WEAK COMPACTNESS IN THE DUAL SPACE OF A JB*-TRIPLE IS COMMUTATIVELY DETERMINED

FRANCISCO J. FERNÁNDEZ-POLO and ANTONIO M. PERALTA*

Abstract

We prove the following criterium of weak compactness in the dual of a JB*-triple: a bounded set *K* in the dual of a JB*-triple *E* is not relatively weakly compact if and only if there exist a sequence of pairwise orthogonal elements (a_n) in the closed unit ball of *E*, a sequence (φ_n) in *K*, and $\vartheta > 0$ satisfying that $|\varphi_n(a_n)| > \vartheta$ for all $n \in \mathbb{N}$. This solves a question stimulated by the main result in [11] and posed in [9].

1. Introduction and Preliminaries

Relatively weakly compact subsets in the dual of a C*-algebra have been intensively studied during the last fifty years. The first precedent appears in a paper by A. Grothendieck in 1953 (see [15]). This forerunner establishes the following characterization of weak compactness in the dual of a $C(\Omega)$ -space: a bounded subset $K \subseteq C(\Omega)^*$ is not relatively weakly compact if and only if there exists a sequence (O_n) of pairwise disjoint open subsets of Ω such that $\lim_{n\to\infty} \sup\{|\mu(O_n)| : \mu \in K\} \neq 0$. Urysohn's lemma allows us to replace the O_n 's by norm-one positive continuous functions on Ω with mutually disjoint supports.

When *K* is a bounded set in the predual of a von Neumann algebra *M*, M. Takesaki [26] and C. Akemann [1] (see also [27, Theorem III.5.4]) proved that *K* is not relatively weakly compact if and only if there exists a sequence (p_n) of pairwise orthogonal projections in *M* such that $\lim_{n\to\infty} \sup\{|\phi(p_n)| : \phi \in K\} \neq 0$. That is, weak compactness in M_* is determined by the abelian subalgebras of *M*. Consequently, relatively weakly compact subsets in the dual of a C*-algebra *A* are commutatively determined by the abelian subalgebras of A^{**} .

In [24] H. Pfitzner showed that weak compactness in the dual of a C*algebra A is in fact determined by the abelian subalgebras of A. Concretely, a bounded set $K \subseteq A^*$ fails to be relatively weakly compact if and only if there

^{*} Authors partially supported by M.I.C. project no. MTM2008-02186, and Junta de Andalucía grants FQM0199 and FQM1215.

Received June 9, 2008; in final form October 15, 2008.

exist a positive θ , a sequence (a_n) of pairwise orthogonal positive elements in the closed unit ball of A and a sequence (φ_n) in K satisfying $|\varphi_n(a_n)| > \theta$, for every $n \in \mathbb{N}$ (compare [12] for a new and shorter proof).

C*-algebras belong to a more general class of complex Banach spaces in which the geometric, holomorphic, and algebraic structure mutually interplay. We are referring to the class of JB*-triples. We recall (see [21]) that a *JB**-*triple* is a complex Banach space *E* equipped with a continuous triple product $\{\cdot, \cdot, \cdot\} : E \times E \times E \rightarrow E$, which is symmetric and linear in the first and third variables, conjugate linear in the second variable and satisfies:

- (i) (Jordan Identity) L(a, b)L(x, y) = L(x, y)L(a, b) + L(L(a, b)x, y) L(x, L(b, a)y), where L(a, b) is the operator on *E* given by $L(a, b)x = \{a, b, x\}$;
- (ii) L(a, a) is a hermitian operator with non-negative spectrum;

(iii)
$$||L(a, a)|| = ||a||^2$$
.

Every C*-algebra is a JB*-triple with respect to the product $\{x, y, z\} = \frac{1}{2}(xy^*z + zy^*x)$, and every JB*-algebra is a JB*-triple under the triple product $\{x, y, z\} = (x \circ y^*) \circ z + (z \circ y^*) \circ x - (x \circ z) \circ y^*$.

A JBW*-triple is a JB*-triple which is also a dual Banach space (with a unique isometric predual [3]). It is known that the second dual of a JB*-triple is a JBW*-triple (compare [8]). Further, the triple product of every JBW*-triple is separately weak*-continuous [3].

The above quoted results of Takesaki and Akemann were extended in [23] to characterize relatively weakly compact subsets in the predual of a JBW*-triple.

A JC^* -triple is a norm-closed subspace of a C*-algebra which is closed under the ternary product $\{x, y, z\} = \frac{1}{2}(xy^*z + zy^*x)$. JC*-triples form an intermediate class of complex Banach spaces between C*-algebras and JB*triples. A criterium for weak compactness in the dual of a JC*-triple, which is also a generalization of Pfitzner's result, was established in [11]. This criterium assures that a bounded subset in the dual space of a JC*-triple *E* is relatively weakly compact if and only if its restriction to any abelian maximal subtriple *C* of *E* is relatively weakly compact in the dual of *C*. However, as pointed out by C. M. Edwards in [9], "whether the results hold for general JB*-triples remains an open question". The main result of this paper gives a positive answer to this question for general JB*-triples (see Theorem 2.3). The solution presented in this paper is itself a novelty which simplifies the results in [11] with a new and shorter orthogonalization process based on Bergmann operators.

Reference [6] is a basic forerunner of the problem studied in this paper. Briefly speaking, we could say [6] contains a partial answer for our problem in terms of Pelczynski's Property (V). We recall that a series $\sum_{n\geq 1} z_n$ in a Banach space X is called *weakly unconditionally convergent* (w.u.c. for short) if for each $\varphi \in X^*$ we have $\sum_{n=1}^{\infty} |\varphi(z_n)| < \infty$, equivalently, there exists C > 0 such that for any finite subset $\mathscr{F} \subset \mathbb{N}$ and $|\varepsilon_k| = 1$ in \mathbb{C} we have $\|\sum_{k \in \mathscr{F}} \varepsilon_k z_k\| \le C$, (see, for example, [7, Theorem 6 in Chapter 5]). It is clear that every bounded linear operator between Banach spaces preserves w.u.c. series. A Banach space X has property (V) if for any (bounded) non relatively weakly compact set $K \subseteq X^*$ there exists a w.u.c. series $\sum_n x_n$ in X such that $\sup_{\varphi \in X^*} |\varphi(x_n)|$ does not converge to zero. It is established in [6] that every JB*-triple satisfies property (V). We shall see later that every bounded sequence of mutually orthogonal elements in a JB*-triple defines a w.u.c. series, however the reciprocal statement need not hold in general. We shall establish a new orthogonalization method to construct sequences of mutually orthogonal elements from w.u.c. series.

1.1. Preliminaries

Let *X* and *Y* be two Banach spaces, throughout the paper, the symbol L(X, Y) will stand for the space of all bounded linear operators from *X* to *Y*. We shall write L(X) for the space L(X, X).

A JB*-triple *E* is said to be *abelian* if $\{\{x, y, z\}, u, v\} = \{x, y, \{z, u, v\}\} = \{x, \{y, z, u\}, v\}$, for all $x, y, z, u, v \in E$. The JB*-subtriple generated by a single element is always abelian.

Let *x* be an element in a JB*-triple *E*. Throughout the paper the symbol E_x will denote the norm-closed subtriple of *E* generated by *x*. It is known that E_x is JB*-triple isomorphic to the C*-algebra $C_0(L)$ of all complex-valued continuous functions on *L* vanishing at 0, where *L* is a locally compact subset of (0, ||x||] satisfying that $L \cup \{0\}$ is compact. Further, there exists a JB*-triple isomorphism $\Psi : E_x \to C_0(L)$ which satisfies $\Psi(x)(t) = t$, for all *t* in *L* (compare [20, 4.8] and [21, 1.15]). In particular, given a natural *n*, the symbol $x^{\frac{1}{2n-1}}$ makes sense as an element of $E_x \cong C_0(L)$.

An element *u* in a JB*-triple *E* is said to be a *tripotent* if $u = \{u, u, u\}$. Given a tripotent $u \in E$, the mappings $P_i(u) : E \to E_i$, (i = 0, 1, 2), defined by

$$P_{2}(u) = L(u, u)(2L(u, u) - id_{E}),$$

$$P_{1}(u) = 4L(u, u)(id_{E} - L(u, u)), \text{ and }$$

$$P_{0}(u) = (id_{E} - L(u, u))(id_{E} - 2L(u, u)),$$

are contractive linear operators. For each $j = 0, 1, 2, P_j(u)$ is the projection onto the eigenspace $E_j(u)$ of L(u, u) corresponding to the eigenvalue $\frac{j}{2}$ and

$$E = E_2(u) \oplus E_1(u) \oplus E_0(u)$$

is the *Peirce decomposition* of E relative to u. Furthermore, the following

Peirce rules are satisfied,

(1)
$$\{E_2(u), E_0(u), E\} = \{E_0(u), E_2(u), E\} = 0,$$

(2)
$$\left\{E_i(u), E_j(u), E_k(u)\right\} \subseteq E_{i-j+k}(u),$$

where $E_{i-j+k}(u) = 0$ whenever $i - j + k \notin \{0, 1, 2\}$ (compare [13]).

When W is a JBW*-triple, the JBW*-subtriple generated by a norm-one element $x \in W$ coincides with the weak*-closure, $\overline{W_x}^{w^*}$, of W_x . By [18, Lemma 3.11] there exists a JBW*-triple isomorphism, Ψ , between $\overline{W_x}^{w^*}$ and a commutative W*-algebra *C*. We shall write $r(x) = \Psi^{-1}(1)$, where 1 denotes the unit element in *C*. It is clear that r(x), commonly termed the range tripotent of *x*, is a tripotent in *W*. Moreover, r(x) coincides with the weak*-limit of the sequence $x^{\frac{1}{2n-1}}$, $(n \in \mathbb{N})$. It is also known that the JBW*-algebra $E_2^{**}(r(x))$ contains *x* as a positive element (compare [10]).

Given a JBW*-triple W, a norm-one element φ in W_* and a norm-one element z in W with $\varphi(z) = 1$, it follows from [2, Proposition 1.2] that the assignment

$$(x, y) \mapsto \varphi \{x, y, z\}$$

defines a positive sesquilinear form on *W*. Further, for every norm-one element *w* in *W* satisfying $\varphi(w) = 1$, we have $\varphi\{x, y, z\} = \varphi\{x, y, w\}$, for all $x, y \in W$. The mapping $x \mapsto ||x||_{\varphi} := (\varphi\{x, x, z\})^{\frac{1}{2}}$, defines a prehilbertian seminorm on *W*. The Strong*-topology (noted by $S^*(W, W_*)$) is the topology on *W* generated by the family $\{|| \cdot ||_{\varphi} : \varphi \in W_*, ||\varphi|| = 1\}$. This topology was introduced by T. J. Barton and Y. Friedman in [2].

When φ is an element in the dual of a JB*-triple *E*, the prehilbertian seminorm $\|.\|_{\varphi}$ is defined on E^{**} (and hence on *E*) by the assignment

$$x \mapsto ||x||_{\varphi} := (\varphi \{x, x, z\})^{\frac{1}{2}}$$

where z is a norm-one element in E^{**} with $\varphi(z) = \|\varphi\|$. The inequality

$$||\{x, y, z\}|| \le ||x|| ||y|| ||z||$$

holds for every x, y and z in a JB*-triple E (compare [14, Corollary 3]). Consequently,

$$||x||_{\varphi} \le ||\varphi||^{\frac{1}{2}} ||x||,$$

for all $\varphi \in E^*$ and $x \in E$.

For each element *a* in a JB*-triple *E*, the conjugate linear mapping Q(a) from *E* to itself is defined, for each element *b* in *E*, by $Q(a)(b) := \{a, b, a\}$. Let *x*, *y* be two elements in *E*. The *Bergmann operator* $B(x, y) : E \to E$

310

is defined by B(x, y)(z) = z - 2L(x, y)(z) + Q(x)Q(y)(z), for all z in E (compare [22] or [28, page 305]). In the particular case of u being a tripotent, it is known that $P_0(u) = B(u, u)$.

Let x be a symmetric element in a unital JB*-algebra A. The operator $U_x : A \to A$ is defined by $U_x(y) := 2(y \circ x) \circ x - x^2 \circ y$, for all y in A. When A is regarded as a JB*-triple, we have $U_x(y) = Q(x)(y^*), \forall y \in A$. Since by [16, Lemma 2.4.21] $U_x^2 = U_{x^2}$, we deduce that

$$Q(x)^{2}(y) = U_{x}^{2}(y) = U_{x^{2}}(y) = Q(x^{2})(y^{*}), \quad \forall y \in A.$$

We also have $2L(x, x)(y) = 2(x^2 \circ y + (y \circ x) \circ x - (y \circ x) \circ x) = 2x^2 \circ y$, for all $y \in A$. Therefore, for each $y \in A$ we have

$$B(x, x)(y) = y - 2L(x, x)(y) + Q(x)^{2}(y) = Q(1 - x^{2})(y^{*}),$$

which implies that $||B(x, x)|| \le 1$, whenever x belongs to the closed unit ball of A.

A tripotent u, in a JB*-triple E, is said to be *bounded* if there exists a normone element $x \in E$ such that L(u, u)x = u. The element x is a bound of uand in this case we write $u \le x$. We shall write $y \le u$ whenever y is a positive element in the JB*-algebra $E_2(u)$ (compare [11, pages 79–80]).

LEMMA 1.1. Let x be a symmetric element in the closed unit ball of a JB^* -algebra A. Then B(x, x) is a contractive operator. Moreover, if p is a projection in A with $p \le x$, then B(x, x)(y) belongs to $A_0(p)$, for every y in A.

PROOF. We may assume that A is unital. The comments preceding this lemma guarantee that $||B(x, x)|| \le 1$ and $B(x, x)y = Q(1-x^2)(y^*), (y \in A)$. Since $p \le x^2 \le 1$, we have $0 \le 1 - x^2 \le 1 - p$, and hence $1 - x^2$ belongs to $A_0(p)$. Finally, it follows, by Peirce rules, that $B(x, x)y \in A_0(p)$.

Lemma 1.1 above can be now extended to JB*-triples.

LEMMA 1.2. Let E be a JB*-triple, e a tripotent in E, and x a normone element in E with $e \leq x$. Then B(x, x) is a contractive operator and B(x, x)(y) belongs to $E_0(e)$, for every y in E.

PROOF. By [14, Corollary 1] we may suppose that *E* embeds as a subtriple into a JBW*-algebra, *A*, of the form $L(H) \bigoplus^{\infty} N$, where *H* is a complex Hilbert space and *N* is an ℓ_{∞} -sum of finite-dimensional simple JB*-algebras.

We may then assume that

$$e \le x \ (\le r(x))$$

in the JBW*-algebra A, where r(x) is the range tripotent of x in A. From [4, Lemma 2.3] and [22, Corollary 5.12] there exists a weak*-continuous isometric triple embedding T from A into A, such that T(r(x)) (and hence T(e)) is a projection in A. It is easy to check that $0 \le T(e) \le T(x) \le T(r(x))$. By Lemma 1.1, we have $T(B(x, x)(y)) = B(T(x), T(x))(T(y)) \in A_0(T(e))$, for every $T(y) \in T(E) \subseteq A$. Therefore, $B(x, x)(y) \in A_0(e) \cap E = E_0(e)$, for all $y \in E$.

Another central notion in the paper is the concept of orthogonality. Two elements a, b in a JB*-triple, E, are said to be *orthogonal* (written $a \perp b$) if L(a, b) = 0. Lemma 1 in [5] shows that $a \perp b$ if and only if one of the following statements holds:

$$\{a, a, b\} = 0; \quad a \perp r(b); \quad r(a) \perp r(b); \quad E_2^{**}(r(a)) \perp E_2^{**}(r(b)); r(a) \in E_0^{**}(r(b)); \quad a \in E_0^{**}(r(b)); \quad b \in E_0^{**}(r(a)); \quad E_a \perp E_b.$$

The Peirce rule (1) shows that for each tripotent *u* in a JB*-triple *E*, $E_0(u) \perp E_2(u)$. The Jordan identity and the above reformulations assure that

(3)
$$a \perp \{x, y, z\},$$
 whenever $a \perp x, y, z.$

Let *A* be a C*-algebra. Two elements $a, b \in A$ are said to be orthogonal for the C*-algebra product if $ab^* = b^*a = 0$. However, *A* also enjoys a structure of JB*-triple. We have, a priory, two notions of orthogonality in *A*. It can be checked, from the above reformulations, that two elements a, b in *A* are orthogonal for the C*-algebra product if and only if they are orthogonal when *A* is considered as a JB*-triple.

For every tripotent e in a JB*-triple E, the formula

$$||P_2(e)(x) + P_0(e)(x)|| = \max\{||P_2(e)(x)||, ||P_0(e)(x)||\},\$$

holds for every *x* in *E* (compare [13, Lemma 1.3]). In particular, if $\{x_1, \ldots, x_m\}$ is a set of mutually orthogonal elements in a JB*-triple *E*, it follows from the above equivalent reformulations of orthogonality and the previous formula, that the JB*-subtriple generated by the set $\{x_1, \ldots, x_m\}$ coincides with the ℓ_{∞} -sum $\bigoplus_{k=1,\ldots,m}^{\infty} E_{x_k}$ and hence it is JB*-triple isomorphic to an abelian C*-algebra.

We deduce from the above paragraph that every bounded sequence of pairwise orthogonal elements in a JB*-triple defines a w.u.c. series.

2. Main result

The aim of this section is to prove that weak compactness in the dual of a JB*-triple is commutatively determined. Bergmann operators, wisely used, turn to be a powerful tool in orthogonalization processes. More concretely, we shall make use of appropriated Bergmann operators to orthogonalize weakly unconditional convergent series in JB*-triples.

LEMMA 2.1. Let *E* be a JB*-triple, *v* a tripotent in *E*, and φ an element in the closed unit ball of *E**. Then for each $y \in E_2(v)$ with $||y|| \le 1$ we have

(4)
$$|\varphi(x - B(y, y)(x))| < 21 ||x|| ||v||_{\varphi},$$

for every $x \in E$.

PROOF. By Peirce rules we have $L(y, y)(x) \in E_2(v) \oplus E_1(v)$ and $Q(y)^2(x) \in E_2(v)$. Since $x - B(y, y)(x) = 2L(y, y)(x) - Q(y)^2(x)$, the desired statement follows from [11, Lemma 3.2].

We shall also need the following strengthening version of [11, Lemma 3.4].

LEMMA 2.2. Let *E* be a *JB*^{*}-triple, $\theta > 0$, $\delta_n > 0$ ($n \in N$), and let $\{\varphi_1\} \cup \{\varphi_n\}_{n\geq 2}$ be a sequence of functionals in the closed unit ball of *E*^{*}. Given an element *x* in the closed unit ball of *E*, satisfying $|\varphi_1(x)| > \theta$ and $||x||_{\varphi_n} < \delta_n$, $n \geq 2$, there exist two elements *a*, *y* in the unit ball of *E_x*, and two tripotents *u*, *v* in $(E_x)^{**}$ such that $a \leq u \leq y \leq v$, $|\varphi_1(a)| > \frac{3}{4}\theta$, and $||v||_{\varphi_n} < \frac{8}{\theta}\delta_n$, $n \geq 2$.

PROOF. We have already commented that E_x is JB*-triple isomorphic to the C*-algebra $C_0(L)$, where L is a locally compact subset of (0, ||x||] satisfying that $L \cup \{0\}$ is compact. Moreover, there exists a JB*-triple isomorphism $\Psi : E_x \to C_0(L)$ satisfying $\Psi(x)(t) = t$, for all t in L. By slight abuse of notation, E_x and $C_0(L)$ will be identified.

Let $a, y \in C_0(L)$ be the functions defined by

$$a(t) := \begin{cases} 0, & \text{if } 0 \le t \le \frac{\theta}{4} \\ 2t - \frac{\theta}{2}, & \text{if } \frac{\theta}{4} \le t \le \frac{\theta}{2} \\ t, & \text{if } \frac{\theta}{2} \le t \le \|x\| \end{cases}$$
$$y(t) := \begin{cases} 0, & \text{if } 0 \le t \le \frac{\theta}{8} \\ \frac{8}{\theta} \left(t - \frac{\theta}{8}\right), & \text{if } \frac{\theta}{8} \le t \le \frac{\theta}{4} \\ 1, & \text{if } \frac{\theta}{4} \le t \le \|x\|. \end{cases}$$

Since $||x - a|| < \frac{\theta}{4}$ and $|\varphi_1(x)| > \theta$ it follows that $|\varphi_1(a)| > \frac{3}{4}\theta$.

The element x decomposes as the sum of two orthogonal elements $x = x\chi_{\left[\frac{\theta}{8}, \|x\|\right]} + x\chi_{\left[0, \frac{\theta}{8}\right)}$ (in $(E_x)^{**}$). Since $\|\cdot\|_{\varphi_n}^2$ is additive when applied to the sum of orthogonal elements, we get $\|x\chi_{\left[\frac{\theta}{8}, \|x\|\right]}\|_{\varphi_n} < \delta_n$. We define $u = \chi_{\left[\frac{\theta}{4}, \|x\|\right]}$, $v = \chi_{\left[\frac{\theta}{8}, \|x\|\right]}$ (in $(E_x)^{**}$), which clearly satisfy that $a \le u \le y \le v$.

Since $\|\cdot\|_{\varphi}$ is an order-preserving map on the set of positive elements in $(E_x)^{**}$ ([11, Lemma 3.3]), we have that $\|v\|_{\varphi_n} \leq \|\frac{8}{\theta}x\chi_{\left[\frac{\theta}{8},\|x\|\right]}\|_{\varphi_n} < \frac{8}{\theta}\delta_n$ $(n \geq 2)$, which finishes the proof.

Our main result can be stated now.

THEOREM 2.3. Let E be a JB^* -triple and K be a bounded subset in E^* . The following are equivalent:

- a) K is not relatively weakly compact.
- b) There exist a sequence of pairwise orthogonal elements (a_n) in the closed unit ball of E, a sequence (φ_n) in K, and $\vartheta > 0$ satisfying that $|\varphi_n(a_n)| > \vartheta$ for all $n \in \mathbb{N}$.
- b') There exists a subtriple C of E isometric to an abelian C*-algebra such that the restriction of K to it is not relatively weakly compact.

PROOF. a) \Rightarrow b). Since JB*-triples have Pelczynski's Property (V) (compare [6]) there exist $\theta > 0$, $(\varphi_n) \subset K$ and a w.u.c. series $\sum_{n\geq 1} z_n$ in E with $||z_n|| \leq 1$, such that $|\varphi_n(z_n)| > \theta$, $\forall n \in \mathbb{N}$. We may assume that K is contained in the closed unit ball of E^* .

Let us fix a decreasing sequence (δ_n) of positive numbers satisfying $\frac{336}{\theta} \sum_{n=1}^{\infty} \delta_n < \frac{\theta}{2}$. We shall construct, inductively, a sequence (a_n) of mutually orthogonal elements in the closed unit ball of *E*, infinite subsets $\mathbb{N} \supseteq N_1 \supseteq N_2 \supseteq \cdots \supseteq N_{n-1} \supseteq N_n \supseteq \cdots$ and a strictly increasing mapping $\sigma : \mathbb{N} \to \mathbb{N}$ such that for each natural *n* there exists a w.u.c. series $\sum_{k \in N_n} z_{n,k}$ in *E* with $||z_{n,k}|| \leq 1$,

$$z_{n,k} \perp a_j$$
, for all $j \in \{1, \ldots, n\}, k \in N_n$,

$$|\varphi_{\sigma(i)}(a_i)| > \frac{3}{8}\theta, \qquad i=1,\ldots,n,$$

and

$$|\varphi_k(z_{n,k})| > \theta - \frac{336}{\theta} \sum_{j=1}^n \delta_j > \frac{\theta}{2}, \qquad k \in N_n.$$

To define a_1 , choose $j_1 \in \mathbb{N}$ with $\frac{1}{j_1} < \frac{1}{C^2}\delta_1^2$, where *C* is the positive constant associated to the w.u.c. series $\sum_{n>1} z_n$ (see comments in the Introduction).

Since every Hilbert space is of cotype 2 (compare [25, page 32]) we have

$$\begin{split} & \frac{1}{j_1} \sum_{k=1}^{j_1} \|z_k\|_{\varphi_m}^2 \le \frac{1}{j_1} \int_D \left\| \sum_{k=1}^{j_1} \varepsilon_k z_k \right\|_{\varphi_m}^2 d\mu \\ & \le \frac{1}{j_1} \int_D \|\varphi_m\| \left\| \sum_{k=1}^{j_1} \varepsilon_k z_k \right\|^2 d\mu \le \frac{C^2}{j_1} < \delta_1^2, \end{split}$$

where $m \in \mathbb{N}$, $D = \{-1, 1\}^{\mathbb{N}}$, $\varepsilon_k \in \{\pm 1\}$ and μ is the uniform probability measure on D. Since the above inequality is satisfied for every $m \in \mathbb{N}$, there exist $\sigma(1) \in \{1, \ldots, j_1\}$ and an infinite subset $N_1 \subset \mathbb{N}$ such that $\sigma(1) < \min N_1$ and $\|z_{\sigma(1)}\|_{\varphi_m} < \delta_1$, for every $m \in N_1$.

Applying Lemma 2.2 to $z_{\sigma(1)}$ and $\{\varphi_{\sigma(1)}\} \cup \{\varphi_m\}_{m \in N_1}$ we obtain two elements a_1, y_1 in the closed unit ball of $E_{z_{\sigma(1)}}$ and two tripotents $u_1, v_1 \in E^{**}$ such that $a_1 \leq u_1 \leq y_1 \leq v_1$,

$$|\varphi_{\sigma(1)}(a_1)| > \frac{3}{4}\theta > \frac{3}{8}\theta, \quad \text{and} \quad \|v_1\|_{\varphi_m} < \frac{8}{\theta}\delta_1 < \frac{16}{\theta}\delta_1, \quad m \in N_1.$$

We define $z_{1,k} := B(y_1, y_1)z_k$, $(k \in N_1)$, which are elements in the closed unit ball of *E* by Lemma 1.2. Clearly $\sum_{k \in N_1} z_{1,k}$ also is a w.u.c. series. Lemma 1.2 assures that $z_{1,k}$ is contained in $E \cap E_0^{**}(u_1)$. Since $a_1 \in E_2^{**}(u_1)$, we deduce that $a_1 \perp z_{1,k}$, $\forall k \in \mathbb{N}$ (compare with the reformulations of orthogonality given in page 312). Moreover $\|\sum_{k \in \mathscr{F}} \varepsilon_k z_{1,k}\| = \|B(y_1, y_1)(\sum_{k \in \mathscr{F}} \varepsilon_k z_k)\| \le C$, for every finite $\mathscr{F} \in N_1$ and $|\varepsilon_k|$ in C. Now, noticing that $y_1 \in E_2^{**}(v_1)$, Lemma 2.1 applies to assure that

$$|\varphi_k(z_{1,k})| \ge |\varphi_k(z_k)| - |\varphi_k(z_k - z_{1,k})| > \theta - 21\frac{16}{\theta}\delta_1\left(>\frac{\theta}{2}\right),$$

for all $k \in N_1$.

Suppose now, in our inductive step, that $a_1, \ldots, a_n, N_n \subsetneq N_{n-1} \subsetneq \cdots \subsetneq N_1 \subsetneq N, \sigma(1) < \sigma(2) < \cdots < \sigma(n)$, and the w.u.c. series $\sum_{k \in N_n} z_{n,k}$ in *E* have been constructed satisfying the corresponding induction hypothesis.

Take $j_{n+1} \in \mathbb{N}$ with $\frac{1}{j_{n+1}} < \frac{1}{C^2} \delta_{n+1}^2$ and a subset $D_{n+1} \subset N_n$ with exactly j_{n+1} elements. As before, for $m \in N_n$ we have

$$\begin{split} \frac{1}{j_{n+1}} \sum_{k \in D_{n+1}} \|z_{n,k}\|_{\varphi_m}^2 &\leq \frac{1}{j_{n+1}} \int_D \left\| \sum_{k \in D_{n+1}} \varepsilon_k z_{n,k} \right\|_{\varphi_m}^2 d\mu \\ &\leq \frac{1}{j_{n+1}} \int_D \|\varphi_m\| \left\| \sum_{k \in D_{n+1}} \varepsilon_k z_{n,k} \right\|^2 d\mu \leq \frac{C^2}{j_{n+1}} < \delta_{n+1}^2, \end{split}$$

hence there exist $\sigma(n+1) \in D_{n+1}$ and an infinite subset $N_{n+1} \subseteq N_n$ such that $\sigma(n+1) < \min N_{n+1}$ and $\|z_{n,\sigma(n+1)}\|_{\varphi_m} < \delta_{n+1}$, for every $m \in N_{n+1}$.

Applying Lemma 2.2 to $z_{n,\sigma(n+1)}$ and $\{\varphi_{\sigma(n+1)}\} \cup \{\varphi_m\}_{m \in N_{n+1}}$ we obtain two elements a_{n+1}, y_{n+1} in the closed unit ball of $E_{z_{n,\sigma(n+1)}}$ and two tripotents $u_{n+1}, v_{n+1} \in (E_{z_{n,\sigma(n+1)}})^{**}$ such that $a_{n+1} \leq u_{n+1} \leq y_{n+1} \leq v_{n+1}$,

$$|\varphi_{\sigma(n+1)}(a_{n+1})| > \frac{3}{8}\theta$$
, and $||v_{n+1}||_{\varphi_m} < \frac{16}{\theta}\delta_{n+1}$, $m \in N_{n+1}$.

By the induction hypothesis, $z_{n,k} \perp a_j$, for all $j \in \{1, ..., n\}$, $k \in N_n$. Since $a_{n+1}, y_{n+1}, u_{n+1}$, and v_{n+1} belong to $(E_{z_{n,\sigma(n+1)}})^{**}$, the equivalent reformulations of orthogonality given in page 312, guarantee that they are all orthogonal to a_j , for all $j \in \{1, ..., n\}$.

We define $z_{n+1,k} := B(y_{n+1}, y_{n+1})(z_{n,k}), k \in N_{n+1}$. Again, Lemma 1.2 assures that $z_{n+1,k}$ is contained in $E \cap E_0^{**}(u_{n+1})$. Since $a_{n+1} \in E_2^{**}(u_{n+1})$, we deduce that a_{n+1} is orthogonal to each $z_{n+1,k}$, $\forall k \in N_{n+1}$. Since y_{n+1} and $z_{n,k}$ are orthogonal to a_j for all $j \in \{1, ..., n\}, k \in N_{n+1}$, using (3), it can be seen that

$$z_{n+1,k} = B(y_{n+1}, y_{n+1})(z_{n,k}) = z_{n,k} - 2L(y_{n+1}, y_{n+1})(z_{n,k}) + Q(y_{n+1})^2(z_{n,k})$$

is orthogonal to a_j , for all $j \in \{1, ..., n\}, k \in N_{n+1}$. Moreover,

$$\left\|\sum_{k\in\mathscr{F}}\varepsilon_k z_{n+1,k}\right\| = \left\|B(y_{n+1}, y_{n+1})\left(\sum_{k\in\mathscr{F}}\varepsilon_k z_{n,k}\right)\right\| \leq C,$$

for any finite subset $\mathscr{F} \subset N_{n+1}$, and $|\varepsilon_k| = 1$ in C.

Finally, since $y_{n+1} \in E_2^{**}(v_{n+1})$, Lemma 2.1 assures that

$$\begin{aligned} |\varphi_k(z_{n+1,k})| &\ge |\varphi_k(z_{n,k})| - |\varphi_k(z_{n,k} - z_{n+1,k})| \\ &> \theta - \frac{336}{\theta} \sum_{j=1}^n \delta_j - 21 \frac{16}{\theta} \delta_{n+1} \\ &= \theta - \frac{336}{\theta} \sum_{j=1}^{n+1} \delta_j \quad \left(> \frac{\theta}{2} \right) \quad \text{for all} \quad k \in N_{n+1}. \end{aligned}$$

b) \Rightarrow b') Since the elements (a_n) are mutually orthogonal, the subtriple \mathscr{C} generated by the family $\{a_n : n \in \mathbb{N}\}$ coincides with the ℓ_{∞} -sum $\bigoplus_{n=1}^{\infty} E_{a_n}$. We recall that each E_{a_n} is isomorphic to $C_0(L)$, for a suitable locally compact Hausdorff space. Therefore \mathscr{C} is triple-isomorphic to an abelian C*-algebra and the restriction of *K* to \mathscr{C} cannot be relatively weakly compact.

 $b' \Rightarrow a$) is obvious.

A Dieudonné-type theorem for JC*-triples was established in [11, Theorem 4.2]. When in the proof of the just quoted result, Theorem 2.3 replaces [11, Theorem 3.5], we obtain the following generalization of Dieudonné's theorem in the more general setting of JB*-triples.

THEOREM 2.4. Let (ϕ_n) be a sequence in the dual of a JB^{*}-triple E such that the sequence $(\phi_n(r(x)))$ converges whenever r(x) is the range tripotent of a norm-one element x in E. Then there exists ϕ in E^{*} satisfying that (ϕ_n) converges weakly to ϕ . In particular, if $(\phi_n(r(x))) \rightarrow 0$, for every range tripotent, r(x), of a norm-one element x in E, then (ϕ_n) is a weakly null sequence in E^{*}.

The vector-valued version of the above theorem follows now as a consequence. The following corollary also generalizes the main result in [19] with a shorter and simpler proof.

COROLLARY 2.5. Let E be a JB*-triple, X a Banach space and (T_n) a sequence of weakly compact operators from E to X. Suppose that $\lim T_n^{**}(r(x))$ exists whenever r(x) is the range tripotent of a norm-one element x in E. Then there exists a unique weakly compact operator $T : E \to X$, such that $T^{**}(z) = \lim T_n^{**}(z)$, for every $z \in E^{**}$.

PROOF. We claim that for each $z \in E^{**}$, $(T_n^{**}(z))$ is a norm convergent sequence. Otherwise, there exist $z \in E^{**}$, $\varepsilon > 0$, and $(\sigma(n)) \subset \mathbb{N}$ such that $||T_{\sigma(n+1)}^{**}(z) - T_{\sigma(n)}^{**}(z)|| > \varepsilon$, $\forall n \in \mathbb{N}$. Defining $S_k = T_{\sigma(k+1)}^{**} - T_{\sigma(k)}^{**}$, we can find norm-one functionals $\psi_k \in X^*$ satisfying $|\psi_k(S_k(z))| > \varepsilon$ ($\forall k \in \mathbb{N}$). Since $T_k^{**} : E^{**} \to X^{**}$ is weak*-to-weak* continuous, the sequence $(\psi_k T_k^{**})_{k \in \mathbb{N}}$ lies, in fact, in E^* . In particular, the sequence $(\psi_k S_k) \subseteq E^*$ satisfies, by hypothesis, that $\lim \psi_k S_k(r) = 0$, for every range tripotent, r = r(x), of a norm-one element x in E. Theorem 2.4 assures that $(\psi_k S_k)$ is weakly null in E^* , which contradicts $|\psi_k S_k(z)| = |\psi_k S_k(z)| > \varepsilon$, $(k \in \mathbb{N})$.

The assignment $z \mapsto Lz := \lim T_n^{**}(z)$ defines a linear mapping $L : E^{**} \to X^{**}$, which is continuous by the Uniform Boundedness Principle. Since each T_n is weakly compact we have $T_n^{**}(E^{**}) \subseteq X, \forall n \in \mathbb{N}$. In particular $L(E^{**}) \subseteq X$. Therefore $T := L_{|E} : E \to X$ is a well-defined bounded linear operator.

Theorem 2.4 implies that, for each $\psi \in X^*$ the $\psi T_n^{**} = T_n^*(\psi) \in E^*$ converge weakly to some $\varphi \in E^*$. Thus $\psi L = \varphi \in E^*$, which proves that L is weak*-to-weak* continuous. It is now clear that $T^{**} = L$. Finally, the expression $T^{**}(E^{**}) = L(E^{**}) \subseteq X$ shows that T is weakly compact.

ACKNOWLEDGEMENTS. The authors would like to express their gratitude to the anonymous referee whose valuable comments made the presentation more consistent.

REFERENCES

- 1. Akemann, C. A., *The dual space of an operator algebra*, Trans. Amer. Math. Soc. 126 (1967), 286–302.
- Barton, T. J., and Friedman, Y., Bounded derivations of JB*-triples, Quart. J. Math. Oxford Ser. (2) 41 (1990), 255–268.
- Barton, T. J., and Timoney, R. M., Weak*-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), 177–191.
- Bunce, L. J., Fernández-Polo, F. J., Martínez-Moreno, J., and Peralta, A. M., A Saitô-Tomita-Lusin Theorem for JB*-triples and applications, Q. J. Math. 57 (2006), 37–48.
- Burgos, M., Fernández-Polo, F. J., Garcés, J. Martínez, J. and Peralta, A. M., Orthogonality preservers in C*-algebras, JB*-algebras and JB*-triples, J. Math. Anal. Appl. 348 (2008), 220–233.
- Chu, Ch-H., and Mellon, P., JB*-triples have Pełczynski's Property V, Manuscripta Math. 93 (1997), 337–347.
- Diestel, J., Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, New York 1984.
- Dineen, S., *The second dual of a JB*-triple system*, pp. 67–69 in: Complex Analysis, Functional Analysis and Approximation Theory (ed. J. Múgica), North-Holland Math. Studies 125, North-Holland, Amsterdam 1986.
- 9. Edwards, C. M., review of [11], MathSciNet, Math. Rev. MR2254553 (2007g:46104).
- Edwards, C. M. and Rüttimann, G. T., Compact tripotents in bi-dual JB*-triples, Math. Proc. Cambridge Philos. Soc. 120 (1996), 155–173.
- Fernández-Polo, F. J., and Peralta, A. M., *Closed tripotents and weak compactness in the dual space of a JB*-triple*, J. London Math. Soc. 74 (2006), 75–92.
- 12. Fernández-Polo, F. J., and Peralta, A. M., *A short proof of a Theorem of Pfitzner*, Q. J. Math. (to appear).
- Friedman, Y., and Russo, B., *Structure of the predual of a JBW*-triple*, J. Reine Angew. Math. 356 (1985), 67–89.
- Friedman, Y., and Russo, B., *The Gelfand-Naimark theorem for JB*-triples*, Duke Math. J. 53 (1986), 139–148.
- 15. Grothendieck, A., Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canadian J. Math. 5 (1953), 129–173.
- Hanche-Olsen, H. and Størmer, E., *Jordan Operator Algebras*, Monographs and Studies in Math. 21, Pitman, Boston, MA 1984.
- 17. Harmand, P., Werner, D. and Werner, W., *M-ideals in Banach spaces and Banach algebras*, Lecture Notes in Math. 1547, Springer, Berlin 1993.
- Horn, G., Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand. 61 (1987), 117–133.
- Isidro, J. M., A note on weakly compact operators on JB*-triples and a theorem of Dieudonné, preprint 2005.
- Kaup, W., Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228 (1977), 39–64.
- 21. Kaup, W., A Riemann mapping theorem for bounded symmentric domains in complex Banach spaces, Math. Z. 183 (1983), 503–529.
- 22. Loos, O., *Bounded Symmetric Domains and Jordan Pairs*, Math. Lectures, University of California, Irvine 1977.
- Peralta, A. M., Some remarks on weak compactness in the dual space of a JB*-triple, Tohoku Math. J. 58 (2006), 149–159.
- 24. Pfitzner, H., Weak compactness in the dual of a C*-algebra is determined commutatively, Math. Ann. 298 (1994), 349–371.

318

- Pisier, G., Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics 60, Amer. Math. Soc., Providence, RI 1986.
- Takesaki, M., On the conjugate space of operator algebra, Tôhoku Math. J. (2) 10 (1958), 194–203.
- 27. Takesaki, M., Theory of Operator Algebras I, Springer, New York 1979.
- Upmeier, H., Symmetric Banach manifolds and Jordan C*-algebras, North-Holland Math. Studies 104, Notas de Matemática [Mathematical Notes] 96, North-Holland, Amsterdam 1985.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO FACULTAD DE CIENCIAS UNIVERSIDAD DE GRANADA 18071 GRANADA SPAIN *E-mail:* pacopolo@ugr.es, aperalta@ugr.es