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WEAK COMPACTNESS IN THE DUAL SPACE OF A
JB*-TRIPLE IS COMMUTATIVELY DETERMINED

FRANCISCO J. FERNÁNDEZ-POLO and ANTONIO M. PERALTA∗

Abstract
We prove the following criterium of weak compactness in the dual of a JB*-triple: a bounded
set K in the dual of a JB*-triple E is not relatively weakly compact if and only if there exist a
sequence of pairwise orthogonal elements (an) in the closed unit ball of E, a sequence (ϕn) inK ,
and ϑ > 0 satisfying that |ϕn(an)| > ϑ for all n ∈ N. This solves a question stimulated by the
main result in [11] and posed in [9].

1. Introduction and Preliminaries

Relatively weakly compact subsets in the dual of a C*-algebra have been
intensively studied during the last fifty years. The first precedent appears in a
paper by A. Grothendieck in 1953 (see [15]). This forerunner establishes the
following characterization of weak compactness in the dual of a C(�)-space:
a bounded subset K ⊆ C(�)∗ is not relatively weakly compact if and only if
there exists a sequence (On) of pairwise disjoint open subsets of � such that
limn→∞ sup{|μ(On)| : μ ∈ K} �= 0. Urysohn’s lemma allows us to replace the
On’s by norm-one positive continuous functions on � with mutually disjoint
supports.

When K is a bounded set in the predual of a von Neumann algebra M ,
M. Takesaki [26] and C. Akemann [1] (see also [27, Theorem III.5.4]) proved
that K is not relatively weakly compact if and only if there exists a sequence
(pn) of pairwise orthogonal projections in M such that limn→∞ sup{|φ(pn)| :
φ ∈ K} �= 0. That is, weak compactness in M∗ is determined by the abelian
subalgebras ofM . Consequently, relatively weakly compact subsets in the dual
of a C*-algebra A are commutatively determined by the abelian subalgebras
of A∗∗.

In [24] H. Pfitzner showed that weak compactness in the dual of a C*-
algebra A is in fact determined by the abelian subalgebras of A. Concretely, a
bounded setK ⊆ A∗ fails to be relatively weakly compact if and only if there
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exist a positive θ , a sequence (an) of pairwise orthogonal positive elements in
the closed unit ball of A and a sequence (ϕn) inK satisfying |ϕn(an)| > θ , for
every n ∈ N (compare [12] for a new and shorter proof).

C*-algebras belong to a more general class of complex Banach spaces in
which the geometric, holomorphic, and algebraic structure mutually interplay.
We are referring to the class of JB*-triples. We recall (see [21]) that a JB*-
triple is a complex Banach space E equipped with a continuous triple product
{·, ·, ·} : E×E×E → E, which is symmetric and linear in the first and third
variables, conjugate linear in the second variable and satisfies:

(i) (Jordan Identity) L(a, b)L(x, y) = L(x, y)L(a, b)+L(L(a, b)x, y)−
L(x,L(b, a)y), whereL(a, b) is the operator onE given byL(a, b)x =
{a, b, x};

(ii) L(a, a) is a hermitian operator with non-negative spectrum;

(iii) ‖L(a, a)‖ = ‖a‖2.

Every C*-algebra is a JB*-triple with respect to the product {x, y, z} = 1
2 (xy

∗z
+ zy∗x), and every JB*-algebra is a JB*-triple under the triple product
{x, y, z} = (x ◦ y∗) ◦ z+ (z ◦ y∗) ◦ x − (x ◦ z) ◦ y∗.

A JBW*-triple is a JB*-triple which is also a dual Banach space (with a
unique isometric predual [3]). It is known that the second dual of a JB*-triple is
a JBW*-triple (compare [8]). Further, the triple product of every JBW*-triple
is separately weak*-continuous [3].

The above quoted results of Takesaki andAkemann were extended in [23] to
characterize relatively weakly compact subsets in the predual of a JBW*-triple.

A JC*-triple is a norm-closed subspace of a C*-algebra which is closed
under the ternary product {x, y, z} = 1

2 (xy
∗z + zy∗x). JC*-triples form an

intermediate class of complex Banach spaces between C*-algebras and JB*-
triples. A criterium for weak compactness in the dual of a JC*-triple, which is
also a generalization of Pfitzner’s result, was established in [11]. This criterium
assures that a bounded subset in the dual space of a JC*-triple E is relatively
weakly compact if and only if its restriction to any abelian maximal subtripleC
ofE is relatively weakly compact in the dual ofC. However, as pointed out by
C. M. Edwards in [9], “whether the results hold for general JB∗-triples remains
an open question”. The main result of this paper gives a positive answer to this
question for general JB*-triples (see Theorem 2.3). The solution presented in
this paper is itself a novelty which simplifies the results in [11] with a new and
shorter orthogonalization process based on Bergmann operators.

Reference [6] is a basic forerunner of the problem studied in this paper.
Briefly speaking, we could say [6] contains a partial answer for our problem
in terms of Pelczynski’s Property (V). We recall that a series

∑
n≥1 zn in a

Banach spaceX is called weakly unconditionally convergent (w.u.c. for short)



weak compactness in the dual space of a jb*-triple 309

if for each ϕ ∈ X∗ we have
∑∞

n=1 |ϕ(zn)| < ∞, equivalently, there exists
C > 0 such that for any finite subset F ⊂ N and |εk| = 1 in C we have
‖ ∑

k∈F εkzk‖ ≤ C, (see, for example, [7, Theorem 6 in Chapter 5]). It is clear
that every bounded linear operator between Banach spaces preserves w.u.c.
series. A Banach spaceX has property (V ) if for any (bounded) non relatively
weakly compact set K ⊆ X∗ there exists a w.u.c. series

∑
n xn in X such

that supϕ∈X∗ |ϕ(xn)| does not converge to zero. It is established in [6] that
every JB*-triple satisfies property (V ). We shall see later that every bounded
sequence of mutually orthogonal elements in a JB*-triple defines a w.u.c.
series, however the reciprocal statement need not hold in general. We shall
establish a new orthogonalization method to construct sequences of mutually
orthogonal elements from w.u.c. series.

1.1. Preliminaries

LetX and Y be two Banach spaces, throughout the paper, the symbolL(X, Y )
will stand for the space of all bounded linear operators from X to Y . We shall
write L(X) for the space L(X,X).

A JB*-triple E is said to be abelian if {{x, y, z}, u, v} = {x, y, {z, u, v}} =
{x, {y, z, u}, v}, for all x, y, z, u, v ∈ E. The JB*-subtriple generated by a
single element is always abelian.

Let x be an element in a JB*-tripleE. Throughout the paper the symbolEx
will denote the norm-closed subtriple of E generated by x. It is known that
Ex is JB∗-triple isomorphic to the C*-algebra C0(L) of all complex-valued
continuous functions on L vanishing at 0, where L is a locally compact subset
of (0, ‖x‖] satisfying that L∪{0} is compact. Further, there exists a JB*-triple
isomorphism � : Ex → C0(L) which satisfies �(x)(t) = t , for all t in L
(compare [20, 4.8] and [21, 1.15]). In particular, given a natural n, the symbol
x

1
2n−1 makes sense as an element of Ex ∼= C0(L).
An element u in a JB*-triple E is said to be a tripotent if u = {u, u, u}.

Given a tripotent u ∈ E, the mappings Pi(u) : E → Ei , (i = 0, 1, 2), defined
by

P2(u) = L(u, u)(2L(u, u)− idE),

P1(u) = 4L(u, u)(idE −L(u, u)), and

P0(u) = (idE −L(u, u))(idE −2L(u, u)),

are contractive linear operators. For each j = 0, 1, 2, Pj (u) is the projection
onto the eigenspace Ej(u) of L(u, u) corresponding to the eigenvalue j

2 and

E = E2(u)⊕ E1(u)⊕ E0(u)

is the Peirce decomposition of E relative to u. Furthermore, the following
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Peirce rules are satisfied,

{E2(u), E0(u), E} = {E0(u), E2(u), E} = 0,(1) {
Ei(u), Ej (u), Ek(u)

} ⊆ Ei−j+k(u),(2)

where Ei−j+k(u) = 0 whenever i − j + k /∈ {0, 1, 2} (compare [13]).
When W is a JBW*-triple, the JBW*-subtriple generated by a norm-one

element x ∈ W coincides with the weak*-closure, Wx
w∗

, of Wx . By [18,

Lemma 3.11] there exists a JBW*-triple isomorphism, �, between Wx
w∗

and
a commutative W*-algebraC. We shall write r(x) = �−1(1), where 1 denotes
the unit element inC. It is clear that r(x), commonly termed the range tripotent
of x, is a tripotent inW . Moreover, r(x) coincides with the weak∗-limit of the
sequence x

1
2n−1 , (n ∈ N). It is also known that the JBW*-algebra E∗∗

2 (r(x))

contains x as a positive element (compare [10]).
Given a JBW*-triple W , a norm-one element ϕ in W∗ and a norm-one

element z in W with ϕ(z) = 1, it follows from [2, Proposition 1.2] that the
assignment

(x, y) �→ ϕ {x, y, z}
defines a positive sesquilinear form on W . Further, for every norm-one ele-
ment w in W satisfying ϕ(w) = 1, we have ϕ {x, y, z} = ϕ {x, y,w}, for all
x, y ∈ W . The mapping x �→ ‖x‖ϕ := (ϕ {x, x, z}) 1

2 , defines a prehilbertian
seminorm onW . The Strong*-topology (noted by S∗(W,W∗)) is the topology
on W generated by the family {‖ · ‖ϕ : ϕ ∈ W∗, ‖ϕ‖ = 1}. This topology was
introduced by T. J. Barton and Y. Friedman in [2].

When ϕ is an element in the dual of a JB*-triple E, the prehilbertian
seminorm ‖.‖ϕ is defined on E∗∗ (and hence on E) by the assignment

x �→ ‖x‖ϕ := (ϕ {x, x, z}) 1
2 ,

where z is a norm-one element in E∗∗ with ϕ(z) = ‖ϕ‖. The inequality

‖{x, y, z}‖ ≤ ‖x‖ ‖y‖ ‖z‖
holds for every x, y and z in a JB*-triple E (compare [14, Corollary 3]).
Consequently,

‖x‖ϕ ≤ ‖ϕ‖ 1
2 ‖x‖,

for all ϕ ∈ E∗ and x ∈ E.
For each element a in a JB*-triple E, the conjugate linear mapping Q(a)

from E to itself is defined, for each element b in E, by Q(a)(b) := {a, b, a}.
Let x, y be two elements in E. The Bergmann operator B(x, y) : E → E
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is defined by B(x, y)(z) = z − 2L(x, y)(z) + Q(x)Q(y)(z), for all z in E
(compare [22] or [28, page 305]). In the particular case of u being a tripotent,
it is known that P0(u) = B(u, u).

Let x be a symmetric element in a unital JB*-algebra A. The operator
Ux : A → A is defined byUx(y) := 2(y ◦x)◦x−x2 ◦y, for all y inA. When
A is regarded as a JB*-triple, we have Ux(y) = Q(x)(y∗), ∀y ∈ A. Since by
[16, Lemma 2.4.21] U 2

x = Ux2 , we deduce that

Q(x)2(y) = U 2
x (y) = Ux2(y) = Q(x2)(y∗), ∀y ∈ A.

We also have 2L(x, x)(y) = 2(x2 ◦ y + (y ◦ x) ◦ x − (y ◦ x) ◦ x) = 2x2 ◦ y,
for all y ∈ A. Therefore, for each y ∈ A we have

B(x, x)(y) = y − 2L(x, x)(y)+Q(x)2(y) = Q(1 − x2)(y∗),

which implies that ‖B(x, x)‖ ≤ 1, whenever x belongs to the closed unit ball
of A.

A tripotent u, in a JB*-tripleE, is said to be bounded if there exists a norm-
one element x ∈ E such that L(u, u)x = u. The element x is a bound of u
and in this case we write u ≤ x. We shall write y ≤ u whenever y is a positive
element in the JB*-algebra E2(u) (compare [11, pages 79–80]).

Lemma 1.1. Let x be a symmetric element in the closed unit ball of a
JB*-algebra A. Then B(x, x) is a contractive operator. Moreover, if p is a
projection in A with p ≤ x, then B(x, x)(y) belongs to A0(p), for every y in
A.

Proof. We may assume that A is unital. The comments preceding this
lemma guarantee that ‖B(x, x)‖ ≤ 1 andB(x, x)y = Q(1−x2)(y∗), (y ∈ A).
Since p ≤ x2 ≤ 1, we have 0 ≤ 1 − x2 ≤ 1 − p, and hence 1 − x2 belongs
to A0(p). Finally, it follows, by Peirce rules, that B(x, x)y ∈ A0(p).

Lemma 1.1 above can be now extended to JB*-triples.

Lemma 1.2. Let E be a JB*-triple, e a tripotent in E, and x a norm-
one element in E with e ≤ x. Then B(x, x) is a contractive operator and
B(x, x)(y) belongs to E0(e), for every y in E.

Proof. By [14, Corollary 1] we may suppose that E embeds as a subtriple
into a JBW*-algebra, A, of the form L(H)

⊕∞
N , where H is a complex

Hilbert space and N is an 	∞-sum of finite-dimensional simple JB*-algebras.
We may then assume that

e ≤ x (≤ r(x))
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in the JBW*-algebra A, where r(x) is the range tripotent of x in A. From [4,
Lemma 2.3] and [22, Corollary 5.12] there exists a weak*-continuous isometric
triple embedding T from A into A, such that T (r(x)) (and hence T (e)) is a
projection in A. It is easy to check that 0 ≤ T (e) ≤ T (x) ≤ T (r(x)). By
Lemma 1.1, we have T (B(x, x)(y)) = B(T (x), T (x))(T (y)) ∈ A0(T (e)),
for every T (y) ∈ T (E) ⊆ A. Therefore, B(x, x)(y) ∈ A0(e) ∩ E = E0(e),
for all y ∈ E.

Another central notion in the paper is the concept of orthogonality. Two
elements a, b in a JB*-triple, E, are said to be orthogonal (written a ⊥ b)
if L(a, b) = 0. Lemma 1 in [5] shows that a ⊥ b if and only if one of the
following statements holds:

{a, a, b} = 0; a ⊥ r(b); r(a) ⊥ r(b); E∗∗
2 (r(a)) ⊥ E∗∗

2 (r(b));
r(a) ∈ E∗∗

0 (r(b)); a ∈ E∗∗
0 (r(b)); b ∈ E∗∗

0 (r(a)); Ea ⊥ Eb.

The Peirce rule (1) shows that for each tripotent u in a JB*-triple E, E0(u) ⊥
E2(u). The Jordan identity and the above reformulations assure that

(3) a ⊥ {x, y, z} , whenever a ⊥ x, y, z.

LetA be a C*-algebra. Two elements a, b ∈ A are said to be orthogonal for
the C*-algebra product if ab∗ = b∗a = 0. However, A also enjoys a structure
of JB*-triple. We have, a priory, two notions of orthogonality in A. It can
be checked, from the above reformulations, that two elements a, b in A are
orthogonal for the C*-algebra product if and only if they are orthogonal when
A is considered as a JB*-triple.

For every tripotent e in a JB*-triple E, the formula

‖P2(e)(x)+ P0(e)(x)‖ = max{‖P2(e)(x)‖, ‖P0(e)(x)‖},
holds for every x inE (compare [13, Lemma 1.3]). In particular, if {x1, . . . , xm}
is a set of mutually orthogonal elements in a JB*-triple E, it follows from the
above equivalent reformulations of orthogonality and the previous formula,
that the JB*-subtriple generated by the set {x1, . . . , xm} coincides with the
	∞-sum

⊕∞
k=1,...,m Exk and hence it is JB*-triple isomorphic to an abelian

C*-algebra.
We deduce from the above paragraph that every bounded sequence of pair-

wise orthogonal elements in a JB*-triple defines a w.u.c. series.
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2. Main result

The aim of this section is to prove that weak compactness in the dual of a
JB*-triple is commutatively determined. Bergmann operators, wisely used,
turn to be a powerful tool in orthogonalization processes. More concretely, we
shall make use of appropriated Bergmann operators to orthogonalize weakly
unconditional convergent series in JB*-triples.

Lemma 2.1. Let E be a JB*-triple, v a tripotent in E, and ϕ an element in
the closed unit ball of E∗. Then for each y ∈ E2(v) with ‖y‖ ≤ 1 we have

(4) |ϕ(x − B(y, y)(x))| < 21‖x‖‖v‖ϕ,
for every x ∈ E.

Proof. By Peirce rules we haveL(y, y)(x) ∈ E2(v)⊕E1(v) andQ(y)2(x)
∈ E2(v). Since x −B(y, y)(x) = 2L(y, y)(x)−Q(y)2(x), the desired state-
ment follows from [11, Lemma 3.2].

We shall also need the following strengthening version of [11, Lemma 3.4].

Lemma 2.2. Let E be a JB∗-triple, θ > 0, δn > 0 (n ∈ N), and let
{ϕ1} ∪ {ϕn}n≥2 be a sequence of functionals in the closed unit ball of E∗.
Given an element x in the closed unit ball of E, satisfying |ϕ1(x)| > θ and
‖x‖ϕn < δn, n ≥ 2, there exist two elements a, y in the unit ball of Ex , and
two tripotents u, v in (Ex)

∗∗ such that a ≤ u ≤ y ≤ v, |ϕ1(a)| > 3
4θ , and

‖v‖ϕn < 8
θ
δn, n ≥ 2.

Proof. We have already commented thatEx is JB∗-triple isomorphic to the
C*-algebra C0(L), where L is a locally compact subset of (0, ‖x‖] satisfying
that L ∪ {0} is compact. Moreover, there exists a JB*-triple isomorphism
� : Ex → C0(L) satisfying �(x)(t) = t , for all t in L. By slight abuse of
notation, Ex and C0(L) will be identified.

Let a, y ∈ C0(L) be the functions defined by

a(t) :=

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ t ≤ θ
4

2t − θ
2 , if θ

4 ≤ t ≤ θ
2

t, if θ
2 ≤ t ≤ ‖x‖

;

y(t) :=

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ t ≤ θ
8

8
θ

(
t − θ

8

)
, if θ

8 ≤ t ≤ θ
4

1, if θ
4 ≤ t ≤ ‖x‖.
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Since ‖x − a‖ < θ
4 and |ϕ1(x)| > θ it follows that |ϕ1(a)| > 3

4θ .
The element x decomposes as the sum of two orthogonal elements x =

xχ[ θ8 ,‖x‖]+xχ[0, θ8 )
(in (Ex)

∗∗). Since ‖·‖2
ϕn

is additive when applied to the sum

of orthogonal elements, we get
∥∥xχ[ θ8 ,‖x‖]

∥∥
ϕn
< δn. We define u = χ[ θ4 ,‖x‖],

v = χ[ θ8 ,‖x‖] (in (Ex)
∗∗), which clearly satisfy that a ≤ u ≤ y ≤ v.

Since ‖ · ‖ϕ is an order-preserving map on the set of positive elements
in (Ex)

∗∗ ([11, Lemma 3.3]), we have that ‖v‖ϕn ≤ ‖ 8
θ
xχ[ θ8 ,‖x‖]‖ϕn < 8

θ
δn

(n ≥ 2), which finishes the proof.

Our main result can be stated now.

Theorem 2.3. LetE be a JB∗-triple andK be a bounded subset inE∗. The
following are equivalent:

a) K is not relatively weakly compact.

b) There exist a sequence of pairwise orthogonal elements (an) in the closed
unit ball ofE, a sequence (ϕn) inK , andϑ > 0 satisfying that |ϕn(an)| >
ϑ for all n ∈ N.

b′) There exists a subtriple C of E isometric to an abelian C*-algebra such
that the restriction of K to it is not relatively weakly compact.

Proof. a) ⇒ b). Since JB∗-triples have Pelczynski’s Property (V) (compare
[6]) there exist θ > 0, (ϕn) ⊂ K and a w.u.c. series

∑
n≥1 zn in E with

‖zn‖ ≤ 1, such that |ϕn(zn)| > θ , ∀n ∈ N. We may assume thatK is contained
in the closed unit ball of E∗.

Let us fix a decreasing sequence (δn) of positive numbers satisfying
336
θ

∑∞
n=1 δn <

θ
2 . We shall construct, inductively, a sequence (an) of mu-

tually orthogonal elements in the closed unit ball of E, infinite subsets N �

N1 � N2 � · · · � Nn−1 � Nn � · · · and a strictly increasing mapping
σ : N → N such that for each natural n there exists a w.u.c. series

∑
k∈Nn zn,k

in E with ‖zn,k‖ ≤ 1,

zn,k ⊥ aj , for all j ∈ {1, . . . , n}, k ∈ Nn,

|ϕσ(i)(ai)| > 3

8
θ, i = 1, . . . , n,

and |ϕk(zn,k)| > θ − 336

θ

n∑
j=1

δj >
θ

2
, k ∈ Nn.

To define a1, choose j1 ∈ N with 1
j1
< 1

C2 δ
2
1 , whereC is the positive constant

associated to the w.u.c. series
∑

n≥1 zn (see comments in the Introduction).
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Since every Hilbert space is of cotype 2 (compare [25, page 32]) we have

1

j1

j1∑
k=1

‖zk‖2
ϕm

≤ 1

j1

∫
D

∥∥∥∥
j1∑
k=1

εkzk

∥∥∥∥
2

ϕm

dμ

≤ 1

j1

∫
D

‖ϕm‖
∥∥∥∥
j1∑
k=1

εkzk

∥∥∥∥
2

dμ ≤ C2

j1
< δ2

1,

where m ∈ N, D = {−1, 1}N, εk ∈ {±1} and μ is the uniform probability
measure on D. Since the above inequality is satisfied for every m ∈ N, there
exist σ(1) ∈ {1, . . . , j1} and an infinite subset N1 ⊂ N such that σ(1) <
minN1 and ‖zσ(1)‖ϕm < δ1, for every m ∈ N1.

Applying Lemma 2.2 to zσ(1) and {ϕσ(1)}∪{ϕm}m∈N1 we obtain two elements
a1, y1 in the closed unit ball of Ezσ(1) and two tripotents u1, v1 ∈ E∗∗ such that
a1 ≤ u1 ≤ y1 ≤ v1,

|ϕσ(1)(a1)| > 3

4
θ >

3

8
θ, and ‖v1‖ϕm <

8

θ
δ1 <

16

θ
δ1, m ∈ N1.

We define z1,k := B(y1, y1)zk , (k ∈ N1), which are elements in the closed unit
ball ofE by Lemma 1.2. Clearly

∑
k∈N1

z1,k also is a w.u.c. series. Lemma 1.2
assures that z1,k is contained in E ∩ E∗∗

0 (u1). Since a1 ∈ E∗∗
2 (u1), we deduce

that a1 ⊥ z1,k , ∀k ∈ N (compare with the reformulations of orthogonality given
in page 312). Moreover

∥∥∑
k∈F εkz1,k

∥∥=∥∥B(y1, y1)
(∑

k∈F εkzk
)∥∥ ≤ C, for

every finite F ∈ N1 and |εk| in C. Now, noticing that y1 ∈ E∗∗
2 (v1), Lemma

2.1 applies to assure that

|ϕk(z1,k)| ≥ |ϕk(zk)| − |ϕk(zk − z1,k)| > θ − 21
16

θ
δ1

(
>
θ

2

)
,

for all k ∈ N1.
Suppose now, in our inductive step, that a1, . . . , an, Nn � Nn−1 � · · · �

N1 � N, σ(1) < σ(2) < · · · < σ(n), and the w.u.c. series
∑

k∈Nn zn,k in E
have been constructed satisfying the corresponding induction hypothesis.

Take jn+1 ∈ N with 1
jn+1

< 1
C2 δ

2
n+1 and a subset Dn+1 ⊂ Nn with exactly

jn+1 elements. As before, for m ∈ Nn we have

1

jn+1

∑
k∈Dn+1

‖zn,k‖2
ϕm

≤ 1

jn+1

∫
D

∥∥∥∥
∑
k∈Dn+1

εkzn,k

∥∥∥∥
2

ϕm

dμ

≤ 1

jn+1

∫
D

‖ϕm‖
∥∥∥∥

∑
k∈Dn+1

εkzn,k

∥∥∥∥
2

dμ ≤ C2

jn+1
< δ2

n+1,
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hence there exist σ(n+ 1) ∈ Dn+1 and an infinite subsetNn+1 ⊆ Nn such that
σ(n+ 1) < minNn+1 and ‖zn,σ(n+1)‖ϕm < δn+1, for every m ∈ Nn+1.

Applying Lemma 2.2 to zn,σ(n+1) and {ϕσ(n+1)} ∪ {ϕm}m∈Nn+1 we obtain
two elements an+1, yn+1 in the closed unit ball of Ezn,σ(n+1) and two tripotents
un+1, vn+1 ∈ (Ezn,σ(n+1) )

∗∗ such that an+1 ≤ un+1 ≤ yn+1 ≤ vn+1,

|ϕσ(n+1)(an+1)| > 3

8
θ, and ‖vn+1‖ϕm <

16

θ
δn+1, m ∈ Nn+1.

By the induction hypothesis, zn,k ⊥ aj , for all j ∈ {1, . . . , n}, k ∈ Nn. Since
an+1, yn+1, un+1, and vn+1 belong to (Ezn,σ(n+1) )

∗∗, the equivalent reformulations
of orthogonality given in page 312, guarantee that they are all orthogonal to
aj , for all j ∈ {1, . . . , n}.

We define zn+1,k := B(yn+1, yn+1)(zn,k), k ∈ Nn+1. Again, Lemma 1.2
assures that zn+1,k is contained in E ∩ E∗∗

0 (un+1). Since an+1 ∈ E∗∗
2 (un+1),

we deduce that an+1 is orthogonal to each zn+1,k , ∀k ∈ Nn+1. Since yn+1 and
zn,k are orthogonal to aj for all j ∈ {1, . . . , n}, k ∈ Nn+1, using (3), it can be
seen that

zn+1,k = B(yn+1, yn+1)(zn,k) = zn,k − 2L(yn+1, yn+1)(zn,k)+Q(yn+1)
2(zn,k)

is orthogonal to aj , for all j ∈ {1, . . . , n}, k ∈ Nn+1. Moreover,
∥∥∥∥
∑
k∈F

εkzn+1,k

∥∥∥∥ =
∥∥∥∥B(yn+1, yn+1)

(∑
k∈F

εkzn,k

)∥∥∥∥ ≤ C,

for any finite subset F ⊂ Nn+1, and |εk| = 1 in C.
Finally, since yn+1 ∈ E∗∗

2 (vn+1), Lemma 2.1 assures that

|ϕk(zn+1,k)| ≥ |ϕk(zn,k)| − |ϕk(zn,k − zn+1,k)|

> θ − 336

θ

n∑
j=1

δj − 21
16

θ
δn+1

= θ − 336

θ

n+1∑
j=1

δj

(
>
θ

2

)
for all k ∈ Nn+1.

b) ⇒ b′) Since the elements (an) are mutually orthogonal, the subtriple C

generated by the family {an : n ∈ N} coincides with the 	∞-sum
⊕∞

n Ean .
We recall that each Ean is isomorphic to C0(L), for a suitable locally compact
Hausdorff space. Therefore C is triple-isomorphic to an abelian C*-algebra
and the restriction of K to C cannot be relatively weakly compact.

b′) ⇒ a) is obvious.
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A Dieudonné-type theorem for JC*-triples was established in [11, The-
orem 4.2]. When in the proof of the just quoted result, Theorem 2.3 replaces
[11, Theorem 3.5], we obtain the following generalization of Dieudonné’s
theorem in the more general setting of JB*-triples.

Theorem 2.4. Let (φn) be a sequence in the dual of a JB∗-triple E such
that the sequence (φn(r(x))) converges whenever r(x) is the range tripotent
of a norm-one element x in E. Then there exists φ in E∗ satisfying that (φn)
converges weakly to φ. In particular, if (φn(r(x))) → 0, for every range
tripotent, r(x), of a norm-one element x in E, then (φn) is a weakly null
sequence in E∗.

The vector-valued version of the above theorem follows now as a con-
sequence. The following corollary also generalizes the main result in [19]
with a shorter and simpler proof.

Corollary 2.5. Let E be a JB*-triple, X a Banach space and (Tn) a se-
quence of weakly compact operators fromE toX. Suppose that lim T ∗∗

n (r(x))

exists whenever r(x) is the range tripotent of a norm-one element x in E.
Then there exists a unique weakly compact operator T : E → X, such that
T ∗∗(z) = lim T ∗∗

n (z), for every z ∈ E∗∗.

Proof. We claim that for each z ∈ E∗∗, (T ∗∗
n (z)) is a norm convergent

sequence. Otherwise, there exist z ∈ E∗∗, ε > 0, and (σ (n)) ⊂ N such that
‖T ∗∗

σ(n+1)(z) − T ∗∗
σ(n)(z)‖ > ε, ∀n ∈ N. Defining Sk = T ∗∗

σ(k+1) − T ∗∗
σ(k), we can

find norm-one functionalsψk ∈ X∗ satisfying |ψk(Sk(z))| > ε (∀k ∈ N). Since
T ∗∗
k : E∗∗ → X∗∗ is weak*-to-weak* continuous, the sequence (ψkT ∗∗

k )k∈N

lies, in fact, in E∗. In particular, the sequence (ψkSk) ⊆ E∗ satisfies, by
hypothesis, that limψkSk(r) = 0, for every range tripotent, r = r(x), of a
norm-one element x in E. Theorem 2.4 assures that (ψkSk) is weakly null in
E∗, which contradicts |ψkSk(z)| = |ψkSk(z))| > ε, (k ∈ N).

The assignment z �→ Lz := lim T ∗∗
n (z) defines a linear mapping L :

E∗∗ → X∗∗, which is continuous by the Uniform Boundedness Principle.
Since eachTn is weakly compact we haveT ∗∗

n (E
∗∗) ⊆ X, ∀n ∈ N. In particular

L(E∗∗) ⊆ X. Therefore T := L|E : E → X is a well-defined bounded linear
operator.

Theorem 2.4 implies that, for each ψ ∈ X∗ the ψT ∗∗
n = T ∗

n (ψ) ∈ E∗
converge weakly to some ϕ ∈ E∗. Thus ψL = ϕ ∈ E∗, which proves that
L is weak*-to-weak* continuous. It is now clear that T ∗∗ = L. Finally, the
expression T ∗∗(E∗∗) = L(E∗∗) ⊆ X shows that T is weakly compact.
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