≤ 2C2|u| max
u∈I

|h(u + i(v − 1))| + |h(iv)|.

In order to complete the proof, we need an estimation of the growth of
F̂ (u + iv) as v → ∞. From (14) it follows particularly that q ′(x) is strictly
increasing. Thus, q ′ is invertible, i.e., the function γ = (q ′)−1 exists. Using
(14) once more together with (16) we get

|F̂ (u + iv)|
=

∣∣∣∣
∫ ∞

−∞
F(x)e−i(u+iv)xdx

∣∣∣∣
≤

∫ 0

−∞
|F(x)|evx dx +

∫ ∞

0
|F(x)|evx dx

= o(1) + O

(∫ ∞

0
exp(−q(x) + vx)dx

)

= O

(∫ ∞

−γ (v)

exp(−q(x + γ (v)) + v(x + γ (v)))dx

)

= O

(∫ ∞

−γ (v)

exp(−q(γ (v)) − xq ′(γ (v))

− x2

2
q ′′(γ (v) + κx) + vx + vγ (v))dx

)
, 0 < κ = κ(x) < 1.

In the above estimate we used a Taylor expansion of the function q(γ (v) + ·).
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The fact that q ′′(γ (v) + κx) ≥ δ > 0 can be used next in order to get

(36)
|F̂ (u + iv)| = O

(
exp(vγ (v))

∫ ∞

−∞
exp

(
− δ

2
x2

)
dx

)

= O
(

exp(vγ (v))
)

as v → ∞.

Let |u| ≤ 2π/c. Using the condition (13) and the estimate (36) in the repres-
entation (33), we get

|h(u − iv)| =
∣∣∣∣i(u − iv)

F̂ (−u + iv)

k̂(u − iv)

∣∣∣∣
= O

(
v exp(vγ (v) + vη(v))

)
, as v → ∞.

The inequality in (35) combined with the above equality implies that we get
the following uniform estimate for u ∈ R, i.e.,
(37)∣∣∣∣ h(u − iv)

(u − i(v + 1))2

∣∣∣∣ = O
(
exp((v+1)(γ (v+1)+η(v+1)))

)
, as v → ∞.

Moreover, since the function F̂ is entire and the Fourier transform k̂ satisfies
condition (12), the equality (33) implies that we get

h(w)

(w − i)2
= 0 for w = −i (βo + m β), with m = 1, 2, 3, . . . .

Considering the function h/(·−i)2, we see that the above zero-set corresponds
to (21) in Lemma 8. The same function also satisfies the estimate (37), which
is similar to (22) with θ = id · (γ + η). Since v �→ θ(v)

v
= γ (v) + η(v) is an

increasing function as a consequence of the facts that γ is the inverse function
of a strictly increasing function combined with (13), we can choose θ∗ = θ in
Lemma 8 because θ is definitively the greatest minorant of itself.

Hence, we have
∫ ∞

exp

(
−β

2

θ∗(v)

v

)
dv =

∫ ∞
exp

(
−β

2
(γ + η)(v)

)
dv

=
∫ ∞

exp

(
−β

2
(x + η(q ′(x)))

)
q ′′(x) dx = ∞,

which follows from (15) and establish the final condition (23) in Lemma 8 in
order to conclude the fact that the function h is identically zero. From this it
trivially follows that (17) is true and the proof is completed.
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4. Application

In this section we will see that Theorem 1 and Theorem 2 respectively are
simple corollaries of Theorem 4. To see this we start by considering the ex-
pression

(38) f (t) =
∞∑

n=1

anf (pnt) = O(e−s(t)) as t → 0+,

for a general kernel f ∈ K , where the function class K was introduced in the
beginning of this paper. The sequence {pn}∞n=1 is satisfying pn+1/pn ≥ δ for
n = 1, 2, 3, . . ., and for some δ > 1. Such a sequence is called a Hadamard
sequence. The function s = q(− log(·)), where q satisfies condition (14). Of
special interest here is the exponential kernel together with the kernels by
Rényi and Lambert. Those are

f1(t) = e−t ,

f2(t) = te−t /(1 − e−t )

and
f3(t) = e−t /(1 + e−t ), t > 0.

After a transformation of the series in (38) to our generic form as in (7), by
k(x) = d

dx
(−f (ex)) and x ∈ R, it is easily seen that the kernels above have

the Fourier transforms

k̂1(u) = �(1 − iu)

k̂2(u) = −iuζ(1 − iu)�(1 − iu)

and
k̂3(u) = (1 − 21+iu)ζ(−iu)�(1 − iu)

for u ∈ R. Here � is Euler’s �-function and ζ is Riemann’s ζ -function.
First we consider the exponential kernel f1. Its belonging Fourier transform

k̂1 is given above. We know that 1/� is analytic in the entire complex plane
and is non-zero except for the non-positive integers, i.e.

(1/k̂1)(−im) = 0, m = 1, 2, 3, . . . .

We also know that

(1/k̂1)(u − iv) = O(exp(v log v)),

for |u| ≤ C and v → ∞, where C is any finite constant. Another fact about the
behaviour of the �-function is that the kernel k1 belongs to Lα for α > −1.
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For facts about the �-function needed in this article we refer to [1]. Also, the
sequence λn = log pn, n = 1, 2, 3, . . ., is such that (8) holds. Then, in the case
of the f1-kernel, the essential part needed in order to have proved Theorem 1
is to establish the condition (2). Looking at the integral in (15), we have

∫ ∞
e−x/2 q ′′(x)√

q ′(x)
dx = ∞,

which, after integration by part, is equivalent to
∫ ∞

e−x/2
√

q ′(x) dx = ∞.

We transform this condition to an equivalent one through q = s(exp(−·)) to
get ∫

0

√−s ′(t) dt = ∞,

which is the condition in (2). The remaining condition (14) in Theorem 4 is
equivalent to that in (3). As a result of Theorem 4 it is true that (12) holds,
which is the same as (4). Thus we have obtained the proof of Theorem 1.

Let us continue with the next kernel f2 or its transformed function k2. Its
Fourier transform k̂2 has a meromorphic extension to the complex plane and
particularly it can be written as

k̂2(w) = − iwζ(iw)

2(2π)iw−1 sin( π
2 iw)

, w ∈ C,

which satisfies

(1/k̂2)(−i) = 0 and (1/k̂2)(−2m i) = 0, m = 1, 2, 3, . . . .

Besides these simple zeroes of 1/k̂2, it also has non-trivial singularities at
all points where the function w �→ ζ(iw) has its non-trivial zeroes, i.e., in
the strip �(w) ∈ [−1, 0]. Particularly, 1/k̂2 is free from singularities in the
strip �(w) ∈ (−uo, uo), where uo = min

{
u > 0; ζ

(
1
2 + iu

) = 0
}
. Thus

the gap coefficient c in (8) must satisfy c > π/uo from which it follows that
δ > eπ/uo in (5). For this coefficient c condition (11) is satisfied. Furthermore,
the function 1/k̂2 has an asymptotic behaviour as follows

|(1/k̂2)(u − iv)| = O(exp(v log 2π)),

for |u| ≤ C and v → ∞, where C is any finite constant. We can also see
that k2 ∈ Lα for α > −1. As a reference for the properties of Riemann’s
ζ -function we refer to [10]. Finally we have to check that the integral in (15) is
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equivalent to (6) in order to prove Theorem 2. Thus, the remaining condition
in this case is

(39)

∫ ∞
e−xq ′′(x) dx = ∞.

This condition can equivalently, by integration by part twice, be formulated as
∫ ∞

e−xq(x) dx = ∞.

Expressed in term of the function s = q(− log(·)) the above integral transforms
to the condition (6), i.e. ∫

0
s(t) dt = ∞.

This ends the proof of Theorem 2.
We conclude this section by considering the third kernel f3. For this kernel

we state the same theorem as in the case of the previous kernel. The Fourier
transform k̂3 can be written as

k̂3(w) = − iw(1 − 21+iw) ζ(1 + iw)

2(2π)iw sin π
2 (1 + iw)

, w ∈ C.

The zeroes of 1/k̂3 are in the lower plane and given by

(1/k̂3)(−i − 2i m) = 0, m = 0, 1, 2, . . .

Its interesting singularities, on the other hand, are given by the non-trivial
zeroes of the function w �→ ζ(1 + iw), i.e., those that are located in the strip
�(w) ∈ [0, 1]. As above, we have 1/k̂3 is free from singularities in the strip
�(w) ∈ (−uo, uo), where uo = min

{
u > 0; ζ

(
1
2 + iu

) = 0
}
. The reciprocal

Fourier transform has the asymptotic behaviour

|(1/k̂3)(u − iv)| = O(exp(v log π))

for |u| ≤ C and v → ∞, where C is any finite constant. Also k3 ∈ Lα for
α > 2. We get the same integral divergence condition as in (39) above. Hence
it follows that Theorem 2 also holds for this kernel. Thus, Theorem 1 and
Theorem 2 together with its variant are proved and that completes this section.
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