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(Dedicated to the memory of Anders J. Frankild)

Abstract
We investigate the notion of the C-projective dimension of a module, where C is a semidualizing
module. When C = R, this recovers the standard projective dimension. We show that three natural
definitions of finite C-projective dimension agree, and investigate the relationship between relative
cohomology modules and absolute cohomology modules in this setting. Finally, we prove several
results that demonstrate the deep connections between modules of finite projective dimension and
modules of finite C-projective dimension. In parallel, we develop the dual theory for injective
dimension and C-injective dimension.

Introduction

Grothendieck [6] introduced dualizing modules as tools for investigating co-
homology theories in algebraic geometry. In this paper, we investigate semi-
dualizing modules and associated relative cohomology functors. Foxby [4],
Vasconcelos [12] and Golod [5] independently initiated the study of semi-
dualizing modules. Over a noetherian ring R, a finitely generated R-module
C is semidualizing if the natural homothety map R → HomR(C, C) is an
isomorphism and Ext�1

R (C, C) = 0; see 1.2 for a more general definition. Ex-
amples include a dualizing module, when one exists, and all finitely generated
rank 1 projective modules.

Throughout this introduction, let R be a commutative ring and C a semidu-
alizing R-module. The class of C-projectives, denoted PC , consists of those
R-modules of the form C⊗R P for some projective R-module P . These form
the building blocks of the so-called GC-projectives, which are studied in depth
in [13]. Every R-module M admits an augmented proper PC-projective resol-
ution. That is, there exists a complex

X+ = · · · → C ⊗R Pn→ · · · → C ⊗R P0 → M → 0
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such that the complex

HomR(C, X+) = · · · → Pn→ · · · → P0 → HomR(C, M)→ 0

is exact. Despite the fact that these augmented proper PC-resolutions may not
be exact, they still have particularly good lifting properties. In particular, they
give rise to well-defined cohomology modules ExtiPC

(M, N) for all R-modules
M and N ; see 1.5. In the case C = R, these notions recover the projectives,
projective resolutions and the “absolute” cohomology ExtiR(M, N), respect-
ively.

Because augmented proper PC-projective resolutions need not be exact,
it is not immediately clear how best to define the PC-projective dimension
of a module. For instance, should one consider arbitrary proper PC-projective
resolutions or only exact ones? Or should it be defined in terms of the vanishing
of the functors ExtnPC

(M,−)? The next result, proved in Corollary 2.10, shows
that each of these approaches gives rise to the same invariant.

Theorem A. Let M be an R module. The following quantities are equal.

(1) inf

{
sup{n | Xn �= 0}

∣∣∣∣ X+ is an augmented proper

PC-projective resolution of M

}

(2) inf

{
sup{n | Xn �= 0}

∣∣∣∣ X+ is an exact augmented proper

PC-projective resolution of M

}
(3) sup

{
n | ExtnPC

(M,−) �= 0
}

The proof of this result uses so-called Auslander and Bass class techniques;
see 1.8.

Our investigation demonstrates a strong connection between the modules
of finite PC-projective dimension and modules of finite projective dimension,
which is the focus of Section 2. For example, the following is part of The-
orem 2.11.

Theorem B. If M is an R-module, then PC- pdR(M) = pdR(HomR(C,

M)).

If R is Cohen-Macaulay and local with dualizing module D, then a result of
Sharp shows that the modules of finite PD-projective dimension are precisely
the modules of finite injective dimension. Thus, this theorem recovers part of
the Foxby equivalence from [1], namely that M has finite injective dimension
if and only if HomR(D, M) has finite projective dimension.
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Section 4 explores the connection between the cohomology functors ExtPC

and ExtR . These connections are used in [9] to distinguish between several
different relative cohomology theories. For example, the following is part of
Theorem 4.1 and Corollary 4.2. See 1.8 for the definition of the Bass class.

Theorem C. Let M and N be R-modules. There is an isomorphism
ExtiPC

(M, N) ∼= ExtiR(HomR(C, M), HomR(C, N)) for all i. If M and N

are in the Bass class with respect to C, then ExtiPC
(M, N) ∼= ExtiR(M, N) for

all i.

This result and several others from this work have already proved valuable
for other investigations. For instance, they are used by the second author and
her collaborators in [11] to analyze the structure of certain categories naturally
associated to semidualizing modules, and in [9], [10] to study balance prop-
erties of relative cohomology theories and to distinguish between them. We
expect this line of inquiry to continue to shed new light on the relationship
between classical and relative homological algebra.

Finally, in Section 5 of the paper we use results from the previous sections
to demonstrate the depth of the connection between modules of finite PC-
projective dimension and modules of finite projective dimension.

1. Preliminaries

Throughout this paper, let R be a commutative ring.

1.1. An R-complex is a sequence of R-module homomorphisms

X = · · · ∂X
n+1−−−→ Xn

∂X
n−−→ Xn−1

∂X
n−1−−−→ · · ·

such that ∂X
n−1∂

X
n = 0 for each integer n; the nth homology module of X is

Hn(X) = Ker(∂X
n )/ Im(∂X

n+1). A morphism of complexes α: X → Y induces
homomorphisms Hn(α): Hn(X)→ Hn(Y ), and α is a quasiisomorphism when
each Hn(α) is bijective. The complex X is bounded if Xn = 0 for |n| � 0. It
is degreewise finite if each Xi is finitely generated.

1.2. An R-module C is semidualizing if

(a) C admits a degreewise finite projective resolution,

(b) The natural homothety map R→ HomR(C, C) is an isomorphism, and

(c) Ext�1
R (C, C) = 0.

A free R-module of rank 1 is semidualizing, and indeed this is the only semi-
dualizing module over a Gorenstein local ring. If R is noetherian, local and
admits a dualizing module D, then D is semidualizing.
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The next two classes of modules have been studied in numerous papers, see
e.g. [2] and [7].

1.3. The classes of C-projective and C-injective modules are defined as

PC = {C ⊗R P | P is projective },
IC = {HomR(C, I) | I is injective }.

When C = R, we omit the subscript and recover the classes of projective and
injective R-modules.

The next four paragraphs provide the necessary background on relative
homological algebra. The reader is encouraged to consult [3] for details.

1.4. The class PC is precovering by [7, (5.10)]. That is, given an R-module
M , there exists a projective module P and a homomorphism φ: C⊗R P → M

such that, for every projective Q, the induced map

HomR(C ⊗R Q, C ⊗R P )
HomR(C⊗RQ,φ)−−−−−−−−−−→ HomR(C ⊗R Q, M)

is surjective. Dually, the class IC is preenveloping.

1.5. Since the class PC is precovering, for any R-module M one can iterat-
ively take precovers to construct an augmented proper PC-projective resolution
of M , that is, a complex

X+ = · · · ∂X
2−−→ C ⊗R P1

∂X
1−−→ C ⊗R P0

∂X
0−−→ M → 0

such that HomR(C ⊗R Q, X+) is exact for all projective R-modules Q. The
truncated complex

X = · · · ∂X+
2−−−→ C ⊗R P1

∂X+
1−−−→ C ⊗R P0 → 0

is a proper PC-projective resolution of M . For n � 0, set

�X+
n =

{
M if n = 0,

Ker(∂X+
n−1) if n � 1.

Note that X+ need not be exact unless C = R.
Dually, let N be an R-module with augmented proper IC-injective resolu-

tion

Y+ = 0→ N → HomR(C, I 0)
∂0
Y−−→ HomR(C, I 1)

∂1
Y−−→ · · ·
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For an integer n � 0, set

�n
Y+ =

{
N if n = 0,

Im(∂n−1
Y+ ) if n � 1.

Proper PC-projective resolutions are unique up to homotopy equivalence;
see e.g. [8, (1.8)]. Accordingly, the nth relative cohomology modules

ExtnPC
(M, N) = Hn HomR(X, N)

where X is a proper PC-projective resolution of M are well-defined for each
integer n. The cohomology modules ExtnIC

(M, N) are defined dually.

1.6. The PC-projective dimension of M is

PC- pd(M) = inf

{
sup{n | Xn �= 0}

∣∣∣∣ X is a proper PC-projective
resolution of M

}
The modules of PC-projective dimension zero are the non-zero modules in PC .
The IC-injective dimension, denoted IC- id(−) is defined dually.

1.7 (Dimension Shifting). Let N be an R-module. For any augmented
proper PC-projective resolution X+ (as above) of M , there are isomorphisms

ExtiPC
(M, N) ∼= Exti−1

PC
(�X+

1 , N)

∼= Exti−2
PC

(�X+
2 , N) ∼= · · · ∼= Exti−n

PC
(�X+

n , N)

for integers 1 � n < i.

1.8. The Bass class with respect to C, denoted BC or BC(R), consists of
all R-modules M satisfying

(a) Ext�1
R (C, M) = 0 = TorR

�1(C, HomR(C, M)) = 0, and

(b) The natural evaluation map νCCM : C ⊗R HomR(C, M) → M is an
isomorphism. We will write νM = νCCM if there is no confusion.

Dually, the Auslander class with respect to C, denoted AC or AC(R), consists
of all R-modules M satisfying

(c) TorR
�1(C, M) = 0 = Ext�1

R (C, C ⊗R M), and

(d) The natural map μCCM : M → HomR(C, C ⊗R M) is an isomorphism.
We will write μM = μCCM if there is no confusion.

We now state some basic results about the classes AC and BC . These
facts are well-known when R is noetherian. In this generality, the first follows
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from [7, (6.5)], the second follows from the first, and the third assertion is
routine to check.

1.9. The following hold.

(a) If any two R-modules in a short exact sequence are in AC , respectively
BC , then so is the third.

(b) The class AC contains all modules of finite flat dimension. The class BC

contains all modules of finite injective dimension.

(c) If M is in AC , then C⊗R M is in BC . If M is in BC , then HomR(C, M)

is in AC .

2. Relative dimensions and Auslander and Bass classes

This section has two interwoven themes. First, we explore the interplay be-
tween PC-projective dimension and projective dimension. Second, we invest-
igate the exactness of augmented proper PC-projective resolutions for modules
of finite PC-projective dimension.

We begin with the following lemma, which follows from the definitions of
semidualizing modules and augmented proper resolutions, using 1.9(b).

Lemma 2.1. Let C be a semidualizing R-module and M an R-module.

(a) If X+ is an augmented proper PC-projective resolution of M , then
HomR(C, X+) is an augmented projective resolution of HomR(C, M).

(b) If Y+ is an augmented proper IC-injective resolution of M , then C⊗RY+
is an augmented injective resolution of C ⊗R M .

We now investigate exactness of augmented proper PC-projective resolu-
tions.

Proposition 2.2. Let C be a semidualizing R-module, M an R-module
and n a nonnegative integer.

(a) The following are equivalent.
(i) There exists an augmented proper PC-projective resolution of M

which is exact in degree less than n;
(ii) Every augmented proper PC-projective resolution of M is exact in

degree less than n;
(iii) The natural homomorphism νM : C⊗R HomR(C, M)→ M is an

isomorphism and TorR
i (C, HomR(C, M)) = 0 for 0 < i < n.

(b) The following are equivalent.
(i) There exists an augmented proper IC-injective resolution of M

which is exact in degree less than n;
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(ii) All augmented proper IC-injective resolutions of M are exact in
degree less than n;

(iii) The natural homomorphism μM : C → HomR(C, C⊗R M) is an
isomorphism and ExtiR(C, C ⊗R M) = 0 for 0 < i < n.

Proof. We prove only part(a). Let X+ be an augmented proper PC-projec-
tive resolution of M . By Lemma 2.1, the complex HomR(C, X) is a pro-
jective resolution of HomR(C, M). Hence, there is an isomorphism TorR

i (C,

HomR(C, M)) ∼= Hi(C ⊗R HomR(C, X)) for all i � 0. Since each Xi is in
BC , the natural chain map C ⊗R HomR(C, X)→ X is an isomorphism. The
result follows

From the above proposition, we obtain the following criterion for a given
module to possess exact augmented proper resolutions.

Corollary 2.3. Let C be a semidualizing R-module and M an R-module.

(a) The following are equivalent.
(i) M admits an exact augmented proper PC-projective resolution;

(ii) All augmented proper PC-projective resolutions of M are exact;
(iii) The natural homomorphism νM : C ⊗R HomR(C, M)→ M is an

isomorphism and TorR
�1(C, HomR(C, M)) = 0.

(b) The following are equivalent.
(i) M admits an exact augmented proper IC-injective resolution;

(ii) All augmented proper IC-injective resolutions of M are exact;
(iii) The natural homomorphism μM : M → HomR(C, C ⊗R M) is an

isomorphism and Ext�1
R (C, C ⊗R M) = 0.

From the definitions of the Auslander and Bass classes, we have the fol-
lowing.

Corollary 2.4. Let C be a semidualizing R-module and M an R-module.

(a) Assume M is in BC . Then every augmented proper PC-projective resol-
ution of M is exact. In particular, every PC-precover of M is surjective.

(b) Assume M is in AC . Then every augmented proper IC-resolution of M

is exact. In particular, every IC-preenvelope of M is injective.

The next few technical results build toward the following fact, which follows
from Corollaries 2.3 and 2.10: if M has finite PC-projective dimension, then
every augmented proper PC-resolution of M is exact.

Lemma 2.5. Let C be a semidualizing module and M an R-module.

(a) The composition HomR(C, νM) ◦ μHomR(C,M) is the identity map on
HomR(C, M). Hence, HomR(C, νM) is a split epimorphism and
μHomR(C,M) is a split monomorphism.
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(b) Assume that νM is injective. The composition μHomR(C,M)◦HomR(C, νM)

is the identity map on HomR(C, C⊗R HomR(C, M)). Hence, HomR(C,

νM) is an isomorphism and μHomR(C,M) is the inverse isomorphism.

(c) The composition νC⊗RM ◦ (C ⊗R μM) is the identity map on C ⊗R

M . Hence, C ⊗R μM is a split monomorphism and νC⊗RM is a split
epimorphism.

(d) Assume that μM is surjective. The composition (C ⊗R μM) ◦ νC⊗RM is
the identity map on C ⊗R HomR(C, C ⊗R M). Hence, C ⊗R μM is an
isomorphism and νC⊗RM is the inverse isomorphism.

Proof. Part (a) is straightforward to check. For part (b), set ρ =
μHomR(C,M) ◦HomR(C, νM). Note that if ξ ∈ HomR(C, C⊗R HomR(C, M)),
then ρ(ξ) sends z ∈ C to z ⊗ (νM ◦ ξ). Thus, νM(ξ(z) − z ⊗ (νM · ξ)) =
νM(ξ(z)) − νM(ξ(z)) = 0. Since νM is injective, there is an equality ξ(z) =
z⊗ (νM · ξ), thereby showing that ρ is the identity. Parts (c) and (d) are proved
similarly.

Lemma 2.6. Let C be a semidualizing R-module and M an R-module.

(a) Assume Ext1
R(C, C ⊗R HomR(C, M)) = 0. If νM is injective, then it is

an isomorphism.

(b) Assume that TorR
1 (C, HomR(C, C⊗R M)) = 0. If μM is surjective, then

it is an isomorphism.

Proof. We prove only part (a), as part (b) is dual. Set L = Coker νM .
Applying HomR(C,−) to the exact sequence

0→ C ⊗R HomR(C, M)
νM−→ M → L→ 0

induces an exact sequence

0→ HomR(C, C ⊗ HomR(C, M))
Hom(C,νM)−−−−−−−→ HomR(C, M)→ HomR(C, L)→ 0

where right-exactness follows from the equality Ext1
R(C, C ⊗R HomR(C,

M)) = 0. By Lemma 2.5, HomR(C, νM) is an isomorphism. Hence, the above
exact sequence implies that HomR(C, L) = 0, and it follows from [7, (3.6)]
that L = 0.

Corollary 2.7. Let C be a semidualizing R-module and M an R-module.

(a) Suppose HomR(C, M) is in AC . If νM is injective, then it is an isomorph-
ism.

(b) Suppose C⊗R M is in BC . If μM is surjective, then it is an isomorphism.
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We now prove our first theorem, which leads to some of the main results of
this section.

Theorem 2.8. Let C be a semidualizing R-module and M an R-module.
Then the following hold.

(a) M ∈ BC if and only if HomR(C, M) ∈ AC .

(b) M ∈ AC if and only if C ⊗R M ∈ BC .

Proof. We prove only part (a), as part (b) is proved similarly. Accord-
ing to 1.9(c), it is enough to assume HomR(C, M) ∈ AC and show M ∈
BC . The definition of AC implies that TorR

�1(C, HomR(C, M)) = 0 and
Ext�1

R (C, C ⊗R HomR(C, M)) = 0. We will show that the evaluation map
νM is an isomorphism. Using the above vanishings, it will then follow that
Ext�1

R (C, M) = 0 and M is in BC .
By Lemma 2.5(a), the composition HomR(C, νM)◦μHomR(C,M) is the iden-

tity map on HomR(C, M). Since HomR(C, M) is in AC , the map μHomR(C,M)

is an isomorphism, and so HomR(C, νM) is also an isomorphism. Setting
K = ker(νM), it follows that HomR(C, K) = 0, and so by [7, (3.6)], K = 0.
Thus, the map νM is injective, hence an isomorphism by Corollary 2.7(a).

Recall that the class BC contains all modules of finite injective dimension
and the class AC contains all modules of finite projective dimension; see 1.9.
By virtue of Theorem 2.8, we now obtain additional examples of modules in
AC and BC .

Corollary 2.9. Let C be a semidualizing R-module and M an R-module.

(a) If PC- pdR(M) is finite, then M is in BC .

(b) If IC- idR(M) is finite, then M is in AC .

Proof. We prove only part (a). Assume PC- pdR(M) is finite, and let X+
be an augmented proper PC-resolution of M . By Lemma 2.1(a), the complex
HomR(C, X+) is a bounded projective resolution of HomR(C, M). By 1.9(b)
HomR(C, M) is in AC so Theorem 2.8(a) implies that M is in BC .

This yields the following key result.

Corollary 2.10. Let C be a semidualizing R-module and M an R-module.

(a) The inequality PC- pdR(M) � n holds if and only if there is an exact
sequence

0→ C ⊗R Pn→ · · · → C ⊗R P0 → M → 0

with each Pi a projective R-module.
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(b) The inequality IC- idR(M) � n holds if and only if there is an exact
sequence

0→ M → HomR(C, I 0)→ · · · → HomR(C, In)→ 0

with each I i an injective R-module.

Proof. The “only if” direction of each statement follows immediately from
Corollaries 2.4 and 2.9. For the other implications, use dimension shifting 1.7
to see that any exact sequence of the given form is an augmented proper PC-
projective or IC-injective resolution of M .

We now investigate how PC-projective and projective dimension relate.

Theorem 2.11. Let C be a semidualizing R-module. The following equal-
ities hold.

(a) pdR(M) = PC- pdR(C ⊗R M)

(b) IC- idR(M) = idR(C ⊗R M)

(c) PC- pdR(M) = pdR(HomR(C, M))

(d) idR(M) = IC- idR(HomR(C, M))

Proof. We prove only part (a). Assume pdR(M) = s < ∞ and consider
an augmented projective resolution of M

X = 0→ Ps → Ps−1 → · · · → P0 → M → 0.

By 1.9(b), one has M ∈ AC and so TorR
�1(C, M) = 0. Thus, the complex

C⊗R X = 0→ C⊗R Ps → C⊗R Pt−1 → · · · → C⊗R P0 → C⊗R M → 0

is exact and thus an augmented proper PC-projective resolution of C ⊗R M .
Note that properness can be shown by using 1.7, or as a special case of [13,
(4.4)]. This provides an inequality s � PC- pdR(C⊗RM). Conversely, assume
that PC- pdR(C⊗R M) = t <∞. By Corollary 2.10(a), there is an augmented
exact proper PC-resolution of C ⊗R M

X+ = 0→ C ⊗R Pt → C ⊗R Pt−1 → · · · → C ⊗R P0 → C ⊗R M → 0.

Thus, the complex HomR(C, X+) is exact. Corollary 2.9 implies that C ⊗R

M is in BC and Theorem 2.8 then implies that M is in AC . Thus, μM is
an isomorphism. Since each μPi

is also an isomorphism, HomR(C, X+) is
isomorphic to an exact sequence of the form

0→ Pt → Pt−1 → · · · → P0 → M → 0.
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Thus, pdR(M) � t = PC- pdR(C ⊗R M).

Note that by assembling the information above, we get the following ex-
tension of the Foxby equivalence [1].

Theorem 2.12 (Foxby equivalence). Let C be a semidualizing R-module,
and let n be a non-negative integer. Set P̂C(R)�n, P̂(R)�n, ÎC(R)�n, and
Î (R)�n to be the classes of modules of C-projective, projective, C-injective
and injective dimension of at most n, respectively. Then there are equivalences
of categories

P(R)
C⊗R−−−−−−−−−−−−−−−→∼←−−−−−−−−−−−−−−

HomR(C,−)
PC(R)

P̂(R)�n

C⊗R−−−−−−−−−−−−−−−→∼←−−−−−−−−−−−−−−
HomR(C,−)

P̂C(R)�n

AC(R)
C⊗R−−−−−−−−−−−−−−−→∼←−−−−−−−−−−−−−−

HomR(C,−)
BC(R)

Î C(R)�n

C⊗R−−−−−−−−−−−−−−−→∼←−−−−−−−−−−−−−−
HomR(C,−)

Î (R)�n

IC(R)
C⊗R−−−−−−−−−−−−−−−→∼←−−−−−−−−−−−−−−

HomR(C,−)
I (R)

3. Vanishing of relative cohomology and consequences

In this section, we investigate how vanishing of the relative cohomology func-
tors ExtiPC

(M,−) and ExtiIC
(−, N), respectively, characterizes the finiteness

of PC- pdR(M) and IC- idR(N). Our proofs use specific properties of semi-
dualizing modules and so do not carry over directly to other relative settings.

Theorem 3.1. Let C be a semidualizing R-module and M an R-module.

(a) The following are equivalent.
(i) Ext1

PC
(M,−) = 0

(ii) Ext�1
PC

(M,−) = 0
(iii) M is C-projective

(a) The following are equivalent.
(i) Ext1

IC
(−, M) = 0
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(ii) Ext�1
IC

(−, M) = 0
(iii) M is C-injective

Proof. We prove part (a); part (b) is dual.
(iii)⇒ (ii): If M is C-projective, then the complex

· · · → 0→ M
=−→ M → 0

is an augmented proper PC-resolution of M and so Ext�1
PC

(M,−) = 0.
(ii)⇒ i) is immediate.
(i)⇒ (iii): Let

X = · · · d2−→ C ⊗R P1
d1−→ C ⊗R P0

d0−→ M → 0

be an augmented proper PC-resolution of M . Let K0 be the kernel of d0,
and let β: K0 → C ⊗R P0 be the inclusion map. There is a homomorphism
α: C ⊗R P1 → K0 such that d1 = βα. Noting that βαd2 = d1d2 = 0, the
injectivity of β implies that αd2 = 0. Since Ext1

PC
(M, K0) = 0, the induced

sequence

HomR(C ⊗R P0, K0)→ HomR(C ⊗R P1, K0)→ HomR(C ⊗R P2, K0)

is exact. Hence, there exists ξ ∈ HomR(C ⊗R P0, K0) such that α = ξd1 =
ξβα. There is an equality HomR(C, α) = HomR(C, ξ) ◦ HomR(C, β) ◦
HomR(C, α) and so HomR(C, ξ)◦HomR(C, β) = idHomR(C,K0), as HomR(C,

α) is surjective. Therefore, the exact sequence (which is exact by properness
of X)

0→ HomR(C, K0)
HomR(C,β)−−−−−−−→ HomR(C, C ⊗R P0)→ HomR(C, M)→ 0

splits. Since HomR(C, C ⊗R P0) ∼= P0 is R-projective, so is HomR(C, M).
Theorem 2.11 and Corollary 2.10(a) now imply that M is C-projective.

Using dimension shifting, we have the following extension of the previous
result.

Theorem 3.2. Let C be a semidualizing R-module, let n be a non-negative
integer, and let M, N be R-modules.

(a) The following are equivalent.
(i) Extn+1

PC
(M,−) = 0

(ii) Ext�n+1
PC

(M,−) = 0
(iii) PC- pdR(M) � n.
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(b) The following are equivalent.
(i) Extn+1

IC
(−, N) = 0

(ii) Ext�n+1
IC

(−, N) = 0
(iii) IC- idR(N) � n.

The preceding two results imply the following.

Corollary 3.3. Let C be a semidualizing R-module, M an R-module and
n � 0.

(a) The following are equivalent.
(i) There exists an augmented proper PC-projective resolution X+ of

M such that �X+
n is C-projective.

(ii) Every augmented proper PC-projective resolution X+ of M has
the property that �X+

n is C-projective.

(b) The following are equivalent.
(i) There exists an augmented proper IC-injective resolution Y+ of

M such that �n
Y+ is C-injective.

(ii) Every augmented proper IC-injective resolution Y+ of M has the
property that �n

Y+ is C-injective.

We conclude this section by showing that if any two of three modules in
a short exact sequence have finite PC-projective dimension then so does the
third. Note that the standard constructions (using Horseshoe Lemmas, mapping
cones, etc.) that show this result when C = R can be used in this setting.
However, we offer a shorter proof that uses the classical result.

Proposition 3.4. Let C be a semidualizing R-module. Consider an exact
sequence of R-modules

0→ M ′ → M → M ′′ → 0.

If any two of the modules have finite PC-projective dimension, respectively
IC-injective dimension, then so does the third.

Proof. Assume that two of the modules M, M ′, M ′′ have finite PC-projec-
tive dimension. By Corollary 2.9, these two modules are in BC . By 1.9(a), this
forces all of the modules M, M ′, M ′′ to be in BC . Thus, the complex

0→ HomR(C, M ′)→ HomR(C, M)→ HomR(C, M ′′)→ 0

is exact. By Theorem 2.11(c), two of the above Hom modules have finite
projective dimension and hence so does the third. Theorem 2.11(c) implies
that all of M, M ′, M ′′ have finite PC-projective dimension. The other assertion
is dual.
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4. Comparing relative and absolute cohomology

In this section we investigate the interplay between absolute Ext and the relative
cohomologies ExtPC

and ExtIC
. Under certain circumstances, they agree with

their corresponding absolute counterparts.

Theorem 4.1. Let C be a semidualizing R-module, and let M and N be
R-modules. There exist isomorphisms.

ExtiPC
(M, N) ∼= ExtiR(HomR(C, M), HomR(C, N))

ExtiIC
(M, N) ∼= ExtiR(C ⊗R M, C ⊗R N)

Proof. We prove only part (a). Let X+ be an augmented proper PC-
resolution of M . By Lemma 2.1, the complex HomR(C, X+) is an augmen-
ted projective resolution of HomR(C, M). Thus, the equalities below hold by
definition

ExtiR(HomR(C, M), HomR(C, N))

= Hi (HomR(HomR(C, X), HomR(C, N)))

∼= Hi (HomR(C ⊗R HomR(C, X), N))

∼= Hi (HomR(X, N))

= ExtiPC
(M, N),

while the isomorphisms follow from adjunction and the containment PC ⊆
BC .

With appropriate Auslander and Bass class assumptions, the aforemen-
tioned relative cohomology modules agree precisely with the absolute Ext.

Corollary 4.2. Let C be a semidualizing R-module, and let M, N be
R-modules.

(a) If M and N are in BC , then ExtiPC
(M, N) ∼= ExtiR(M, N) for all i.

(b) If M and N are in AC , then ExtiIC
(M, N) ∼= ExtiR(M, N) for all i.

Proof. We prove only part(a). Let Tot X denote the total complex of a
double complex X. Let P+ be an augmented projective resolution of HomR(C,

M), and let I+ be an augmented injective resolution of N . Since M and N

are in BC , the complexes C ⊗R P+ and HomR(C, I+) are exact. There is an
isomorphism

HomR(C ⊗R P, I ) ∼= HomR(P, HomR(C, I))
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of double complexes. This provides the second isomorphism below

ExtiR(M, N) ∼= Hi (Tot HomR(C ⊗R P, I ))

∼= Hi (Tot HomR(P, HomR(C, I)))

∼= ExtiR(HomR(C, M), HomR(C, N))

∼= ExtiPC
(M, N),

while the last isomorphism follows from Theorem 4.1.

5. Further parallels between the classical and relative theories

The results of the previous sections demonstrate that there is a tight connection
between modules of finite PC-projective dimension and modules of finite pro-
jective dimension. In this section we indicate how the machinery developed
above allows us to extend many classical results to this new setting. We begin
by showing that PC-projective dimension has the ability to detect when a ring
is regular.

Proposition 5.1. Let (R, �, k) be a noetherian, local ring and C a semi-
dualizing R-module. The following are equivalent.

(i) PC- pdR(M) is finite for all R-modules M .

(ii) PC- pdR(k) is finite.

(iii) R is regular.

Proof. (i)�⇒ (ii) is trivial.
(ii)�⇒ (iii) Since PC- pdR(k) is finite, Lemma 2.1 implies pdR(HomR(C,

k)) is finite. Since HomR(C, k) is a nonzero k-vector space, pdR(k) is finite.
Thus, R is regular.

(iii)�⇒ (i) Since R is regular, the only semidualizing R-module is R itself.
Thus, C = R so this follows from the Auslander-Buchsbaum-Serre theorem.

Our methods also apply to bounded complexes of C-projective modules, as
the next result shows.

Proposition 5.2 (New Intersection Theorem for complexes of C-projective
modules). Let (R, �) be a noetherian local ring and C a semidualizing R-
module. If there exists a non-exact complex

X = 0→ Cαs → Cαs−1 → · · · → Cα1 → Cα0 → 0

with 
R(Hi (X)) finite for all i, then s � dim(R).
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Proof. First, note that the complex

HomR(C, X) = 0→ Rαs → Rαs−1 → · · · → Rα1 → Rα0 → 0

is non-exact. Indeed, if it were exact, then it would split, forcing the complex
C ⊗R HomR(C, X) ∼= X to be exact, a contradiction.

Now fix a prime � �= �. Since the homology of the complex X has support
equal to �, the complex X� is exact. This forces the complex HomR�

(C�, X�) to
be exact, as Ext�1

R (C,C)= 0. This forces Hi (HomR(C,X))�
∼= Hi (HomR�

(C�,

X�)) = 0 for all i. Thus, 
R(Hi(HomR(C, X))) < ∞ for all i. The New
Intersection Theorem now implies that s � dim(R).

Next, we extend Bass’ result that a ring is noetherian if and only if the class
of injective R-modules is closed under direct sums.

Proposition 5.3. Let R be a commutative ring and C a semidualizing R-
module. The ring R is noetherian if and only if the class IC is closed under
direct sums.

Proof. Assume R is noetherian. Let {Iλ} be a collection of injective R-
modules. Since C is finitely presented, there is an isomorphism∐

λ

HomR(C, Iλ) ∼= HomR

(
C,

∐
λ

Iλ

)
and the desired result follows by Bass’ result.

Conversely, assume the class IC is closed under direct sums. Let {Iλ} be
a collection of injective modules so that {HomR(C, Iλ)} is a collection of C-
injective modules. By assumption, there is an isomorphism∐

HomR(C, Iλ) ∼= HomR(C, J )

for some injective J . This provides the third isomorphism below. The first and
fourth isomorphisms follow from the fact that any injective module is in BC .
The second is by the commutativity of tensor products and coproducts.∐

Iλ
∼=

∐
C ⊗R HomR(C, Iλ)

∼= C ⊗R

∐
(HomR(C, Iλ))

∼= C ⊗R HomR(C, J )

∼= J.

In particular,
∐

Iλ is injective.
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Finally, we provide an example in which this technique does not seem to
provide a straightforward way in which to extend a classical result. Consider
the following:

Question 5.4. Let (R, �, k) be a local, Cohen-Macaulay ring admitting
a dualizing module D. Let C be a semidualizing R-module. If there exists
an R-module M of finite depth with finite PC-projective dimension and finite
IC-injective dimension, must R be Gorenstein?

Note that, as we try to apply the aforementioned techniques, we see that
HomR(C, M) has finite projective dimension, while C⊗RM has finite injective
dimension. To apply the classical result, we need a single module that has both
finite projective dimension and finite injective dimension.
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