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REAL INTERPOLATION OF SOBOLEV SPACES

NADINE BADR

Abstract
We prove that W 1

p is a real interpolation space between W 1
p1

and W 1
p2

for p > q0 and 1 ≤ p1 <

p < p2 ≤ ∞ on some classes of manifolds and general metric spaces, where q0 depends on our
hypotheses.

1. Introduction

Do the Sobolev spacesW 1
p form a real interpolation scale for 1 < p < ∞? The

aim of the present work is to provide a positive answer for Sobolev spaces on
some metric spaces. Let us state here our main theorems for non-homogeneous
Sobolev spaces (resp. homogeneous Sobolev spaces) on Riemannian mani-
folds.

Theorem 1.1. Let M be a complete non-compact Riemannian manifold
satisfying the local doubling property (Dloc) and a local Poincaré inequality
(Pqloc), for some 1 ≤ q < ∞. Then for 1 ≤ r ≤ q < p < ∞, W 1

p is a real
interpolation space between W 1

r and W 1∞.

To prove Theorem 1.1, we characterize the K-functional of real interpola-
tion for non-homogeneous Sobolev spaces:

Theorem 1.2. Let M be as in Theorem 1.1. Then

1. there exists C1 > 0 such that for all f ∈ W 1
r +W 1∞ and t > 0

K
(
f, t

1
r ,W 1

r ,W
1
∞

) ≥ C1t
1
r

(|f |r∗∗ 1
r (t)+ |∇f |r∗∗ 1

r (t)
);

2. for r ≤ q ≤ p < ∞, there is C2 > 0 such that for all f ∈ W 1
p and

t > 0

K
(
f, t

1
r ,W 1

r ,W
1
∞

) ≤ C2t
1
r

(|f |q∗∗ 1
q (t)+ |∇f |q∗∗ 1

q (t)
)
.

In the special case r = q, we obtain the upper bound ofK in point 2 for every
f ∈ W 1

q +W 1∞ and hence get a true characterization of K .
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The proof of this theorem relies on a Calderón-Zygmund decomposition
for Sobolev functions (Proposition 3.5).

Above and from now on, |g|q∗∗ 1
q means (|g|q∗∗)

1
q – see Section 2 for the

definition of g∗∗.
The reiteration theorem ([6], Chapter 5, Theorem 2.4, p. 311) and an im-

provement result for the exponent of a Poincaré inequality due to Keith-Zhong
yield a more general version of Theorem 1.1. Define q0 = inf{q ∈ [1,∞[ :
(Pqloc) holds}.

Corollary 1.3. For 1 ≤ p1 < p < p2 ≤ ∞ with p > q0, W 1
p is a real

interpolation space between W 1
p1

and W 1
p2

. More precisely

W 1
p = (

W 1
p1
,W 1

p2

)
θ,p

where 0 < θ < 1 such that 1
p

= 1−θ
p1

+ θ
p2

.

However, if p ≤ q0, we only know that (W 1
p1
,W 1

p2
)θ,p ⊂ W 1

p .
For the homogeneous Sobolev spaces, a weak form of Theorem 1.2 is

available. This result is presented in Section 5. The consequence for the inter-
polation problem is stated as follows.

Theorem 1.4. Let M be a complete non-compact Riemannian manifold
satisfying the global doubling property (D) and a global Poincaré inequality
(Pq) for some 1 ≤ q < ∞. Then, for 1 ≤ r ≤ q < p < ∞, Ẇ 1

p is a real

interpolation space between Ẇ 1
r and Ẇ 1∞.

Again, the reiteration theorem implies another version of Theorem 1.4; see
Section 5 below.

For Rn and the non-homogeneous Sobolev spaces, our interpolation result
follows from the leading work of Devore-Scherer [14]. The method of [14]
is based on spline functions. Later, simpler proofs were given by Calderón-
Milman [9] and Bennett-Sharpley [6], based on the Whitney extension and
covering theorems. Since Rn admits (D) and (P1), we recover this result by
our method. Moreover, applying Theorem 1.4, we obtain the interpolation of
the homogeneous Sobolev spaces on Rn. Notice that this result is not covered
by the existing references.

The interested reader may find a wealth of examples of spaces satisfying
doubling and Poincaré inequalities – to which our results apply – in [1], [4],
[15], [18], [23].

Some comments about the generality of Theorem 1.1–1.4 are in order.
First of all, completeness of the Riemannian manifold is not necessary (see
Remark 4.3). Also, our technique can be adapted to more general metric-
measure spaces, see Sections 7–8. Finally it is possible to build examples
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where interpolation without a Poincaré inequality is possible. The question of
the necessity of a Poincaré inequality for a general statement arises. This is
discussed in the appendix.

The initial motivation of this work was to provide an answer for the inter-
polation question for Ẇ 1

p . This problem was explicitly posed in [3], where the

authors interpolate inequalities of type ‖� 1
2 f ‖p ≤ Cp‖|∇f |‖p on Riemannian

manifolds.
Let us briefly describe the structure of this paper. In Section 2, we review

the notions of a doubling property as well as the real K interpolation method.
In Sections 3 to 5, we study in detail the interpolation of Sobolev spaces in
the case of a complete non-compact Riemannian manifold M satisfying (D)
and (Pq) (resp. (Dloc) and (Pqloc)). We briefly mention the case where M is a
compact manifold in Section 6. In Section 7, we explain how our results extend
to more general metric-measure spaces. We apply this interpolation result to
Carnot-Carathéodory spaces, weighted Sobolev spaces and to Lie groups in
Section 8. Finally, the appendix is devoted to an example where the Poincaré
inequality is not necessary to interpolate Sobolev spaces.

Acknowledgements. I am deeply indebted to my Ph.D advisor P. Aus-
cher, who suggested to study the topic of this paper, and for his constant
encouragement and useful advices. I would like to thank P. Koskela for his
thorough reading and processing of the paper. Also I am thankful to P. Hajlasz
for his interest in this work and M. Milman for communicating me his paper
with J. Martin [30]. Finally, I am also grateful to G. Freixas, with whom I had
interesting discussions regarding this work.

2. Preliminaries

Throughout this paper we will denote by 11E the characteristic function of a
set E and Ec the complement of E. If X is a metric space, Lip will be the set
of real Lipschitz functions on X and Lip0 the set of real, compactly supported
Lipschitz functions on X. For a ball B in a metric space, λB denotes the ball
co-centered with B and with radius λ times that of B. Finally, C will be a
constant that may change from an inequality to another and we will use u ∼ v

to say that there exists two constants C1, C2 > 0 such that C1u ≤ v ≤ C2u.

2.1. The doubling property

By a metric-measure space, we mean a triple (X, d, μ)where (X, d) is a metric
space and μ a non negative Borel measure. Denote by B(x, r) the open ball of
center x ∈ X and radius r > 0.

Definition 2.1. Let (X, d, μ) be a metric-measure space. One says that
X satisfies the local doubling property (Dloc) if there exist constants r0 > 0,
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0 < C = C(r0) < ∞, such that for all x ∈ X, 0 < r < r0 we have

(Dloc) μ(B(x, 2r)) ≤ Cμ(B(x, r)).

FurthermoreX satisfies a global doubling property or simply doubling property
(D) if one can take r0 = ∞. We also say that μ is a locally (resp. globally)
doubling Borel measure.

Observe that if X is a metric-measure space satisfying (D) then

diam(X) < ∞ ⇔ μ(X) < ∞ ([1]).

Theorem 2.2 (Maximal theorem ([11])). Let (X, d, μ) be a metric-measure
space satisfying (D). Denote by M the uncentered Hardy-Littlewood maximal
function over open balls of X defined by

Mf (x) = sup
B:x∈B

|f |B

where fE := −
∫
E
f dμ := 1

μ(E)

∫
E
f dμ. Then

1. μ({x : Mf (x) > λ}) ≤ C
λ

∫
X

|f | dμ for every λ > 0;

2. ‖Mf ‖Lp ≤ Cp‖f ‖Lp , for 1 < p ≤ ∞.

2.2. The K-method of real interpolation

The reader can refer to [6], [7] for details on the development of this theory.
Here we only recall the essentials to be used in the sequel.

Let A0, A1 be two normed vector spaces embedded in a topological Haus-
dorff vector space V . For each a ∈ A0 + A1 and t > 0, we define the K-
functional of interpolation by

K(a, t, A0, A1) = inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1).

For 0 < θ < 1, 1 ≤ q ≤ ∞, we denote by (A0, A1)θ,q the interpolation
space between A0 and A1:

(A0, A1)θ,q =
{
a ∈ A0 + A1

: ‖a‖θ,q =
(∫ ∞

0

(
t−θK(a, t, A0, A1)

)q dt
t

) 1
q

< ∞
}
.

It is an exact interpolation space of exponent θ between A0 and A1, see [7],
Chapter II.
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Definition 2.3. Letf be a measurable function on a measure space (X,μ).
The decreasing rearrangement of f is the function f ∗ defined for every t ≥ 0
by

f ∗(t) = inf{λ : μ({x : |f (x)| > λ}) ≤ t}.
The maximal decreasing rearrangement of f is the function f ∗∗ defined for
every t > 0 by

f ∗∗(t) = 1

t

∫ t

0
f ∗(s)ds.

It is known that (Mf )∗ ∼ f ∗∗ and μ({x : |f (x)| > f ∗(t)}) ≤ t for all
t > 0. We refer to [6], [7], [8] for other properties of f ∗ and f ∗∗.

We conclude the preliminaries by quoting the following classical result ([7]
p. 109):

Theorem 2.4. Let (X,μ) be a measure space where μ is a totally σ -finite
positive measure. Let f ∈ Lp + L∞, 0 < p < ∞ where Lp = Lp(X, dμ).
We then have

1. K(f, t, Lp, L∞) ∼ (∫ tp
0 (f

∗(s))p ds
) 1
p and equality holds for p = 1;

2. for 0 < p0 < p < p1 ≤ ∞, (Lp0 , Lp1)θ,p = Lp with equivalent norms,
where 1

p
= 1−θ

p0
+ θ

p1
with 0 < θ < 1.

3. Non-homogeneous Sobolev spaces on Riemannian manifolds

In this section M denotes a complete non-compact Riemannian manifold. We
writeμ for the Riemannian measure onM , ∇ for the Riemannian gradient, | · |
for the length on the tangent space (forgetting the subscript x for simplicity)
and ‖ · ‖p for the norm on Lp(M,μ), 1 ≤ p ≤ +∞. Our goal is to prove
Theorem 1.2.

3.1. Non-homogeneous Sobolev spaces

Definition 3.1 ([2]). Let M be a C∞ Riemannian manifold of dimension
n. Write E1

p for the vector space of C∞ functions ϕ such that ϕ and |∇ϕ| ∈
Lp, 1 ≤ p < ∞. We define the Sobolev space W 1

p as the completion of E1
p

for the norm ‖ϕ‖W 1
p

= ‖ϕ‖p + ‖|∇ϕ|‖p.
We denote W 1∞ for the set of all bounded Lipschitz functions on M .

Proposition 3.2 ([2], [20]). Let M be a complete Riemannian manifold.
Then C∞

0 and in particular Lip0 is dense in W 1
p for 1 ≤ p < ∞.

Definition 3.3 (Poincaré inequality on M). We say that a complete
Riemannian manifold M admits a local Poincaré inequality (Pqloc) for some
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1 ≤ q < ∞ if there exist constants r1 > 0, C = C(q, r1) > 0 such that, for
every function f ∈ Lip0 and every ball B ofM of radius 0 < r < r1, we have

(Pqloc) −
∫
B

|f − fB |qdμ ≤ Crq −
∫
B

|∇f |qdμ.

M admits a global Poincaré inequality (Pq) if we can take r1 = ∞ in this
definition.

Remark 3.4. By density of C∞
0 in W 1

p , we can replace Lip0 by C∞
0 .

3.2. Estimation of the K-functional of interpolation

In the first step, we prove Theorem 1.2 in the global case. This will help us to
understand the proof of the more general local case.

3.2.1. The global case . Let M be a complete Riemannian manifold satis-
fying (D) and (Pq), for some 1 ≤ q < ∞. Before we prove Theorem 1.2, we
make a Calderón-Zygmund decomposition for Sobolev functions inspired by
the one done in [3]. To achieve our aims, we state it for more general spaces
(in [3], the authors only needed the decomposition for the functions f in C∞

0 ).
This will be the principal tool in the estimation of the functional K .

Proposition 3.5 (Calderón-Zygmund lemma for Sobolev functions). Let
M be a complete non-compact Riemannian manifold satisfying (D). Let 1 ≤
q < ∞ and assume that M satisfies (Pq). Let q ≤ p < ∞, f ∈ W 1

p and
α > 0. Then one can find a collection of balls (Bi)i , functions bi ∈ W 1

q and a
Lipschitz function g such that the following properties hold:

(3.1) f = g +
∑
i

bi

(3.2) |g(x)| ≤ Cα and |∇g(x)| ≤ Cα, μ− a.e x ∈ M

(3.3) supp bi ⊂ Bi,

∫
Bi

(|bi |q + |∇bi |q) dμ ≤ Cαqμ(Bi)

(3.4)
∑
i

μ(Bi) ≤ Cα−p
∫
(|f | + |∇f |)pdμ

(3.5)
∑
i

χBi ≤ N.
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The constants C and N only depend on q, p and on the constants in (D) and
(Pq).

Proof. Let f ∈ W 1
p , α > 0. Consider 	 = {x ∈ M : M(|f | +

|∇f |)q(x) > αq}. If 	 = ∅, then set

g = f, bi = 0 for all i

so that (3.2) is satisfied according to the Lebesgue differentiation theorem.
Otherwise the maximal theorem – Theorem 2.2 – gives us

(3.6)

μ(	) ≤ Cα−p∥∥(|f | + |∇f |)q∥∥ p

q
p

q

≤ Cα−p
(∫

|f |p dμ+
∫

|∇f |p dμ
)

< +∞.

In particular	 = M asμ(M) = +∞. LetF be the complement of	. Since	
is an open set distinct ofM , let (Bi) be a Whitney decomposition of 	 ([12]).
The balls Bi are pairwise disjoint and there exist two constants C2 > C1 > 1,
depending only on the metric, such that

1. 	 = ∪iBi with Bi = C1Bi and the balls Bi have the bounded overlap
property;

2. ri = r(Bi) = 1
2d(xi, F ) and xi is the center of Bi ;

3. each ball Bi = C2Bi intersects F (C2 = 4C1 works).

For x ∈ 	, denote Ix = {i : x ∈ Bi}. By the bounded overlap property of the
balls Bi , we have that 
Ix ≤ N . Fixing j ∈ Ix and using the properties of the
Bi’s, we easily see that 1

3 ri ≤ rj ≤ 3ri for all i ∈ Ix . In particular, Bi ⊂ 7Bj
for all i ∈ Ix .

Condition (3.5) is nothing but the bounded overlap property of the Bi’s and
(3.4) follows from (3.5) and (3.6). The doubling property and the fact that
Bi ∩ F = ∅ yield

(3.7)

∫
Bi

(|f |q + |∇f |q) dμ ≤
∫
Bi

(|f | + |∇f |)q dμ

≤ αqμ(Bi)

≤ Cαqμ(Bi).

Let us now define the functions bi . Let (χi)i be a partition of unity of 	
subordinated to the covering (Bi), such that for all i, χi is a Lipschitz function
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supported inBi with ‖|∇χi |‖∞ ≤ C
ri

. To this end it is enough to chooseχi(x) =
ψ

(
C1d(xi ,x)

ri

)(∑
k ψ

(
C1d(xk,x)

rk

))−1
, where ψ is a smooth function, ψ = 1 on

[0, 1], ψ = 0 on
[ 1+C1

2 ,+∞[
and 0 ≤ ψ ≤ 1. We set bi = (f − fBi )χi . It

is clear that supp bi ⊂ Bi . Let us estimate
∫
Bi

|bi |qdμ and
∫
Bi

|∇bi |qdμ. We
have∫

Bi

|bi |q dμ =
∫
Bi

|(f − fBi )χi |q dμ ≤ C

(∫
Bi

|f |qdμ+
∫
Bi

|fBi |q dμ
)

≤ C

∫
Bi

|f |q dμ

≤ Cαqμ(Bi).

We applied Jensen’s inequality in the second estimate, and (3.7) in the last one.
Since ∇(

(f − fBi )χi
) = χi∇f + (f − fBi )∇χi , the Poincaré inequality (Pq)

and (3.7) yield
∫
Bi

|∇bi |q dμ ≤ C

(∫
Bi

|χi∇f |q dμ+
∫
Bi

|f − fBi |q |∇χi |q dμ
)

≤ Cαqμ(Bi)+ C
Cq

r
q

i

r
q

i

∫
Bi

|∇f |q dμ

≤ Cαqμ(Bi).

Therefore (3.3) is proved.
Set g = f −∑

i bi . Since the sum is locally finite on	, g is defined almost
everywhere on M and g = f on F . Observe that g is a locally integrable
function onM . Indeed, let ϕ ∈ L∞ with compact support. Since d(x, F ) ≥ ri
for x ∈ supp bi , we obtain

∫ ∑
i

|bi ||ϕ| dμ ≤
(∫ ∑

i

|bi |
ri
dμ

)
sup
x∈M

(
d(x, F )|ϕ(x)|)

and
∫ |bi |

ri
dμ =

∫
Bi

|f − fBi |
ri

χi dμ ≤ (
μ(Bi)

) 1
q′
(∫

Bi

|∇f |q dμ
) 1

q

≤ Cαμ(Bi).

We used the Hölder inequality, (Pq) and the estimate (3.7), q ′ being the con-
jugate of q. Hence

∫ ∑
i |bi ||ϕ|dμ ≤ Cαμ(	) supx∈M

(
d(x, F )|ϕ(x)|). Since

f ∈ L1,loc, we deduce that g ∈ L1,loc. (Note that since b ∈ L1 in our case,
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we can say directly that g ∈ L1,loc. However, for the homogeneous case –
Section 5 – we need this observation to conclude that g ∈ L1,loc.) It remains
to prove (3.2). Note that

∑
i χi(x) = 1 and

∑
i ∇χi(x) = 0 for all x ∈ 	. We

have

∇g = ∇f −
∑
i

∇bi = ∇f −
(∑

i

χi

)
∇f −

∑
i

(f − fBi )∇χi

= 11F (∇f )+
∑
i

fBi∇χi.

From the definition of F and the Lebesgue differentiation theorem, we have
that 11F (|f | + |∇f |) ≤ α μ − a.e.. We claim that a similar estimate holds
for h = ∑

i fBi∇χi . We have |h(x)| ≤ Cα for all x ∈ M . For this, note first
that h vanishes on F and is locally finite on 	. Then fix x ∈ 	 and let Bj be
some Whitney ball containing x. For all i ∈ Ix , we have |fBi − fBj | ≤ Crjα.
Indeed, since Bi ⊂ 7Bj , we get

(3.8)

|fBi − f7Bj | ≤ 1

μ(Bi)

∫
Bi

|f − f7Bj | dμ

≤ C

μ(Bj )

∫
7Bj

|f − f7Bj | dμ

≤ Crj

(
−
∫

7Bj

|∇f |qdμ
) 1

q

≤ Crjα

where we used Hölder inequality, (D), (Pq) and (3.7). Analogously |f7Bj −
fBj | ≤ Crjα. Hence

|h(x)| =
∣∣∣∑
i∈Ix
(fBi − fBj )∇χi(x)

∣∣∣ ≤ C
∑
i∈Ix

|fBi − fBj |r−1
i ≤ CNα.

From these estimates we deduce that |∇g(x)| ≤ Cα μ − a.e.. Let us now
estimate ‖g‖∞. We have g = f 11F + ∑

i fBiχi . Since |f |11F ≤ α, still need
to estimate

∥∥∑
i fBiχi

∥∥∞. Note that

(3.9)

|fBi |q ≤ C

(
1

μ(Bi)

∫
Bi

|f | dμ
)q

≤ (
M(|f | + |∇f |))q(y)

≤ M(|f | + |∇f |)q(y)
≤ αq
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where y ∈ Bi ∩ F since Bi ∩ F = ∅. The second inequality follows from the
fact that (Mf )q ≤ Mf q for q ≥ 1.

Let x ∈ 	. Inequality (3.9) and the fact that 
Ix ≤ N yield

|g(x)| =
∣∣∣∑
i∈Ix

fBiχi

∣∣∣ ≤
∑
i∈Ix

|fBi | ≤ Nα.

We conclude that ‖g‖∞ ≤ C α μ− a.e. and the proof of Proposition 3.5 is
therefore complete.

Remark 3.6. 1. It is a straightforward consequence of (3.3) that bi ∈ W 1
r

for all 1 ≤ r ≤ q with ‖bi‖W 1
r

≤ Cαμ(Bi)
1
r .

2. From the construction of the functions bi , we see that
∑

i bi ∈ W 1
p , with∥∥∑

i bi
∥∥
W 1
p

≤ C‖f ‖W 1
p
. It follows that g ∈ W 1

p . Hence (g, |∇g|) satisfies the

Poincaré inequality (Pp). Theorem 3.2 of [23] asserts that for μ− a.e. x, y ∈
M

|g(x)− g(y)| ≤ Cd(x, y)
(
(M|∇g|p) 1

p (x)+ (M|∇g|p) 1
p (y)

)
.

From Theorem 2.2 with p = ∞ and the inequality ‖|∇g|‖∞ ≤ Cα, we
deduce that g has a Lipschitz representative. Moreover, the Lipschitz constant
is controlled by Cα.

3. We also deduce from this Calderón-Zygmund decomposition thatg ∈ W 1
s

for p ≤ s ≤ ∞. We have
(∫
	
(|g|s + |∇g|s) dμ) 1

s ≤ Cαμ(	)
1
s and

∫
F

(|g|s + |∇g|s)dμ =
∫
F

(|f |s + |∇f |s) dμ

≤
∫
F

(|f |p|f |s−p + |∇f |p|∇f |s−p) dμ

≤ αs−p‖f ‖p
W 1
p
< ∞.

Corollary 3.7. Under the same hypotheses as in the Calderón-Zygmund
lemma, we have

W 1
p ⊂ W 1

r +W 1
s for 1 ≤ r ≤ q ≤ p ≤ s < ∞.

Proof of Theorem 1.2. To prove part 1., we begin applying Theorem 2.4,
part 1. We have

K(f, t
1
r , Lr , L∞) ∼

(∫ t

0
(f ∗(s))r ds

) 1
r

.
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On the other hand(∫ t

0
f ∗(s)r ds

) 1
r

=
(∫ t

0
|f (s)|r∗ ds

) 1
r

= (
t |f |r∗∗(t)

) 1
r

where in the first equality we used the fact that f ∗r = (|f |r )∗ and the second
follows from the definition of f ∗∗. We thus get K(f, t

1
r , Lr , L∞) ∼

t
1
r (|f |r∗∗) 1

r (t). Moreover,

K(f, t
1
r ,W 1

r ,W
1
∞) ≥ K(f, t

1
r , Lr , L∞)+K(|∇f |, t 1

r , Lr , L∞)

since the linear operator

(I,∇) : W 1
s (M) → (Ls(M; C × TM))

is bounded for every 1 ≤ s ≤ ∞. These two points yield the desired inequality.
We will now prove part 2. We treat the case when f ∈ W 1

p , q ≤ p <

∞. Let t > 0. We consider the Calderón-Zygmund decomposition of f of

Proposition 3.5 with α = α(t) = (
M(|f | + |∇f |)q)∗ 1

q (t). We write f =∑
i bi + g = b + g where (bi)i, g satisfy the properties of the proposition.

From the bounded overlap property of the Bi’s, it follows that for all r ≤ q

‖b‖rr ≤
∫
M

(∑
i

|bi |
)r
dμ ≤ N

∑
i

∫
Bi

|bi |r dμ

≤ Cαr(t)
∑
i

μ(Bi) ≤ Cαr(t)μ(	).

Similarly we have ‖|∇b|‖r ≤ Cα(t)μ(	)
1
r .

Moreover, since (Mf )∗ ∼ f ∗∗ and (f + g)∗∗ ≤ f ∗∗ + g∗∗, we get

α(t) = (
M(|f | + |∇f |)q)∗ 1

q (t) ≤ C
(|f |q∗∗ 1

q (t)+ |∇f |q∗∗ 1
q (t)

)
.

Noting that μ(	) ≤ t , we deduce that

(3.10) K(f, t
1
r ,W 1

r ,W
1
∞) ≤ Ct

1
r

(|f |q∗∗ 1
q (t)+ |∇f |q∗∗ 1

q (t)
)

for all t > 0 and obtain the desired inequality for f ∈ W 1
p , q ≤ p < ∞.

Note that in the special case where r = q, we have the upper bound of K
for f ∈ W 1

q . Applying a similar argument to that of [14] – Euclidean case –
we get (3.10) for f ∈ W 1

q +W∞. Here we will omit the details.

We were not able to show this characterization when r < q since we could
not show its validity even for f ∈ W 1

r . Nevertheless this theorem is enough to
achieve interpolation (see the next section).
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3.2.2. The local case . LetM be a complete non-compact Riemannian man-
ifold satisfying a local doubling property (Dloc) and a local Poincaré inequality
(Pqloc) for some 1 ≤ q < ∞.

Denote by ME the Hardy-Littlewood maximal operator relative to a meas-
urable subset E of M , that is, for x ∈ E and every locally integrable function
f on M

MEf (x) = sup
B:x∈B

1

μ(B ∩ E)
∫
B∩E

|f | dμ

where B ranges over all open balls of M containing x and centered in E. We
say that a measurable subsetE ofM has the relative doubling property if there
exists a constant CE such that for all x ∈ E and r > 0 we have

μ(B(x, 2r) ∩ E) ≤ CEμ(B(x, r) ∩ E).
This is equivalent to saying that the metric-measure space (E, d|E, μ|E) has
the doubling property. On such a set ME is of weak type (1, 1) and bounded
on Lp(E,μ), 1 < p ≤ ∞.

Proof of Theorem 1.2. To fix ideas, we assume without loss of generality
r0 = 5, r1 = 8. The lower bound of K is trivial (same proof as for the global
case). It remains to prove the upper bound.

For all t > 0, take α = α(t) = (
M(|f | + |∇f |)q)∗ 1

q (t). Consider

	 = {
x ∈ M : M(|f | + |∇f |)q(x) > αq(t)

}
.

We have μ(	) ≤ t . If 	 = M then∫
M

|f |rdμ+
∫
M

|∇f |r dμ =
∫
	

|f |rdμ+
∫
	

|∇f |r dμ

≤
∫ μ(	)

0
|f |r∗(s) ds +

∫ μ(	)

0
|∇f |r∗(s) ds

≤
∫ t

0
|f |r∗(s) ds +

∫ t

0
|∇f |r∗(s) ds

= t
(|f |r∗∗(t)+ |∇f |r∗∗(t)

)
.

Therefore

K(f, t
1
r ,W 1

r ,W
1
∞) ≤ ‖f ‖W 1

r
≤ Ct

1
r

(|f |r∗∗ 1
r (t)+ |∇f |r∗∗ 1

r (t)
)

≤ Ct
1
r

(|f |q∗∗ 1
q (t)+ |∇f |q∗∗ 1

q (t)
)

since r ≤ q. We thus obtain the upper bound in this case.
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Now assume 	 = M . Pick a countable set {xj }j∈J ⊂ M , such that M =⋃
j∈J B

(
xj ,

1
2

)
and for all x ∈ M , x does not belong to more than N1 balls

Bj := B(xj , 1). Consider a C∞ partition of unity (ϕj )j∈J subordinated to the
balls 1

2B
j such that 0 ≤ ϕj ≤ 1, suppϕj ⊂ Bj and ‖|∇ϕj |‖∞ ≤ C uniformly

with respect to j . Consider f ∈ W 1
p , q ≤ p < ∞. Let fj = f ϕj so that

f = ∑
j∈J fj . We have for j ∈ J , fj ∈ Lp and ∇fj = f∇ϕj + ∇f ϕj ∈ Lp.

Hence fj ∈ W 1
p (B

j ). The balls Bj satisfy the relative doubling property with
constant independent of the ballsBj . This follows from the next lemma quoted
from [4] p. 947.

Lemma 3.8. Let M be a complete Riemannian manifold satisfying (Dloc).
Then the balls Bj above, equipped with the induced distance and measure,
satisfy the relative doubling property (D), with the doubling constant that
may be chosen independently of j . More precisely, there exists C ≥ 0 such
that for all j ∈ J
(3.11) μ(B(x, 2r) ∩ Bj) ≤ C μ(B(x, r) ∩ Bj) ∀x ∈ Bj , r > 0,

and

(3.12) μ(B(x, r)) ≤ Cμ(B(x, r) ∩ Bj) ∀x ∈ Bj , 0 < r ≤ 2.

Remark 3.9. Noting that the proof in [4] only used the fact that M is
a length space, we observe that Lemma 3.8 still holds for any length space.
Recall that a length space X is a metric space such that the distance between
any two points x, y ∈ X is equal to the infimum of the lengths of all paths
joining x to y (we implicitly assume that there is at least one such path). Here
a path from x to y is a continuous map γ : [0, 1] → X with γ (0) = x and
γ (1) = y.

Let us return to the proof of the theorem. For any x ∈ Bj we have

(3.13)

MBj (|fj | + |∇fj |)q(x)

= sup
B:x∈B,r(B)≤2

1

μ(Bj ∩ B)
∫
Bj∩B

(|fj | + |∇fj |)q dμ

≤ sup
B:x∈B,r(B)≤2

C
μ(B)

μ(Bj ∩ B)
1

μ(B)

∫
B

(|f | + |∇f |)q dμ

≤ CM(|f | + |∇f |)q(x)
where we used (3.12) of Lemma 3.8. Consider now

	j = {
x ∈ Bj : MBj (|fj | + |∇fj |)q(x) > Cαq(t)

}
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where C is the constant in (3.13). 	j is an open subset of Bj , hence of M ,
and 	j ⊂ 	 = M for all j ∈ J . For the fj ’s, and for all t > 0, we have a
Calderón-Zygmund decomposition similar to the one done in Proposition 3.5:
there exist bjk, gj supported in Bj , and balls (Bjk)k of M , contained in 	j ,
such that

(3.14) fj = gj +
∑
k

bjk

(3.15) |gj (x)| ≤ Cα(t) and |∇gj (x)| ≤ Cα(t) for μ− a.e. x ∈ M

(3.16) supp bjk ⊂ Bjk,

for 1 ≤ r ≤ q

∫
Bjk

(|bjk|r + |∇bjk|r ) dμ ≤ Cαr(t)μ(Bjk)

(3.17)
∑
k

μ(Bjk) ≤ Cα−p(t)
∫
Bj
(|fj | + |∇fj |)p dμ

(3.18)
∑
k

χBjk ≤ N

with C and N depending only on q, p and the constants in (Dloc) and (Pqloc).
The proof of this decomposition will be the same as in Proposition 3.5, taking
for all j ∈ J a Whitney decomposition (Bjk)k of 	j = M and using the
doubling property for balls whose radii do not exceed 3 < r0 and the Poincaré
inequality for balls whose radii do not exceed 7 < r1. For the bounded overlap
property (3.18), just note that the radius of every ball Bjk is less than 1. Then
apply the same argument as for the bounded overlap property of a Whitney
decomposition for an homogeneous space, using the doubling property for
balls with sufficiently small radii.

By the above decomposition we can write f = ∑
j∈J

∑
k bjk + ∑

j∈J gj =
b + g. Let us now estimate ‖b‖W 1

r
and ‖g‖W 1∞ .

‖b‖rr ≤ N1N
∑
j

∑
k

‖bjk‖rr ≤ Cαr(t)
∑
j

∑
k

(μ(Bjk))

≤ NCαr(t)
(∑

j

μ(	j )
)

≤ N1Cα
r(t)μ(	).
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We used the bounded overlap property of the (	j )j∈J ’s and that of the (Bjk)k’s
for all j ∈ J . It follows that ‖b‖r ≤ Cα(t)μ(	)

1
r . Similarly we get ‖|∇b|‖r ≤

Cα(t)μ(	)
1
r .

For g we have

‖g‖∞ ≤ sup
x

∑
j∈J

|gj (x)| ≤ sup
x

N1 sup
j∈J

|gj (x)| ≤ N1 sup
j∈J

‖gj‖∞ ≤ Cα(t).

Analogously ‖|∇g|‖∞ ≤ Cα(t). We conclude that

K(f, t
1
r ,W 1

r ,W
1
∞) ≤ ‖b‖W 1

r
+ t

1
r ‖g‖W 1∞

≤ Cα(t)μ(	)
1
r + Ct

1
r α(t)

≤ Ct
1
r α(t) ∼ Ct

1
r

(|f |q∗∗ 1
q (t)+ |∇f |q∗∗ 1

q (t)
)

which completes the proof of Theorem 1.2 in the case r < q. When r = q we
get the characterization of K for every f ∈ W 1

q + W 1∞ by applying again a
similar argument to that of [14].

4. Interpolation Theorems

In this section we establish our interpolation Theorem 1.1 and some con-
sequences for non-homogeneous Sobolev spaces on a complete non-compact
Riemannian manifold M satisfying (Dloc) and (Pqloc) for some 1 ≤ q < ∞.

For 1 ≤ r ≤ q < p < ∞, we define the real interpolation space W 1
p,r

between W 1
r and W 1∞ by

W 1
p,r = (W 1

r ,W
1
∞)1− r

p
,p.

From the previous results we know that for f ∈ W 1
r +W 1∞

‖f ‖1− r
p
,p ≥ C1

{∫ ∞

0

(
t

1
p (|f |r∗∗ 1

r + |∇f |r∗∗ 1
r )(t)

)p dt
t

} 1
p

and for f ∈ W 1
p

‖f ‖1− r
p
,p ≤ C2

{∫ ∞

0

(
t

1
p (|f |q∗∗ 1

q + |∇f |q∗∗ 1
q )(t)

)p dt
t

} 1
p

.
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We claim that W 1
p,r = W 1

p , with equivalent norms. Indeed,

‖f ‖1− r
p
,p ≥ C1

{∫ ∞

0

(|f |r∗∗ 1
r (t)+ |∇f |r∗∗ 1

r (t)
)p
dt

} 1
p

≥ C
(∥∥f r∗∗∥∥ 1

r
p

r

+ ∥∥|∇f |r∗∗∥∥ 1
r
p

r

)

≥ C
(∥∥f r∥∥ 1

r
p

r

+ ∥∥|∇f |r∥∥ 1
r
p

r

)
= C

(‖f ‖p + ‖ |∇f | ‖p
)

= C‖f ‖W 1
p
,

and

‖f ‖1− r
p
,p ≤ C2

{∫ ∞

0

(|f |q∗∗ 1
q (t)+ |∇f |q∗∗ 1

q (t)
)p
dt

} 1
p

≤ C
(∥∥f q∗∗∥∥ 1

q
p

q

+ ∥∥|∇f |q∗∗∥∥ 1
q
p

q

)

≤ C
(∥∥f q∥∥ 1

q
p

q

+ ∥∥|∇f |q∥∥ 1
q
p

q

)

= C
(‖f ‖p + ‖|∇f |‖p

)
= C‖f ‖W 1

p
,

where we used that for l > 1, ‖f ∗∗‖l ∼ ‖f ‖l (see [34], ChapterV: Lemma 3.21
p. 191 and Theorem 3.21, p. 201). Moreover, from Corollary 3.7, we have
W 1
p ⊂ W 1

r +W 1∞ for r < p < ∞. Therefore W 1
p is a real interpolation space

between W 1
r and W 1∞ for r < p < ∞.

Let us recall some known facts about Poincaré inequalities with varying q.
It is known that (Pqloc) implies (Pploc) when p ≥ q (see [23]). Thus if the

set of q such that (Pqloc) holds is not empty, then it is an interval unbounded
on the right. A recent result of Keith and Zhong [28] asserts that this interval
is open in [1,+∞[.

Theorem 4.1. Let (X, d, μ) be a complete metric-measure space with μ
locally doubling and admitting a local Poincaré inequality (Pqloc), for some
1 < q < ∞. Then there exists ε > 0 such that (X, d, μ) admits (Pploc) for
every p > q − ε.

Here, the definition of (Pqloc) is that of Section 7. It reduces to the one of
Section 3 when the metric space is a Riemannian manifold.
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Comment on the proof of this theorem. The proof goes as in [28]
where this theorem is proved for X satisfying (D) and admitting a global
Poincaré inequality (Pq). By using the same argument and choosing suffi-
ciently small radii for the considered balls, (Pqloc) will give us (P(q−ε)loc) for
every ball of radius less than r2, for some r2 < min(r0, r1), r0, r1 being the
constants given in the definitions of local doubling property and local Poincaré
inequality.

Define AM = {q ∈ [1,∞[ : (Pqloc) holds} and q0M = inf AM . When no
confusion arises, we write q0 instead of q0M . As we mentioned in the intro-
duction, this improvement of the exponent of a Poincaré inequality together
with the reiteration theorem yield another version of our interpolation result:
Corollary 1.3.

Proof of Corollary 1.3. Let 0 < θ < 1 such that 1
p

= 1−θ
p1

+ θ
p2

.

1. Case when p1 > q0. Since p1 > q0, there exists q ∈ AM such that
q0 < q < p1. Then 1 − q

p
= (1 − θ)

(
1 − q

p1

) + θ
(
1 − q

p2

)
. The

reiteration theorem – [6], Theorem 2.4 p. 311 – yields

(W 1
p1
,W 1

p2
)θ,p = (W 1

p1,q
,W 1

p2,q
)θ,p = (W 1

q ,W
1
∞)1− q

p
,p = W 1

p,q = W 1
p .

2. Case when 1 ≤ p1 ≤ q0. Let θ ′ = θ
(
1 − p1

p2

) = 1 − p1

p
. The reiteration

theorem applied this time only to the second exponent yields

(W 1
p1
,W 1

p2
)θ,p = (W 1

p1
,W 1

p2,p1
)θ,p = (W 1

p1
,W 1

∞)θ ′,p = W 1
p,p1

= W 1
p .

Theorem 4.2. Let M and N be two complete non-compact Riemannian
manifolds satisfying (Dloc). Assume that q0M and q0N are well defined. Take
1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ r1, r, r2 ≤ ∞. Let T be a bounded linear operator
from W 1

pi
(M) to W 1

ri
(N) of norm Li , i = 1, 2. Then for every couple (p, r)

such that p ≤ r , p > q0M , r > q0N and
(

1
p
, 1
r

) = (1 − θ)
(

1
p1
, 1
r1

) + θ
(

1
p2
, 1
r2

)
,

0 < θ < 1, T is bounded from W 1
p (M) to W 1

r (N) with norm L ≤ CL1−θ
0 Lθ1 .

Proof. ‖Tf ‖W 1
r (N)

≤ C‖Tf ‖(W 1
r1
(N),W 1

r2
(N))θ,r

≤ CL1−θ
0 Lθ1‖f ‖(W 1

p1
(M),W 1

p2
(M))θ,r

≤ CL1−θ
0 Lθ1‖f ‖(W 1

p1
(M),W 1

p2
(M))θ,p

≤ CL1−θ
0 Lθ1‖f ‖W 1

p (M)
.

We used the fact that Kθ,q is an exact interpolation functor of exponent θ ,
that W 1

p (M) = (W 1
p1
(M),W 1

p2
(M))θ,p, W 1

r (N) = (W 1
r1
(N),W 1

r2
(N))θ,r with
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equivalent norms and that (W 1
p1
(M),W 1

p2
(M))θ,p ⊂ (W 1

p1
(M),W 1

p2
(M))θ,r if

p ≤ r .

Remark 4.3. LetM be a Riemannian manifold, not necessarily complete,
satisfying (Dloc). Assume that for some 1 ≤ q < ∞, a weak local Poin-
caré inequality holds for all C∞ functions, that is there exists r1 > 0, C =
C(q, r1), λ ≥ 1 such that for all f ∈ C∞ and all ball B of radius r < r1 we
have (

−
∫
B

|f − fB |q dμ
) 1

q

≤ Cr

(
−
∫
λB

|∇f |q dμ
) 1

q

.

Then, we obtain the characterization of K as in Theorem 1.2 and we get by
interpolating a result analogous to Theorem 1.1.

5. Homogeneous Sobolev spaces on Riemannian manifolds

Definition 5.1. Let M be a C∞ Riemannian manifold of dimension n. For
1 ≤ p ≤ ∞, we define Ė1

p to be the vector space of distributions ϕ with
|∇ϕ| ∈ Lp, where ∇ϕ is the distributional gradient of ϕ. It is well known that
the elements of Ė1

p are in Lploc. We equip Ė1
p with the semi-norm

‖ϕ‖Ė1
p

= ‖|∇ϕ|‖p.

Definition 5.2. We define the homogeneous Sobolev space Ẇ 1
p as the

quotient space Ė1
p/R.

Remark 5.3. For all ϕ ∈ Ė1
p, ‖ϕ‖Ẇ 1

p
= ‖|∇ϕ|‖p, where ϕ denotes the class

of ϕ.

Proposition 5.4 ([20]). 1. Ẇ 1
p is a Banach space.

2. Assume that M satisfies (D) and (Pq) for some 1 ≤ q < ∞ and for all
f ∈ Lip, that is there exists a constant C > 0 such that for all f ∈ Lip and
for every ball B of M of radius r > 0 we have

(Pq)

(
−
∫
B

|f − fB |q dμ
) 1

q

≤ Cr

(
−
∫
B

|∇f |qdμ
) 1

q

.

Then Lip(M) ∩ Ẇ 1
p is dense in Ẇ 1

p for q ≤ p < ∞.

Proof. The proof of item 2 is implicit in the proof of Theorem 9 in [17].

We obtain for the K-functional of the homogeneous Sobolev spaces the
following homogeneous form of Theorem 1.2, weaker in the particular case
r = q, but again sufficient for us to interpolate.
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Theorem 5.5. Let M be a complete Riemannian manifold satisfying (D)
and (Pq) for some 1 ≤ q < ∞. Let 1 ≤ r ≤ q. Then

1. there exists C1 such that for every F ∈ Ẇ 1
r + Ẇ 1∞ and t > 0

K(F, t
1
r , Ẇ 1

r , Ẇ
1
∞) ≥ C1t

1
r |∇f |r∗∗ 1

r (t)

where f ∈ Ė1
r + Ė1∞ and f = F ;

2. for q ≤ p < ∞, there exists C2 such that for every F ∈ Ẇ 1
p and t > 0

K(F, t
1
r , Ẇ 1

r , Ẇ
1
∞) ≤ C2t

1
r |∇f |q∗∗ 1

q (t)

where f ∈ Ė1
p and f = F .

Before we prove Theorem 5.5, we give the following Calderón-Zygmund
decomposition that will be also in this case our principal tool to estimate K .

Proposition 5.6 (Calderón-Zygmund lemma for Sobolev functions). Let
M be a complete non-compact Riemannian manifold satisfying (D) and (Pq)
for some 1 ≤ q < ∞. Let q ≤ p < ∞, f ∈ Ė1

p and α > 0. Then there is

a collection of balls (Bi)i , functions bi ∈ Ė1
q and a Lipschitz function g such

that the following properties hold:

(5.1) f = g +
∑
i

bi

(5.2) |∇g(x)| ≤ Cα μ− a.e.

(5.3) supp bi ⊂ Bi and for 1 ≤ r ≤ q

∫
Bi

|∇bi |r dμ ≤ Cαrμ(Bi)

(5.4)
∑
i

μ(Bi) ≤ Cα−p
∫

|∇f |p dμ

(5.5).
∑
i

χBi ≤ N

The constants C and N depend only on q, p and the constant in (D).

Proof. The proof goes as in the case of non-homogeneous Sobolev spaces,
but taking 	 = {x ∈ M : M(|∇f |q)(x) > αq} as ‖f ‖p is not under control.
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We note that in the non-homogeneous case, we used that f ∈ Lp only to
control g ∈ L∞ and b ∈ Lr .

Remark 5.7. It is sufficient for us that the Poincaré inequality holds for all
f ∈ Ė1

p.

Corollary 5.8. Under the same hypotheses as in the Calderón-Zygmund
lemma, we have

Ẇ 1
p ⊂ Ẇ 1

r + Ẇ 1
∞ for 1 ≤ r ≤ q ≤ p < ∞.

Proof of Theorem 5.5. The proof of item 1 is the same as in the non-
homogeneous case. Let us turn to inequality 2. For F ∈ Ẇ 1

p we take f ∈ Ė1
p

with f = F . Let t > 0 and α(t) =
(

M(|∇f |q)
)∗ 1

q

(t). By the Calderón-

Zygmund decomposition with α = α(t), f can be written f = b + g,
hence F = b + g, with ‖b‖Ẇ 1

r
= ‖|∇b|‖r ≤ Cα(t)μ(	)

1
r and ‖g‖Ẇ 1∞ =

‖|∇g|‖∞ ≤ Cα(t). Since for α = α(t) we have μ(	) ≤ t , then we get

K(F, t
1
r , Ẇ 1

r , Ẇ
1∞) ≤ Ct

1
r |∇f |q∗∗ 1

q (t).

We can now prove our interpolation result for the homogeneous Sobolev
spaces.

Proof of Theorem 1.4. The proof follows directly from Theorem 5.5.
Indeed, item 1 of Theorem 5.5 yields

(Ẇ 1
r , Ẇ

1
∞)1− r

p
,p ⊂ Ẇ 1

p

with ‖F‖Ẇ 1
p

≤ C‖F‖1− r
p
,p, while item 2 gives us that

Ẇ 1
p ⊂ (Ẇ 1

r , Ẇ
1
∞)1− r

p
,p

with ‖F‖1− r
p
,p ≤ C‖F‖Ẇ 1

p
. We conclude that

Ẇ 1
p = (Ẇ 1

r , Ẇ
1
∞)1− r

p
,p

with equivalent norms.

Corollary 5.9 (The reiteration theorem). Let M be a complete non-
compact Riemannian manifold satisfying (D) and (Pq) for some 1 ≤ q < ∞.
Define q0 = inf{q ∈ [1,∞[ : (Pq) holds}. Then for p > q0 and 1 ≤ p1 <

p < p2 ≤ ∞, Ẇ 1
p is a real interpolation space between Ẇ 1

p1
and Ẇ 1

p2
.
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Application. Consider a complete non-compact Riemannian manifoldM
satisfying (D) and (Pq) for some 1 ≤ q < 2. Let � be the Laplace-Beltrami
operator. Consider the linear operator �

1
2 with the following resolution

�
1
2 f = c

∫ ∞

0
�e−t�f

dt√
t
, f ∈ C∞

0

where c = π− 1
2 . Here �

1
2 f can be defined for f ∈ Lip as a measurable

function (see [3]).
In [3], Auscher and Coulhon proved that on such a manifold, we have

μ
{
x ∈ M : |� 1

2 f (x)| > α
} ≤ C

αq
‖|∇f |‖q

for f ∈ C∞
0 , with q ∈ [1, 2[. In fact one can check that the argument applies

to all f ∈ Lip ∩Ė1
q and since �

1
2 1 = 0, �

1
2 can be defined on Lip ∩Ẇ 1

q by

taking quotient which we keep calling�
1
2 . Moreover, Proposition 5.4 gives us

that �
1
2 has a bounded extension from Ẇ 1

q to Lq,∞. Since we already have

‖� 1
2 f ‖2 ≤ ‖|∇f |‖2

then by Corollary 5.9, we see at once

(5.6) ‖� 1
2 f ‖p ≤ Cp‖|∇f |‖p

for all q < p ≤ 2 and f ∈ Ẇ 1
p , without using the argument in [3].

6. Sobolev spaces on compact manifolds

Let M be a C∞ compact manifold equipped with a Riemannian metric. Then
M satisfies the doubling property (D) and the Poincaré inequality (P1).

Theorem 6.1. Let M be a C∞ compact Riemannian manifold. There exist
C1, C2 such that for all f ∈ W 1

1 +W 1∞ and all t > 0 we have

(∗comp)
C1t

(|f |∗∗(t)+ |∇f |∗∗(t)
) ≤ K(f, t,W 1

1 ,W
1
∞)

≤ C2t
(|f |∗∗(t)+ |∇f |∗∗(t)

)
.

Proof. It remains to prove the upper bound for K as the lower bound is
trivial. Indeed, let us consider for all t > 0 and forα(t) = (M(|f |+|∇f |))∗(t),
	 = {x ∈ M; M(|f | + |∇f |)(x) ≥ α(t)}. If 	 = M , we have the Calderón-
Zygmund decomposition as in Proposition 3.5 with q = 1 and the proof will
be the same as the proof of Theorem 1.2 in the global case. Now if	 = M , we
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prove the upper bound by the same argument used in the proof of Theorem 1.2
in the local case. Thus, in the two cases we obtain the right hand inequality of
(∗comp) for all f ∈ W 1

1 +W 1∞.

It follows that

Theorem 6.2. For all 1 ≤ p1 < p < p2 ≤ ∞, W 1
p is an interpolation

space between W 1
p1

and W 1
p2

.

7. Metric-measure spaces

In this section we consider (X, d, μ) a metric-measure space with μ doubling.

7.1. Upper gradients and Poincaré inequality

Definition 7.1 (Upper gradient [26]). Let u : X → R be a Borel function.
We say that a Borel function g : X → [0,+∞] is an upper gradient of u if
|u(γ (b)) − u(γ (a))| ≤ ∫ b

a
g(γ (t)) dt for all 1-Lipschitz curve γ : [a, b] →

X1.

Remark 7.2. If X is a Riemannian manifold, |∇u| is an upper gradient of
u ∈ Lip and |∇u| ≤ g for all upper gradients g of u.

Definition 7.3. For every locally Lipschitz continuous function u defined
on a open set of X, we define

Lip u(x) =

⎧⎪⎨
⎪⎩

lim sup
y→x
y =x

|u(y)− u(x)|
d(y, x)

if x is not isolated,

0 otherwise.

Remark 7.4. Lip u is an upper gradient of u.

Definition 7.5 (Poincaré Inequality). A metric-measure space (X, d, μ)
admits a weak local Poincaré inequality (Pqloc) for some 1 ≤ q < ∞, if there
exist r1 > 0, λ ≥ 1,C = C(q, r1) > 0, such that for every continuous function
u and upper gradient g of u, and for every ball B of radius 0 < r < r1 the
following inequality holds:

(Pqloc)

(
−
∫
B

|u− uB |q dμ
) 1

q

≤ Cr

(
−
∫
λB

gq dμ

) 1
q

.

If λ = 1, we say that we have a strong local Poincaré inequality.

1 Since every rectifiable curve admits an arc-length parametrization that makes the curve 1-
Lipschitz, the class of 1-Lipschitz curves coincides with the class of rectifiable curves, modulo a
parameter change.
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Moreover, X admits a global Poincaré inequality or simply a Poincaré
inequality (Pq) if one can take r1 = ∞.

7.2. Interpolation of the Sobolev spaces H 1
p

Before defining the Sobolev spaces H 1
p it is convenient to recall the following

proposition.

Proposition 7.6 (see [22] and [10] Theorem 4.38). Let (X, d, μ) be a com-
plete metric-measure space, with μ doubling and satisfying a weak Poincaré
inequality (Pq) for some 1 < q < ∞. Then there exist an integer N , C ≥ 1
and a linear operatorD which associates to each locally Lipschitz function u
a measurable function Du : X → RN such that :

1. if u is L-Lipschitz, then |Du| ≤ CL μ− a.e.;

2. if u is locally Lipschitz and constant on a measurable set E ⊂ X, then
Du = 0 μ− a.e. on E;

3. for locally Lipschitz functions u and v, D(uv) = uDv + vDu;

4. for each locally Lipschitz function u, Lip u ≤ |Du| ≤ C Lip u, and
hence (u, |Du|) satisfies the weak Poincaré inequality (Pq).

We define nowH 1
p = H 1

p (X, d, μ) for 1 ≤ p < ∞ as the closure of locally
Lipschitz functions for the norm

‖u‖H 1
p

= ‖u‖p + ‖|Du|‖p ≡ ‖u‖p + ‖ Lip u‖p.

We denote H 1∞ for the set of all bounded Lipschitz functions on X.

Remark 7.7. Under the hypotheses of Proposition 7.6, the uniqueness of
the gradient holds for every f ∈ H 1

p with p ≥ q. By uniqueness of gradient
we mean that if un is a locally Lipschitz sequence such that un → 0 in Lp and
Dun → g ∈ Lp then g = 0 a.e.. ThenD extends to a bounded linear operator
from H 1

p to Lp.

In the remaining part of this section, we consider a complete non-compact
metric-measure space (X, d, μ) with μ doubling. We also assume that X ad-
mits a Poincaré inequality (Pq) for some 1 < q < ∞ as defined in Definition
7.5. By [27] Theorem 1.3.4, this is equivalent to say that there exists C > 0
such that for all f ∈ Lip and for every ball B of X of radius r > 0 we have

(Pq)

∫
B

|f − fB |qdμ ≤ Crq
∫
B

| Lip f |q dμ.

Define q0 = inf{q ∈ ]1,∞[ : (Pq) holds}.
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Lemma 7.8. Under these hypotheses, and for q0 < p < ∞, Lip ∩ H 1
p is

dense in H 1
p .

Proof. See the proof of Theorem 9 in [17].

Proposition 7.9 (Calderón-Zygmund lemma for Sobolev functions). Let
(X, d, μ) be a complete non-compact metric-measure space with μ doubling,
admitting a Poincaré inequality (Pq) for some 1 < q < ∞. Then the Calderón-
Zygmund decomposition of Proposition 3.5 still holds in the present situation
for f ∈ Lip ∩H 1

p , q ≤ p < ∞, replacing ∇f by Df .

Proof. The proof is similar, replacing ∇f byDf , using thatD of Propos-
ition 7.6 is linear. Since the χi are C

ri
Lipschitz then ‖Dχi‖∞ ≤ C

ri
by item 1

of Theorem 7.6 and the bi’s are Lipschitz. We can see that g is also Lipschitz.
Moreover, using the finite additivity ofD and the property 2 of Proposition 7.6,
we get the equality μ− a.e.

Dg = Df −D
(∑

i

bi

)
= Df −

(∑
i

Dbi

)
.

The rest of the proof goes as in Proposition 3.5.

Theorem 7.10. Let (X, d, μ) be a complete non-compact metric-measure
space with μ doubling, admitting a Poincaré inequality (Pq) for some 1 <
q < ∞. Then, there exist C1, C2 such that for all f ∈ H 1

q +H 1∞ and all t > 0
we have
(∗met)

C1t
1
q

(|f |q∗∗ 1
q (t)+ |Df |q∗∗ 1

q (t)
) ≤ K(f, t

1
q , H 1

q ,H
1
∞)

≤ C2t
1
q

(|f |q∗∗ 1
q (t)+ |Df |q∗∗ 1

q (t)
)
.

Proof. We have (∗met) for all f ∈ Lip ∩H 1
q from the Calderón-Zygmund

decomposition that we have done. Now for f ∈ H 1
q , by Lemma 7.8, f =

limn fn inH 1
q , with fn Lipschitz and ‖f −fn‖H 1

q
< 1

n
for all n. Since for all n,

fn ∈ Lip, there exist gn, hn such that fn = hn+gn and ‖hn‖H 1
q
+ t 1

q ‖gn‖H 1∞ ≤
Ct

1
q

(|fn|q∗∗ 1
q (t)+ |Dfn|q∗∗ 1

q (t)
)
. Therefore we find

‖f − gn‖H 1
q
+ t

1
q ‖gn‖H 1∞ ≤ ‖f − fn‖H 1

q
+ (‖hn‖H 1

q
+ t

1
q ‖gn‖H 1∞

)

≤ 1

n
+ Ct

1
q

(|fn|q∗∗ 1
q (t)+ |Dfn|q ∗∗ 1

q (t)
)
.

Letting n → ∞, since |fn|q −→
n→∞ |f |q in L1 and |Dfn|q −→

n→∞ |Df |q in L1, it

comes |fn|q∗∗(t) −→
n→∞ |f |q∗∗(t) and |Dfn|q∗∗(t) −→

n→∞ |Df |q∗∗(t) for all t > 0.
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Hence (∗met) holds for f ∈ H 1
q . We prove (∗met) for f ∈ H 1

q + H 1∞ by the
same argument of [14].

Theorem 7.11 (Interpolation Theorem). Let (X, d, μ) be a complete non-
compact metric-measure space withμ doubling, admitting a Poincaré inequal-
ity (Pq) for some 1 < q < ∞. Then, for q0 < p1 < p < p2 ≤ ∞2, H 1

p is an
interpolation space between H 1

p1
and H 1

p2
.

Proof. Theorem 7.10 provides us with all the tools needed for interpola-
tion, as we did in the Riemannian case. In particular, we get Theorem 7.11.

Remark 7.12. We were not able to get our interpolation result as in the
Riemmanian case for p1 ≤ q0. Since we do not have Poincaré inequality
(Pp1), the uniqueness of the gradient D does not hold in general in H 1

p1
.

Remark 7.13. Other Sobolev spaces on metric-measure spaces were intro-
duced in the last few years, for instance M1

p , N1
p , C1

p, P 1
p . If X is a complete

metric-measure space satisfying (D) and (Pq) for some 1 < q < ∞, it can be
shown that for q0 < p ≤ ∞, all the mentioned spaces are equal to H 1

p with
equivalent norms (see [23]). In conclusion our interpolation result carries over
to those Sobolev spaces.

Remark 7.14. The purpose of this remark is to extend our results to local
assumptions. Assume that (X, d, μ) is a complete metric-measure space, with
μ locally doubling, and admitting a local Poincaré inequality (Pqloc) for some
1 < q < ∞. Since X is complete and (X,μ) satisfies a local doubling condi-
tion and a local Poincaré inequality (Pqloc), then according to an observation
of David and Semmes (see the introduction in [10]), every ball B(z, r), with
0 < r < min(r0, r1), is λ = λ(C(r0), C(r1)) quasi-convex, C(r0) and C(r1)
being the constants appearing in the local doubling property and in the local
Poincaré inequality. Then, for 0 < r < min(r0, r1), B(z, r) is λ bi-Lipschitz
to a length space (one can associate, canonically, to a λ-quasi-convex met-
ric space a length metric space, which is λ-bi-Lipschitz to the original one).
Hence, we get a result similar to the one in Theorem 7.10. Indeed, the proof
goes as that of Theorem 1.2 in the local case noting that the Bj ’s considered
there are then λ bi-Lipschitz to a length space with λ independent of j . Thus
Lemma 3.8 still holds (see Remark 3.9). Therefore, we get the characterization
(∗met) of K and by interpolating, we obtain the correspondance analogue of
Theorem 7.11.

2 We allow p1 = 1 if q0 = 1.
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8. Applications

8.1. Carnot-Carathéodory spaces

An important application of the theory of Sobolev spaces on metric-measure
spaces is to a Carnot-Carathéodory space. We refer to [23] for a survey on the
theory of Carnot-Carathéodory spaces.

Let 	 ⊂ Rn be a connected open set, X = (X1, . . . , Xk) a family of vector
fields defined on 	, with real locally Lipschitz continuous coefficients and

|Xu(x)| = (∑k
j=1 |Xju(x)|2

) 1
2 . We equip 	 with the Lebesgue measure L n

and the Carnot-Carathéodory metric ρ associated to the Xi . We assume that ρ
defines a distance. Then, the metric space (	, ρ) is a length space.

Definition 8.1. Let 1 ≤ p < ∞. We define H 1
p,X(	) as the completion

of locally metric3 Lipschitz functions (equivalently of C∞ functions) for the
norm

‖f ‖H 1
p,X

= ‖f ‖Lp(	) + ‖|Xf |‖Lp(	).

We denote H 1
∞,X for the set of bounded metric Lipschitz function.

Remark 8.2. For all 1 ≤ p ≤ ∞, H 1
p,X = W 1

p,X(	) := {f ∈ Lp(	) :
|Xf | ∈ Lp(	)}, where Xf is defined in the distributional sense (see for ex-
ample [19] Lemma 7.6).

Adapting the same method, we obtain the following interpolation theorem
for the H 1

p,X.

Theorem 8.3. Consider (	, ρ,L n)where	 is a connected open subset of
Rn. We assume that L n is locally doubling, that the identity map id : (	, ρ) →
(	, |.|) is an homeomorphism. Moreover, we suppose that the space admits
a local weak Poincaré inequality (Pqloc) for some 1 ≤ q < ∞. Then, for
1 ≤ p1 < p < p2 ≤ ∞ with p > q0, H 1

p,X is a real interpolation space
between H 1

p1,X
and H 1

p2,X
.

8.2. Weighted Sobolev spaces

We refer to [24], [29] for the definitions used in this subsection. Let 	 be an
open subset of Rn equipped with the Euclidean distance, w ∈ L1,loc(Rn) with
w > 0, dμ = w dx. We assume that μ is q-admissible for some 1 < q < ∞
(see [25] for the definition). This is equivalent to say, (see [23]), that μ is

3 that is relative to the metric ρ of Carnot-Carathéodory.
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doubling and there exists C > 0 such that for every ball B ⊂ Rn of radius
r > 0 and for every function ϕ ∈ C∞(B),

(Pq)

∫
B

|ϕ − ϕB |q dμ ≤ Crq
∫
B

|∇ϕ|q dμ

with ϕB = 1
μ(B)

∫
B
ϕ dμ. The Aq weights, q > 1, satisfy these two conditions

(see [25], Chapter 15).

Definition 8.4. For q ≤ p < ∞, we define the Sobolev spaceH 1
p (	,μ)

to be the closure of C∞(	) for the norm

‖u‖H 1
p (	,μ)

= ‖u‖Lp(μ) + ‖|∇u|‖Lp(μ).

We denote H 1∞(	,μ) for the set of all bounded Lipschitz functions on 	.
Using our method, we obtain the following interpolation theorem for the

Sobolev spaces H 1
p (	,μ):

Theorem 8.5. Let 	 be as in above. Then for q0 < p1 < p < p2 ≤ ∞,
H 1
p (	,μ) is a real interpolation space between H 1

p1
(	,μ) and H 1

p2
(	,μ).

As in Section 7, we were not able to get our interpolation result for p1 ≤ q0

since again in this case the uniqueness of the gradient does not hold forp1 ≤ q0.

Remark 8.6. Equip 	 with the Carnot-Carathéodory distance associated
to a family of vector fields with real locally Lipschitz continuous coefficients
instead of the Euclidean distance. Under the same hypotheses used in the be-
ginning of this section, just replacing the balls B by the balls B̃ with respect to
ρ, and ∇ by X and assuming that id : (	, ρ) → (	, |.|) is an homeomorph-
ism, we obtain our interpolation result. As an example we take vectors fields
satisfying a Hörmander condition or vectors fields of Grushin type [16].

8.3. Lie Groups

In all this subsection, we consider G a connected unimodular Lie group
equipped with a Haar measure dμ and a family of left invariant vector fields
X1, . . . , Xk such that the Xi’s satisfy a Hörmander condition. In this case the
Carnot-Carathéodory metric ρ is is a distance, and G equipped with the dis-
tance ρ is complete and defines the same topology as that of G as a manifold
(see [13] page 1148). From the results in [21], [32], it is known thatG satisfies
(Dloc). Moreover, ifG has polynomial growth it satisfies (D). From the results
in [33], [35],G admits a local Poincaré inequality (P1,loc). IfG has polynomial
growth, then it admits a global Poincaré inequality (P1).
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Interpolation of non-homogeneous Sobolev spaces. We define the
non-homogeneous Sobolev spaces on a Lie group W 1

p in the same manner as
in Section 3 on a Riemannian manifold replacing ∇ by X (see Definition 3.1
and Proposition 3.2).

To interpolate the W 1
pi

, we distinguish between the polynomial and the
exponential growth cases. If G has polynomial growth, then we are in the
global case. If G has exponential growth, we are in the local case. In the two
cases we obtain the following theorem.

Theorem 8.7. Let G be as above. Then, for all 1 ≤ p1 < p < p2 ≤ ∞,
W 1
p is an interpolation space betweenW 1

p1
andW 1

p2
, (q0 = 1 here). Therefore,

we get all the interpolation theorems of section 4.

Interpolation of homogeneous Sobolev spaces. LetG be a connected
Lie group as before. We define the homogeneous Sobolev space Ẇ 1

p in the same
manner as in Section 5 on Riemannian manifolds replacing ∇ by X.

For these spaces we have the following interpolation theorem.

Theorem 8.8. LetG be as above and assume thatG has polynomial growth.
Then for 1 ≤ p1 < p < p2 ≤ ∞, Ẇ 1

p is a real interpolation space between

Ẇ 1
p1

and Ẇ 1
p2

.

9. Appendix

In view of the hypotheses in the previous interpolation results, a naturel ques-
tion to address is whether the properties (D) and (Pq) are necessary. The aim
of the appendix is to exhibit an example where at least Poincaré is not needed.
Consider

X = {
(x1, x2, . . . , xn) ∈ Rn; x2

1 + · · · + x2
n−1 ≤ x2

n

}
equipped with the Euclidean metric of Rn and with the Lebesgue measure. X
consists of two infinite closed cones with a common vertex. X satisfies the
doubling property and admits (Pq) in the sense of metric-measure spaces if
and only if q > n ([23] p. 17). Denote by 	 the interior of X. Let H 1

p (X) be
the closure of Lip0(X) for the norm

‖f ‖H 1
p (X)

= ‖f ‖Lp(	) + ‖|∇f |‖Lp(	).
We defineW 1

p (	) as the set of all functions f ∈ Lp(	) such that ∇f ∈ Lp(	)
and equip this space with the norm

‖f ‖W 1
p (	)

= ‖f ‖H 1
p (X)

.
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The gradient is always defined in the distributional sense on 	.
Using our method, it is easy to check that the W 1

p (	) interpolate for all
1 ≤ p ≤ ∞. Also our interpolation result asserts thatH 1

p (X) is an interpolation
space between H 1

p1
(X) and H 1

p2
(X) for 1 ≤ p1 < p < p2 ≤ ∞ with p > n.

It can be shown that H 1
p (X) � W 1

p (	) for p > n and H 1
p (X) = W 1

p (	) for
1 ≤ p < n. Hence H 1

p (X) is an interpolation space between H 1
p1
(X) and

H 1
p2
(X) for 1 ≤ p1 < p < p2 < n although the Poincaré inequality does not

hold on X for those p. However, we do not know if the H 1
p interpolate for all

1 ≤ p ≤ ∞ (see [5], Chapter 4 for more details).
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