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ON THE ASYMPTOTIC EXPANSION OF THE
LOGARITHM OF BARNES TRIPLE

GAMMA FUNCTION

STAMATIS KOUMANDOS and HENRIK L. PEDERSEN

Abstract
It is shown that the remainders in an asymptotic expansion of the logarithm of Barnes triple gamma
function give rise to completely monotonic functions. Furthermore, error bounds are found.

1. Introduction and results

This paper deals with Barnes’ triple gamma function. We recall the defini-
tions of the multiple gamma functions. The multiple zeta function ζN with
parameters a1, . . . , aN is defined as

ζN(z, w) =
∞∑

m1,...,mN =0

(w + a1m1 + · · · + aNmN)−z

for �z > N and �w > 0. Regarded as a function of z, ζN(z, w) has a
meromorphic extension to the complex plane with simple poles only at z =
1, . . . , N . The logarithm of the multiple gamma function is defined as

log �N(w|a1, . . . , aN) = ∂zζN(z, w)|z=0.

The multiple zeta and gamma functions have been introduced by E. W. Barnes
in a series of papers, published in the beginning of the twentieth century, where
several properties of these functions and applications to the theory of elliptic
and theta functions have been obtained. Over the years, many researchers
have also studied these functions, largely due to their importance in analytic
number theory and mathematical physics. The functions are related to Selberg
zeta functions and determinants of Laplacians occurring in symmetric space
theory. S. N. M. Ruijsenaars gave in [18] complete asymptotic expansions for
multiple zeta and gamma functions in terms of an expression involving powers
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of 1/w and generalized Bernoulli polynomials. We also refer to [18] and the
references given therein for background information on the subject.

In this work, we investigate Ruijsenaars’ asymptotic expansion of the log-
arithm of the triple gamma function with parameters a1 = a2 = a3 = 1. It is
given as follows.

log �3(w|1, 1, 1) = B3,3(w)

6
log w − 11

36
B3,0w

3 − 3

4
B3,1w

2 − 1

2
B3,2w

+
m∑

k=4

(−1)k

k!
(k − 4)!B3,kw

3−k + R3,m(w),(1)

where the triple Bernoulli polynomials B3,k(x) are defined by

t3ext

(et − 1)3
=

∞∑
k=0

B3,k(x)
tk

k!
, |t | < 2π

and the triple Bernoulli numbers by B3,k = B3,k(0).
The remainder R3,m of order m has the representation

(2) R3,m(w) =
∫ ∞

0

e−wt

t4

(
t3

(1 − e−t )3
−

m∑
k=0

(−1)k

k!
B3,kt

k

)
dt.

Here, �w > 0 and m ≥ 3. See [18, (3.13) and (3.14)]. Our main results
concern the remainders R3,m(x), x > 0 and they are given in Theorems 1.3,
1.4 and 1.5 below. Before stating them we recall the definition of a completely
monotonic function.

Definition 1.1. A function f : (0, ∞) → R is called completely mono-
tonic if f is infinitely often differentiable and

(3) (−1)nf (n)(x) ≥ 0

for x > 0 and for n ≥ 0.

It is known that if a non constant function f is completely monotonic
then strict inequality holds in (3), see [8] and [9]. Such a function is positive,
decreasing and convex (a typical example is f (x) = 1/xa for a > 0). A
fundamental result of Bernstein relates completely monotonic functions with
the Laplace transform (see [20, p. 161]).

Theorem 1.2 (Bernstein). A function f is completely monotonic if and
only if

f (x) =
∫ ∞

0
e−sx dμ(s),
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where μ is a positive measure on [0, ∞) making the integral converge for any
x > 0.

We remark that completely monotonic functions appear in e.g. potential
theory in connection with convolution semigroups. See [7].

Our first result deals with complete monotonicity of the even indexed re-
mainders R3,2n. This settles a conjecture stated by the first named author in
[13, Conjecture 2].

Theorem 1.3. For n ≥ 2 the remainder (−1)nR3,2n(x) has the represent-
ation

(−1)nR3,2n(x) =
∫ ∞

0
e−xt t2n−3(−1)nνn(t) dt,

where νn(t) is defined in Lemma 2.3 below.
For n ≥ 6 the remainder (−1)nR3,2n(x) is a completely monotonic function.

For n ≤ 5 it is not completely monotonic.

It has already been pointed out in [18, p. 118] that the above remainder
satisfies

R3,m(x) = O(x2−m), x → ∞.

Here we provide a sharp upper estimate for (−1)n R3,2n(x).

Theorem 1.4. For n ≥ 5 the following error bound holds

(−1)nR3,2n(x) <
|B3,2n+1|

(2n − 2)(2n − 1)(2n)(2n + 1)

1

x2n−2

+ |B3,2n+2|
(2n − 1)(2n)(2n + 1)(2n + 2)

1

x2n−1
.

This bound is sharp as x → ∞ in the sense that

lim
x→∞(−1)nR3,2n(x)x2n−2 = |B3,2n+1|

(2n − 2)(2n − 1)(2n)(2n + 1)
.

We also obtain some information about the remainders of odd order.

Theorem 1.5. For n ≥ 1 the remainder (−1)n−1 R3,2n+1(x) has the rep-
resentation

(−1)n−1 R3,2n+1(x) =
∫ ∞

0
e−xt t2n−3(−1)n−1λn(t) dt,

where
λn(t) = νn(t) + B3,2n+1

(2n + 1)!
, n = 1, 2, . . . .
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For 1 ≤ n ≤ 4 the remainder (−1)n−1 R3,2n+1(x) is a completely monotonic
function. For n ≥ 5 it is not completely monotonic.

In all cases the following error bound holds

|R3,2n+1(x)| <
|B3,2n+2|

(2n − 1)(2n)(2n + 1)(2n + 2)

1

x2n−1

+ |B3,2n+3|
(2n)(2n + 1)(2n + 2)(2n + 3)

1

x2n

+ |B3,2n+5|
(2n + 2)(2n + 3)(2n + 4)(2n + 5)

1

x2n+1
.

Remarks 1.6. 1) Theorem 1.3 states in particular that (−1)nR3,2n(x) is
a positive function on (0, ∞) for n ≥ 6 and thus the left hand side of the
inequality in Theorem 1.4 can be replaced by

∣∣R3,2n(x)
∣∣, when n ≥ 6.

2) The asymptotic behaviour as x tends to 0 is found to be

lim
x→0+

(−1)nR3,2n(x)x2n−3 = (−1)nB3,2n

(2n − 3)(2n − 2)(2n − 1)2n
.

(For a derivation see Remark 3.6.) The error bound (Theorem 1.4) is thus of a
different magnitude in x as x tends to 0. If one replaces n by n − 1 in the term

|B3,2n+2|
(2n − 1)(2n)(2n + 1)(2n + 2)

1

x2n−1

in the error bound one obtains the asymptotic behaviour as x tends to 0.

The proofs of Theorems 1.3–1.5 are based on a suitable representation of
the integrand

(4)
t3

(1 − e−t )3
−

2n∑
k=0

(−1)k

k!
B3,kt

k

in the integral (2). This representation is obtained via Cauchy’s residue theorem
(see Lemma 2.3). The statement about complete monotonicity of
(−1)nR3,2n(x) for n ≥ 2 is obtained via Bernstein’s theorem by showing
that (4) is positive (for t > 0) for n ≥ 6 and changes sign for 2 ≤ n ≤ 5.
Here, some results of independent interest on Turán-type inequalities for odd
Bernoulli polynomials (see Lemma 2.1) and a new result concerning the mono-
tonicity of the quotient of two series of functions (see Lemma 2.2) are proved.

The proofs of Theorem 1.4 and Theorem 1.5 depend on suitable upper
bounds on the integrand above.
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We have earlier investigated the remainders in asymptotic expansions of
Euler’s gamma function and Barnes double gamma function, see [13], [14],
[16] and [17], where analogous results were found. The results obtained in the
present paper are technically more difficult.

2. Preliminary results

In this section we formulate some preliminary results, some of which are of
independent interest, e.g. Turán-type inequalities for odd Bernoulli polynomi-
als and monotonicity properties of a quotient of series of functions. We also
state and indicate the proof of the fundamental representation of the integrand
(4).

First of all we recall the definition of the ordinary Bernoulli polynomials
Bk(x) and numbers Bk = Bk(0):

t etx

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
, |t | < 2π.

The triple Bernoulli polynomials are related to the ordinary Bernoulli polyno-
mials by the formula

B3,k(x)

= k(k − 1)(k − 2)

2

{
(x − 1)(x − 2)

Bk−2(x)

k − 2
− (2x − 3)

Bk−1(x)

k − 1
+ Bk(x)

k

}
,

see [15, p. 187]. It follows from this that

(5)
B3,2k+1

(2k + 1)(2k − 1)
= 3

2
B2k

and

(6)
B3,2k+2

2k(2k + 1)(2k + 2)
= B2k

2k
+ 1

2

B2k+2

(2k + 2)
.

The following lemma furnishes an inequality between (ordinary) Bernoulli
polynomials of odd order.

Lemma 2.1. For n ≥ 6 the following inequality holds

(−1)nB2n−1(u) > 2(−1)n−1B2n−3(u), 0 < u < 1/2.

The reverse strict inequality holds when 2 ≤ n ≤ 5.

We also need a quite general result about quotients of certain series of
functions.
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Lemma 2.2. Suppose that ak > 0, bk > 0 and that {uk(x)} is a sequence
of positive C1-functions such that the series

∞∑
k=0

aku
(l)
k (x) and

∞∑
k=0

bku
(l)
k (x), l = 0, 1

converge absolutely and uniformly over compact subsets of [0, ∞). Define

f (x) =
∑∞

k=0 akuk(x)∑∞
k=0 bkuk(x)

.

• If the logarithmic derivatives u′
k(x)/uk(x) form an increasing sequence

of functions and if ak/bk decreases (resp. increases) then f (x) decreases
(resp. increases) for x ≥ 0.

• If the logarithmic derivatives u′
k(x)/uk(x) form a decreasing sequence of

functions and if ak/bk decreases (resp. increases) then f (x) increases (resp.
decreases) for x ≥ 0.

We now turn to the representation of the integrand in the integral (2) repres-
enting the remainder. Up to the factor ewt/t4 the integrand is itself a remainder
in a certain Taylor expansion. Put

f (t) :=
(

t

1 − e−t

)3

.

Lemma 2.3. We have, for t > 0 and n ≥ 2,

f (t) −
2n∑
l=0

f (l)(0)

l!
t l = t2n+1νn(t),

where νn satisfies

(−1)nνn(t) =
∞∑

k=1

1

t2 + (2πk)2

1

(2πk)2n−2
·
{
t

(
(2n − 2)(2n − 1)

(2πk)2
− 2

)

+ t

t2 + (2πk)2

(
−3t − 2(t2 − (2πk)2)

t2 + (2πk)2
+ 2(2n − 2)

)

+ 2πk

t2 + (2πk)2

(
6πk + 3(2n − 2)(t2 + (2πk)2)

2πk

+ 8πkt

t2 + (2πk)2
+ 2(2n − 2)t

2πk

)}
.(7)
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Proof of Lemma 2.3. The relation is found using a contour integration
argument similar to the arguments in [17]. We consider the auxiliary mero-
morphic function

g(z) := f (z)

(t − z)zL
.

It has a simple pole at z = t , a pole of multiplicity L at z = 0 and triple poles
at z = 2πik, k �= 0, assuming that t is different from the poles at 0 and 2πik,
k �= 0. The corresponding residues at t and 0 are equal to

Res(g, t) = −f (t)

tL

Res(g, 0) =
L−1∑
l=0

f (l)(0)

l!
t l−L.

The residue at z = 2πik is computed by the formula

Res(g, 2πik) = 1

2
lim

z→2πik

(
g(z)(z − 2πik)3

)′′
.

In this way it follows that

2 Res(g, 2πik) = 2

t − 2πik

1

(2πik)L−3

+ 3

t − 2πik

1

(2πik)L−3

(
1

t − 2πik
+ 3 − L

2πik

)

+ 1

t − 2πik

1

(2πik)L−3

(
2

(t − 2πik)2

+ 2(3 − L)

(t − 2πik)2πik
+ (3 − L)(2 − L)

(2πik)2

)
.

Since Res(g, −2πik) = Res(g, 2πik) we find∑
k �=0

Res(g, −2πik)

=
∞∑

k=1

2� Res(g, 2πik)

=
∞∑

k=1

�
{

1

t − 2πik

1

(2πik)L−3

(
2 + 3

t − 2πik
+ 3(3 − L)

2πik

+ 2

(t − 2πik)2
+ 2(3 − L)

(t − 2πik)2πik
+ (3 − L)(2 − L)

(2πik)2

)}
.
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This sum is evaluated for L = 2n + 1 by finding the real- and imaginary parts
of the factors. The computation is standard, but care has to be taken in order
to group the terms suitably.

Then Cauchy’s residue theorem is invoked where one integrates along the
boundary of the rectangle EK = [−K, K]× [−2πi(K +1/2), 2πi(K +1/2)]
(where K is a positive integer) and lets K tend to infinity.

In the investigation of the remainders in an asymptotic expansion of the
logarithm of Euler’s gamma function the representation similar to (7) is

(8)
t

et − 1
= 1− t

2
+

n∑
k=1

B2k

(2k)!
t2k + (−1)nt2n+2Vn(t), for all t > 0,

where the term Vn(t) is given as (see [19, p. 64])

(9) Vn(t) =
∞∑

k=1

2

(t2 + 4π2k2)(2πk)2n
, n ≥ 0.

We notice that

(10) Vn(0) = (−1)n
B2n+2

(2n + 2)!
,

which can be seen directly from (8) or from the well-known formula

(11) ζ(2n) = (−1)n−1(2π)2n

2(2n)!
B2n, n = 1, 2, . . .

As mentioned in the introduction, it is the representation in Lemma 2.3 that
makes it possible for us to show that (−1)nνn(t) > 0 for n ≥ 6 and hence that
(−1)nR3,2n(x) is completely monotonic for these values of n. See Lemma 3.2
and Lemma 3.3.

The remainder t2n+1νn(t) can also be expressed in terms of the functions
Vn(t) and Vn−1(t), defined in (9). This has already been noticed in [13, Sec-
tion 3] and the relation is

(12) (−1)nνn(t) = −tVn−1(t) + 3
2 (2n − 1)Vn−1(t) + 3

2 tV ′
n−1(t)

+ n(2n + 1)tVn(t) + (2n + 1)t2V ′
n(t) + 1

2 t3V ′′
n (t),

for t > 0 and n ≥ 2. Relation (12) is used in proving the error bound in
Theorem 1.4.

We remark that it has not been possible for us to obtain positivity of
(−1)nνn(t) from (12). The terms are not grouped in the “right” way. On the
other hand, the representation in (7) does not seem well suited for upper bounds.
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3. Proof of the main results

Notice that
(−1)nνn(t) = ξn(t) + ηn(t),

where

ξn(t) = t

∞∑
k=1

1

t2 + (2πk)2

1

(2πk)2n−2

(
(2n − 2)(2n − 1)

(2πk)2
− 2

)

and

ηn(t)

=
∞∑

k=1

1

(t2 + (2πk)2)2

1

(2πk)2n−2

{
t

(
−3t − 2(t2 − (2πk)2)

t2 + (2πk)2
+ 2(2n − 2)

)

+ 2πk

(
6πk + 3(2n − 2)(t2 + (2πk)2)

2πk
+ 8πkt

t2 + (2πk)2
+ 2(2n − 2)t

2πk

)}
.

We now state some key lemmas. They are proved in the next section.

Lemma 3.1. We have

ζ(2n)

ζ(2n − 2)
>

(2π)2

(n − 1)(2n − 1)

for n ≥ 6 and the reverse strict inequality holds for 2 ≤ n ≤ 5.

Lemma 3.2. The expression ηn(t) is positive for t > 0 and n ≥ 2.

Lemma 3.3. The expression ξn(t) is positive for t > 0 and n ≥ 6.

Proof of Theorem 1.3. The positivity of (−1)nνn(t) for n ≥ 6 follows
from Lemma 3.2 and 3.3. Therefore,

(−1)nR3,2n(x) =
∫ ∞

0
e−xt t2n−3(−1)nνn(t) dt

is completely monotonic for n ≥ 6 in view of Theorem 1.2.
For 2 ≤ n ≤ 5 the function (−1)nνn(t) changes its sign on the positive

axis. Indeed,
(−1)nνn(0) = 3(2n − 1)

ζ(2n)

(2π)2n
> 0

and

lim
t→∞ t (−1)nνn(t) = (2n − 2)(2n − 1)

ζ(2n)

(2π)2n
− 2

ζ(2n − 2)

(2π)2n−2
< 0
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by Lemma 3.1. Therefore (−1)nR3,2n(x) is not completely monotonic for these
values of n, by Theorem 1.2.

Next we turn to the error bound. Here the following lemma about the func-
tions Vn is essential.

Lemma 3.4. Let


n(t) := −[
(4n + 2) V ′

n(t) + t V ′′
n (t)

]

and
�n(t) := n(2n + 1) Vn(t) − Vn−1(t).

Then the following inequalities hold for t > 0:

(13) 0 < 
n(t) < 2t (4n + 3) (−1)n−1 B2n+4

(2n + 4)!
, for all n ≥ 0

and

(14) 0 < �n(t) < �n(0), for all n ≥ 5,

while

(15) �n(0) < �n(t) < 0, for all 1 ≤ n ≤ 4.

Lemma 3.5. The following inequalities hold

(−1)n−1B3,2n+1 > 0, n ≥ 0,

(−1)nB3,2n+2 > 0, n ≥ 5,

(−1)nB3,2n+2 < 0, 1 ≤ n ≤ 4.

Proof of Theorem 1.4. Using (13) and (14) in (12) we find that

(−1)nt2n−3νn(t)

= − 1
2
n(t)t

2n−1+ 3
2V ′

n−1(t)t
2n−2+ 3

2 (2n − 1)Vn−1(t)t
2n−3 + �n(t)t

2n−2

< 3
2 (2n − 1)Vn−1(0)t2n−3 + �n(0)t2n−2

= 3
2 (2n − 1)Vn−1(0)t2n−3 + [n(2n + 1) Vn(0) − Vn−1(0)]t2n−2.
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We deduce from this and relation (10) that, for n ≥ 5,

(−1)nR3,2n(x) =
∫ ∞

0
e−xt t2n−3(−1)nνn(t) dt

<
3

2

(−1)n−1B2n

(2n − 2)(2n)

1

x2n−2

+ (−1)n
{

1

2

B2n+2

(2n − 1)(2n + 2)
+ B2n

(2n − 1)(2n)

}
1

x2n−1

= |B3,2n+1|
(2n − 2)(2n − 1)(2n)(2n + 1)

1

x2n−2

+ |B3,2n+2|
(2n − 1)(2n)(2n + 1)(2n + 2)

1

x2n−1
.

We have used (5), (6) together with Lemma 3.5 in order to obtain the last
equality. The proof of the error bound is complete.

The asymptotic behaviour as x tends to infinity follows directly from the
expansion (1). Indeed,

R3,m(x) = (−1)m+1

(m + 1)!
(m − 3)!B3,m+1x

2−m + R3,m+1(x),

where (as noticed before) R3,k(x) = O(x2−k) as x → ∞. Therefore

lim
x→∞ R3,m(x)xm−2 = (−1)m+1

(m + 1)!
(m − 3)!B3,m+1.

This proves the result.

Remark 3.6. (Proof of the asymptotic behaviour of R3,2n(x) as x tends to
0.) We notice

|(−1)nνn(t)| ≤
∞∑

k=1

Const(n)

(2πk)2n−2
< ∞,

and hence for any s > 0 we have using Lebesgue’s theorem on dominated
convergence

lim
x→0+

(−1)nνn(s/x)s/x = lim
t→∞(−1)nνn(t)t

=
∞∑

k=1

1

(2πk)2n−2

(
(2n − 2)(2n − 1)

(2πk)2
− 2

)

= (2n − 2)(2n − 1)
ζ(2n)

(2π)2n
− 2

ζ(2n − 2)

(2π)2n−2
,
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and this gives

lim
x→0+

(−1)nR3,2n(x)x2n−3

= lim
x→0+

∫ ∞

0
e−ss2n−4(−1)nνn(s/x)s/x ds

= (2n − 4)!

(
(2n − 2)(2n − 1)

ζ(2n)

(2π)2n
− 2

ζ(2n − 2)

(2π)2n−2

)
,

which by (6) proves the asserted relation.

Proof of Theorem 1.5. We first give an expression of (−1)n−1λn(t) in
terms of the functions Vn(t) and Vn−1(t) which is analogous of (12). Using (5)
and (10) we obtain

(−1)n−1 B3,2n+1

(2n + 1)!
= 3

2
(2n − 1)Vn−1(0).

Then by the recurrence formula

(16) t2 Vn(t) = Vn−1(0) − Vn−1(t),

see [13] or [14, Proposition 2.5(i)], we deduce that

(−1)n−1 B3,2n+1

(2n + 1)!
= 3

2
(2n − 1)Vn−1(t) + 3

2
(2n − 1)t2Vn(t).

Combining this with (12) we find that

(−1)n−1λn(t) = tVn−1(t) + 3

2
(2n − 1)t2Vn(t) − 3

2
tV ′

n−1(t)

− n(2n + 1)tVn(t) − (2n + 1)t2V ′
n(t) − 1

2
t3V ′′

n (t).

= t

[
−�n(t) + t

2

n(t) + 3

2
(2n − 1)tVn(t) − 3

2
V ′

n−1(t)

]
,(17)

where �n(t) and 
n(t) are the functions defined in Lemma 3.4.
It follows from (17) that

(18) lim
t→0+

(−1)n−1λn(t)

t
= −�n(0) = (−1)n−1B3,2n+2

(2n + 2)!
< 0

for all n ≥ 5 according to the second inequality of Lemma 3.5. On the other
hand, for n ≥ 5, we also have

lim
t→∞(−1)n−1λn(t) = (−1)n−1B3,2n+1

(2n + 1)!
> 0,
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by the first inequality of Lemma 3.5. Taking into account the last two results,
we infer that the function (−1)n−1λn(t) changes sign on the positive axis
when n ≥ 5, and therefore the remainder (−1)n−1R3,2n+1(x) is not completely
monotonic for these values of n. It is, however, completely monotonic when
1 ≤ n ≤ 4. Indeed, this follows immediately using the last expression in (17)
and invoking (13) and (15) of Lemma 3.4.

The proof of the error bound uses a similar method as Theorem 1.4 taking
into consideration (17). Indeed, by (16) we obtain

3

2
(2n − 1)tVn(t) − 3

2
V ′

n−1(t)

= 3

2
(2n + 1)tVn(t) + 3

2
t2V ′

n(t) <
3

2
(2n + 1)tVn(0)

= 3

2
(2n + 1)t (−1)n

B2n+2

(2n + 2)!
.(19)

From the second inequality in (13) we have

(20)
t

2

n(t) < t2(4n + 3)(−1)n−1 B2n+4

(2n + 4)!
.

In view of (14) and (15) we have, for all n ≥ 1,

(21) |�n(t)| ≤ |�n(0)| = |B3,2n+2|
(2n + 2)!

.

Using (19), (20), (21) in (17) we conclude that

t2n−3|λn(t)| <
|B3,2n+2|
(2n + 2)!

t2n−2 + |B3,2n+3|
(2n + 3)!

t2n−1 + 2

3

4n + 3

2n + 3

|B3,2n+5|
(2n + 5)!

t2n,

whence the desired error estimate follows.

4. Proof of various lemmas

Proof of Lemma 2.1. We recall that for all n ≥ 1 we have (−1)nB2n−1(u) >

0, 0 < u < 1/2. Therefore, for 0 < u < 1/2, the assertion of the lemma is
equivalent to

(22) −B2n−1(u)

B2n−3(u)
> 2, 0 < u < 1/2, n ≥ 6.

It is shown in [11, Prop. 3] that Turán’s inequality holds for the odd Bernoulli
polynomials, viz.

(23) B2n+1(u) B2n−3(u) − B2n−1(u)2 > 0, n ≥ 2,
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for 0 < u < 1/2 (and by symmetry also for 1/2 < u < 1). This means that
the sequence

An(u) := −B2n−1(u)

B2n−3(u)

is strictly increasing for 0 < u < 1/2 for n ≥ 2. Hence for n ≥ 6 we have

An(u) = −B2n−1(u)

B2n−3(u)
> A6(u) = −B11(u)

B9(u)
>

25

9
> 2,

whence the desired inequality (22) follows. In the cases where 2 ≤ n ≤ 5 the
inequalities follow by an elementary computation.

Proof of Lemma 3.1. Using (11) and (6) we obtain the identity

(2n − 2)(2n − 1)ζ(2n)

(2π)2n
− 2ζ(2n − 2)

(2π)2n−2
= (−1)n−1 B3,2n

(2n)!
.

It is now clear that the desired inequality is equivalent to the second inequality
of Lemma 3.5.

For 2 ≤ n ≤ 5 one can easily check that the strict opposite inequality holds,
but this is also equivalent to the third inequality of Lemma 3.5.

Proof of Lemma 3.2. Since

2πk
3(2n − 2)(t2 + (2πk)2)

2πk
≥ 3(2n − 2)t2

and
−2(t2 − (2πk)2)

t2 + (2πk)2
≥ −2

it is found that

ηn(t) ≥
∞∑

k=1

1

(t2 + (2πk)2)2

1

(2πk)2n−2

{
t (−3t − 2 + 2(2n − 2))

+
(

3(2πk)2 + 3(2n − 2)t2 + 4(2πk)2t

t2 + (2πk)2
+ 2(2n − 2)t

)}

=
∞∑

k=1

1

(t2 + (2πk)2)2

1

(2πk)2n−2

{
2(2n − 3)t + 3(2πk)2

+ 3(2n − 3)t2 + 4(2πk)2t

t2 + (2πk)2
+ 2(2n − 2)t

}
.

Therefore, ηn(t) > 0 for t > 0 and n ≥ 2.
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We present two different proofs of Lemma 3.3. The first proof uses Lemma
2.1 and a representation of ξn(t) in terms of odd Bernoulli polynomials. The
second proof relies on Lemma 2.2, which is proved in the next section.

Proof I of Lemma 3.3. It is readily seen that the inequality ξn(t) > 0 is
equivalent to

(24) (2n − 1)(2n − 2)Vn(t) − 2Vn−1(t) > 0, t > 0,

where Vn(t) is defined in (9).
There is another representation (cf. [12]) of Vn(t) in terms odd Bernoulli

polynomials,

(25) Vn(t) = 1

(2n + 1)!

1

et − 1

∫ 1

0
etu(−1)n B2n+1(u) du.

Next we use (25) to show that inequality (24) holds for n ≥ 6. For 0 < u < 1,
we define the polynomials

Pn(u) = (−1)n
[
(2n − 1)(2n − 2)B2n+1(u) + 2n(2n + 1)2B2n−1(u)

]
.

Using (25) we see that (24) is equivalent to

(26)

∫ 1

0
etuPn(u) du > 0, t > 0.

It is easy to see that the polynomials Pn(u) satisfy the following properties:

Pn(1 − u) = −Pn(u), Pn(0) = Pn(1) = Pn(1/2) = 0, n ≥ 2.

Since etu is an increasing function of u for all t > 0, in order to establish (26)
we need only show that

(27) Pn(u) < 0, 0 < u < 1/2, n ≥ 6.

From Lemma 2.1 and the well-known relation B ′
k(u) = kBk−1(u) it follows

that P ′′
n (u) > 0 for 0 < u < 1/2. The polynomials Pn(u) are thus convex on

(0, 1/2) for all n ≥ 6 and since Pn(0) = Pn(1/2) = 0 inequality (27) follows
at once.

Remark 4.1. For n ≤ 5 it follows that ξn(t) < 0 for all t > 0. Indeed, in
the case n = 1 of (24) reduces to V0(t) > 0, and a direct calculation reveals
that Pn(u) > 0 for 0 < u < 1/2 and 1 ≤ n ≤ 5, therefore we have the reverse
inequality in (26).
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Proof II of Lemma 3.3. Clearly, ξn(t) > 0 for t > 0 is equivalent to

∑∞
k=1

1
t2+(2πk)2

1
(2πk)2n∑∞

k=1
1

t2+(2πk)2
1

(2πk)2n−2

>
1

(n − 1)(2n − 1)

for t > 0. This, in turn, is the same as

μn(s) ≡
∑∞

k=1
1

s2+k2
1

k2n∑∞
k=1

1
s2+k2

1
k2n−2

>
(2π)2

(n − 1)(2n − 1)

for s > 0.
From Lemma 2.2 it is obtained that μn(s) is decreasing on the positive line

and therefore

μn(s) >
(2π)2

(n − 1)(2n − 1)

holds for all s > 0 provided that

lim
s→∞ μn(s) ≥ (2π)2

(n − 1)(2n − 1)
.

It is readily computed that

lim
s→∞ μn(s) = ζ(2n)

ζ(2n − 2)

and hence, by Lemma 3.1, ξn(t) > 0 for t > 0 and n ≥ 6.

Proof of Lemma 3.4. For the proof of (13) we use the representation (9)
and, as in [14, Lemma 2.3], we find that for n ≥ 1 we have


n(t) =
∞∑

k=1

4t[(4n − 1)t2 + (4n + 3)(4k2π2)]

(t2 + 4π2k2)3(2πk)2n
> 0.

In the case where n = 0 we have V0(t) = 1
t2

(
1
2 t coth t

2 − 1
)
, hence 
0(t) =

1
4t3

(
8 + t3 coth t

2 − t3 coth3 t
2

)
> 0 for t > 0, by an elementary calculation.

On the other hand, it is easy to see that for n ≥ 1, we have

∞∑
k=1

(4n − 1)t2 + (4n + 3)(4k2π2)

(t2 + 4π2k2)3(2πk)2n
< (4n + 3)

ζ(2n + 4)

(2π)2n+4

= (4n + 3)(−1)n−1 B2n+4

2(2n + 4)!
.
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For n = 0 we have 
0(t) < t/120, by an elementary computation and this
completes the proof of the inequalities in (13).

For the proof of inequalities (14) and (15) we first observe that for all
n ≥ 1 we have limt→∞ �n(t) = 0. It is therefore sufficient to show that the
function �n(t) is strictly decreasing on [0, ∞) for n ≥ 5, whereas, it is strictly
increasing on [0, ∞) for 1 ≤ n ≤ 4. To this end, we use a representation for
V ′

n(t) (obtained in [13, (3.1)] using (25)), namely

(28) V ′
n(t) = − 1

(2n + 1)!
ϕ(t)

∫ 1/2

0
K(t, u)(−1)n+1 B2n+1(u) du,

where
ϕ(t) = 2tet

(et − 1)2

and
K(t, u) = u(1 − u)

[
sinh t (1 − u)

t (1 − u)
− sinh tu

tu

]
.

Note that for 0 < u < 1/2, we have K(t, u) > 0 and (−1)n+1B2n+1(u) > 0,
for all n. Using (28) we see that inequality �′

n(t) < 0 is equivalent to

∫ 1/2

0
K(t, u)

[
(−1)n+1B2n+1(u) − 2(−1)nB2n−1(u)

]
du > 0,

which is true for n ≥ 5 because of Lemma 2.1. By the same Lemma we also
deduce that �′

n(t) > 0, for 1 ≤ n ≤ 4.
The proof of Lemma 3.4 is complete.

Proof of Lemma 3.5. The first inequality follows directly from (5). Note
that −B3,1 = 3/2. For the second and third inequality we recall the second
equality in (18) (or use (10) and (6)),

�n(0) = (−1)nB3,2n+2

(2n + 2)!
,

where �n(t) is the function defined in Lemma 3.4. Since �n(0) > 0 for n ≥ 5
and �n(0) < 0 for 1 ≤ n ≤ 4, the proof of the lemma is complete.
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5. Proof of Lemma 2.2

The second proof of Lemma 3.3 requires the quotient

∑∞
k=1

1
t2+k2

1
k2n∑∞

k=1
1

t2+k2
1

k2n−2

to be decreasing on the positive line. It turns out that this is a special case of
Lemma 2.2. We have not been able to find references to a result of the kind
and generality in the literature. For the case of power series the result has
been known for a long time and has been used to obtain various inequalities
for special functions. See for instance, [1], [2], [3], [4], [5], [6] and [10]. A
particularly simple proof of this case can be found in [3]. Compare also [10,
Th. 4.4] for an analogous result in the case of ratio of polynomials of the same
degree.

Next we give a proof of Lemma 2.2.

Proof. We shall only show that f decreases if the sequence of logarithmic
derivatives u′

k/uk increases and ak/bk decreases. By differentiation it follows
that f decreases if

∞∑
k=0

aku
′
k(x)

∞∑
k=0

bkuk(x) ≤
∞∑

k=0

akuk(x)

∞∑
k=0

bku
′
k(x)

This inequality is equivalent to

∞∑
n=0

n∑
k=0

akbn−k

(
u′

k(x)un−k(x) − u′
n−k(x)uk(x)

) ≤ 0.

The expression dn,k(x) = u′
k(x)un−k(x) − u′

n−k(x)uk(x) for 0 ≤ k ≤ n sat-
isfies dn,k(x) = −dn,n−k(x) and since the sequence of functions u′

k(x)/uk(x)

is increasing it follows that dn,k(x) ≤ 0 for k ≤ n/2. Furthermore, since the
sequence ak/bk decreases we also have akbn−k − an−kbk ≥ 0 for k ≤ n/2.

In order to verify the assertion in the lemma we first consider even n, that
is n = 2m and find, using the symmetry relation dn,k(x) = −dn,n−k(x),

2m∑
k=0

akb2m−kd2m,k(x) =
m−1∑
k=0

akb2m−kd2m,k(x) +
2m∑

k=m+1

akb2m−kd2m,k(x)

=
m−1∑
k=0

(akb2m−k − a2m−kbk)d2m,k(x) ≤ 0.
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If n is odd, hence n = 2m − 1 it follows similarly that

2m−1∑
k=0

akb2m−1−kd2m−1,k(x)

=
m−1∑
k=0

akb2m−1−kd2m−1,k(x) +
2m−1∑
k=m

akb2m−1−kd2m−1,k(x)

=
m−1∑
k=0

(akb2m−1−k − a2m−1−kbk)d2m−1,k(x) ≤ 0.

Therefore f decreases. In the case where the logarithmic derivatives of uk(x)

form a strictly increasing sequence and where ak/bk is also strictly decreasing
it follows that f is also strictly decreasing.

Remark 5.1. The functions uk(x) are in the above application of the lemma
given by

uk(x) = 1

x2 + (k + 1)2

and it is easy to see that the logarithmic derivatives form an increasing se-
quence:

(log uk(x))′ = − 2x

x2 + (k + 1)2
.

Finally, ak = 1/(k + 1)2n and bk = 1/(k + 1)2n−2 so ak/bk = 1/(k + 1)2

decreases.
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