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ANALYSIS OF THE QUADRATIC TERM IN THE
BACKSCATTERING TRANSFORMATION

INGRID BELTIŢĂ and ANDERS MELIN∗

Abstract
The quadratic term in the Taylor expansion at the origin of the backscattering transformation in
odd dimensions n ≥ 3 gives rise to a symmetric bilinear operator B2 on C∞

0 (R
n) × C∞

0 (R
n).

In this paper we prove that B2 extends to certain Sobolev spaces with weights and show that it
improves both regularity and decay.

1. Introduction and formulation of the main result

The real part of the Fourier transform of the backscattering part of the scattering
matrix associated to the Schrödinger operatorHv = −�+v in Rn, wheren ≥ 3
is odd, can for v in suitable function spaces be represented as a function v +
β(v)+R. HereR is a smooth function, which is due to the negative bound states
and does not appear when v is small or nonnegative. The term β(v) is entire
analytic in v, and its Taylor series at v = 0 starts with a quadratic term β2(v).
The corresponding bilinear transformation B2 is a singular integral operator
on C∞

0 (R
n) × C∞

0 (R
n). We refer to the paper [5] in which the backscattering

transform was defined in arbitrary odd dimension (see Definition 3.4 in that
paper). An explicit formula for B2 is provided by Corollary 10.7 of [5], which
implies that

(1.1) B2(f, g)(x)

=
∫∫

E(y, z)f

(
x + y + z

2

)
g

(
x − y − z

2

)
dy dz, f, g ∈ C∞

0 (R
n).

HereE(y, z) = 4−1(iπ)1−nδ(n−2)(|y|2 −|z|2) is the unique fundamental solu-
tion of the ultra-hyperbolic operator �y −�z such that E(y, z) = −E(z, y)
andE(y, z) is separately rotation invariant in both variables (see Corollary 10.2
of [5]). With this notation β2(v) = B2(v, v).
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Since E is not a function the formula (1.1) needs to be interpreted in the
distribution sense. If the trilinear form Q on C∞

0 (R
n) is defined through

(1.2) Q(f, g, h) =
∫
h(x)B2(f, g)(x) dx, f, g, h ∈ C∞

0 (R
n),

this means that
Q(f, g, h) = 〈E,�〉

where
�(y, z) =

∫
h(x)f

(
x + y + z

2

)
g

(
x − y − z

2

)
dx.

In what follows we are going to use similar notation for other integrals that
have to be interpreted in the distribution sense. For definitions and basic results
in distribution theory we use [3].

The expressions for B2 and E above show easily that B2 is continuous
from C∞

0 (R
n)× C∞

0 (R
n) to C∞

0 (R
n). It commutes with translations and |x| ≤√

r2
1 + r2

2 in the support of B2(f, g) if |x| ≤ r1 in supp(f ) and |x| ≤ r2 in
supp(g). From formulas we derive in the next section it will be clear that B2

extends to a much larger domain than C∞
0 × C∞

0 . In particular B2(f, g) is
defined as a distribution when f , g ∈ L2

cpt.
It was noticed in the paper [4] that, when v is compactly supported, the high

order terms βN(v) of β(v) gain smoothness that increases with N . This result
was made more precise in the paper [1]. In particular, it was shown that β(v)
is more regular than v.

In this paper we focus our considerations to B2 and establish continuity
estimates in weighted Sobolev spaces. Specifically, we consider the spaces

H(a,b)(R
d) = {

u ∈ S ′(Rd); 〈x〉a〈D〉bu ∈ L2(Rd)
}

where a, b ∈ R and D = i−1∂ , hence 〈D〉 is multiplication by 〈ξ〉 = (1 +
|ξ |2)1/2 on the Fourier transform side. We prove then that for certain values
of a, b ≥ 0 it is true that B2 extends to a bilinear operator on H(a,b). In fact,
it happens also that there are a, b, ā, b̄ with a < ā, b < b̄ such that B2 is
continuous from H(a,b)(Rn)×H(a,b)(Rn) to H(ā,b̄)(R

n). This means that B2 in
a certain sense improves decay and regularity at the same time and therefore
shares some nice features with ordinary multiplication as well as convolution.
There are good reasons to believe that similar properties hold for higher order
termsBN in the expansion of the backscattering transform, and if so, this would
have applications in inverse scattering.

Throughout this paper we use the notationm = (n− 3)/2. Our main result
is the following theorem.
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Theorem 1.1. Assume (a′, b′, a′′, b′′, a, b) ∈ R6 satisfies

0 < a < m+ 1/2 + min(a′, a′′), a ≤ a′ + a′′ − 1/2,

(1.3) 0 ≤ b < 1 + min(b′, b′′), b +m ≤ b′ + b′′,

a + b < 1/2 + min(a′, a′′)+ min(b′, b′′).

Then B2 is continuous from H(a′,b′)(Rn)×H(a′′,b′′)(Rn) to H(a,b)(Rn).

Corollary 1.2. Assume that

0 ≤ ā ≤ a, 0 ≤ b̄ ≤ b, ā + b̄ < 1/2.

Then B2 is continuous from H(1/2+a,m+b) ×H(1/2+a,m+b) to H(1/2+a+ā,m+b+b̄).
In particular, B2 is a continuous bilinear operator on H(a,b) when a ≥ 1/2
and b ≥ m.

In the result above the improvement on regularity of β2(v) = B2(v, v)

depends, in a certain sense, on the regularity of the potential. In particular,
there is no gain in smoothness when b = m. It can also be noticed that when
the dimension increases, the potential needs to be more regular. However, it
does not need to have better decay, since the conditions ona′, a′′ in Theorem 1.1
do not become more restrictive when dimension increases. Let us mention the
results in [6], where the cases of dimensions n = 2, 3 are considered. In the
case n = 3, these results imply that, for L2 compactly supported potentials,
the difference between the potential and the Born series approximation of
the Fourier transform of the backscattering data belongs, modulo a smooth
function, to the Sobolev space H(0,δ) with δ < 1/2, and thus the regularity
improves independently of the regularity of the potential. From the point of
view of regularity our results are better, in the case n = 3, only for potentials
in H(0,b) with b ≥ 1/2. However, as explained above, obtaining continuity
properties for B2, from which improvement both in regularity and decay can
be derived, is the main aim here, and our technique is adapted to this aim.

The proof of Theorem 1.1 relies on a duality argument applied to the trilinear
formQ in (1.2). There is a simpler expression forQ. To see this, consider the
bilinear operator

A : S (Rn)× S (Rn) → S (Rn+1)

defined through

(1.4) A(f, g)(x, t) =
∫
k0(y, t)f (x − y)g(x + y) dy, x ∈ Rn, t ∈ R.

Here k0(x, t) is the convolution kernel of the operator K0(t) = sin(t |D|)/|D|
that is, K0(t) is multiplication by sin(t |ξ |)/|ξ | on the Fourier transform side.
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We note here that u(x, t) = K0(t)f (x) is, for every f ∈ C∞
0 (R

n), the unique
solution in C1([0,∞), L2(Rn)) to the Cauchy problem (∂2

t −�x)u(x, t) = 0,
u(x, 0) = 0, (∂tu)(x, 0) = f (x). We recall (see equation (5.4) in [5]) that

(1.5) k0(x, t) = π(2π)−n(−1)m
∫

Sn−1
δ(n−2)(〈x, ω〉 − t) dω

when t ≥ 0.

Lemma 1.3. We have the identity

(1.6) Q(f, g, h) = −4
∫∫

Rn×R+
A(f, g)(x, t)(cos t |D|h)(x) dx dt

when f , g, h ∈ C∞
0 (R

n).

Proof. By using the homogeneity of E we get

(1.7) Q(f, g, h) = 4
∫∫∫

E(y, z)h(x − z)f (x + y)g(x − y) dx dy dz.

We recall that (see Thm. 10.4 of [5])

(1.8) E(y, z) = −
∫ ∞

0
k0(y, t)k̇0(z, t) dt.

Then we first integrate with respect to z in (1.7) and apply (1.8) to write

(1.9)
∫
E(y, z)h(x − z) dz = −

∫ ∞

0
k0(y, t)(cos(t |D|)h)(x) dt.

Then the integration with respect to y in (1.7) gives

(1.10)
∫
k0(y, t)f (x + y)g(x − y) dy = A(f, g)(x, t).

The formula (1.6) is then obtained by integrating over the remaining variables
x and t .

The main idea is to use continuity properties of the operators cos(t |D|) and
A in H(a,b) spaces in order to get the needed estimates. To this end we need
an interpolation result for bilinear operators, which is contained in Section 2.
Continuity properties of cos(t |D|) and A are obtained in Section 3, and the
proof of the main result is then derived.
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2. An interpolation result for bilinear operators

In this subsection we consider general dimensions d ≥ 1.
When a, b ∈ R we define

(2.1) H(a,b)(R
d) = {

u ∈ S ′(Rd); 〈x〉a〈D〉bu ∈ L2(Rd)
}
.

This is a Hilbert space with norm

‖u‖(a,b) = ‖〈x〉a〈D〉bu‖,
where the norm in the right-hand side denotes the L2 norm. Since the oper-
ators 〈D〉b〈x〉a〈D〉−b〈x〉−a and 〈x〉a〈D〉b〈x〉−a〈D〉−b are continuous in L2, it
follows that

H(a,b)(R
d) = {

u ∈ S ′(Rd); 〈D〉b〈x〉au ∈ L2(Rd)
}

and the norms ‖u‖(a,b) and ‖u‖′
(a,b) = ‖〈D〉b〈x〉au‖ are equivalent. This in

turn implies that the Fourier transform is a linear homeomorphism fromH(a,b)
onto H(b,a).

Assume T : S (Rd) × S (Rd) → S (RN) is a continuous bilinear operator.
Let I (T ) be the set of all σ = (a′, b′, a′′, b′′, a, b) ∈ R6 for which there is a
constant C = C(σ) such that

(2.2) ‖T (f, g)‖(a,b) ≤ C‖f ‖(a′,b′)‖g‖(a′′,b′′), f, g ∈ S (Rd).

The next theorem might be obtained as an application of Theorem 4.4.1 in
[2]. For the reader’s convenience we include here a direct proof.

Theorem 2.1. The set I (T ) is convex in R6.

We are going to use the following lemma.

Lemma 2.2. Assume K ⊂ R is a compact set. Then there is a positive
constant C depending on K and d only such that

(2.3)
∥∥〈D〉b〈x〉it 〈D〉−b∥∥

L2(Rd )→L2(Rd )
≤ (1 + C|t |)| Re b|,

when b ∈ C with Re b ∈ K and t ∈ R.

Proof. Choose a positive integer M such that K ⊆ [−2M, 2M] and set

PM(z, t) = 〈D〉2Mz〈x〉it 〈D〉−2Mz

when z ∈ C, t ∈ R. We have that

Dj ◦ 〈x〉it = 〈x〉it ◦Dj + txj 〈x〉it−2.
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It follows by induction over |α| that

Dα ◦ 〈x〉it = 〈x〉it ◦Dα +
∑

1≤k≤|α|
|β|<|α|

〈x〉it t kpk,α,β(x) ◦Dβ,

where 〈x〉|γ |∂γ pk,α,β is bounded for every γ ∈ Nd . Hence there is a constant
C, which depends on M and d only, such that

‖PM(1, t)‖L2→L2 ≤ (1 + C|t |)2M.
Since 〈D〉2Mi Im z is unitary in L2 it follows that

(2.4) ‖PM(z, t)‖L2→L2 ≤ (1 + C|t |)2M when Re z = 1, t ∈ R.

One also clearly has that

(2.5) ‖PM(z, t)‖L2→L2 ≤ 1 when Re z = 0, t ∈ R.

Let f , g ∈ S (Rd) satisfy ‖f ‖ = ‖g‖ = 1 and set

qM(z, t) = (1 + C|t |)−2zM〈PM(z, t)f, g〉.
This is an entire analytic function, bounded on the strip 0 ≤ Re z ≤ 1 and, by
(2.4) and (2.5), |qM(z, t)| ≤ 1 when Re z = 0 or Re z = 1. It follows by the
three lines theorem that |qM(z, t)| ≤ 1 when 0 ≤ Re z ≤ 1. This implies that

‖PM(z, t)‖L2→L2 ≤ (1 + C|t |)2M| Re z|

when 0 ≤ Re z ≤ 1, t ∈ R. A similar proof shows that the above inequality
holds also for −1 ≤ Re z ≤ 0. The lemma follows after replacing z by b/(2M).

Proof of Theorem 2.1. Assume

σ0 = (a′
0, b

′
0, a

′′
0 , b

′′
0, a0, b0), σ1 = (a′

1, b
′
1, a

′′
1 , b

′′
1, a1, b1)

are elements of I (T ). Define

σ(z) = (a′(z), b′(z), a′′(z), b′′(z), a(z), b(z)) = (1 − z)σ0 + zσ1, z ∈ C.

Let f , g ∈ S (Rdx) and h ∈ S (RNy ) and set

F(z) = 〈x〉−a′(z)〈D〉−b′(z)f, G(z) = 〈x〉−a′′(z)〈D〉−b′′(z)g

and
H(z) = 〈y〉a(z)〈D〉b(z)h.
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Then F , G and H are holomorphic functions of z with values in S (Rd) and
S (RN), respectively, and their S seminorms have at most polynomial growth
in |z| when Re z stays in a bounded set.

The previous lemma shows that when Re z = 0

‖F(z)‖(a′
0,b

′
0)

≤ C1‖〈D〉b′
0〈x〉z(a′

0−a′
1)〈D〉−b′

0〈D〉z(b′
0−b′

1)f ‖
≤ C2(1 + | Im z|)|b′

0|‖〈D〉z(b′
0−b′

1)f ‖
≤ C|1 + z||b′

0|‖f ‖.
Similarly one gets

‖G(z)‖(a′′
0 ,b

′′
0 )

≤ C|1 + z||b′′
0 |‖g‖, ‖H(z)‖(−a0,−b0) ≤ C|1 + z||b0|‖h‖

when Re z = 0, and

‖F(z)‖(a′
1,b

′
1)

≤ C|1 + z||b′
1|‖f ‖,

‖G(z)‖(a′′
1 ,b

′′
1 )

≤ C|1 + z||b′′
1 |‖g‖,

‖H(z)‖(−a1,−b1) ≤ C|1 + z||b1|‖h‖
when Re z = 1.

Define
q(z) = 〈T (F (z),G(z)),H(z)〉.

This is an entire analytic function.
Since T is continuous from S (Rd)× S (Rd) to S (RN) it follows (by using

commutator estimates as in the previous lemma) that q(z) is of at most poly-
nomial growth in the strip 0 ≤ Re z ≤ 1. Since σ0, σ1 ∈ I (T ) the estimates
for F , G, H above show that there are positive constants C and γ , which
are independent of f , g, h, such that |(1 + z)−γ q(z)| ≤ C‖f ‖ · ‖g‖ · ‖h‖
when Re z = 0 or Re z = 1. It follows then from the three lines theorem that
(1 + z)−γ q(z) satisfies the same estimate for every z in the whole strip. When
z = θ ∈ (0, 1) we get an estimate for q(θ), and hence the estimate∥∥〈D〉b(θ)〈y〉a(θ)T (〈x〉−a′(θ)〈D〉−b′(θ)f, 〈x〉−a′′(θ)〈D〉−b′′(θ)g

)∥∥ ≤ C‖f ‖ ‖g‖,
where C is independent of f and g. This means precisely that σ(θ) ∈ I (T ).
3. Proof of the main result

We recall that n ≥ 3 is odd and we have denoted m = (n − 3)/2. We define
the operator K : S ′(Rn) → S ′(Rn+1) through

(3.1) (Ku)(x, t) = Y+(t) cos(t |D|)u(x), t ∈ R, x ∈ Rn,
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where Y+ is the characteristic function of [0,∞).

Proposition 3.1. Assume a < 0 and b ≤ 0. Then the operator K is
continuous from H(a,b)(Rn) to H(a−1/2,b)(Rn+1).

Proof. When t ≥ 0 we denote by �t the operator on S (Rn) which is
multiplication by the function ((1 + t)2 + |x|2)1/2 and we consider K(t) =
cos(t |D|) as an operator in S (Rn). Since n is odd the convolution kernel
k̇0(x, t) of K(t) is supported in the set where |x| = t . Therefore K(t)f is
supported in the ball with centre x0 and radius r+t if f ∈ C∞

0 (R
n) is supported

in the ball with centre x0 and radius r .
Assume first that a is real, arbitrary. We prove that there exists a constant

Ca such that

(3.2) ‖�−a
t K(t)�

a
t ‖L2(Rn)→L2(Rn) ≤ Ca, t ≥ 0.

Let (Tσ )σ>0 be the dilation group on S (Rn) defined by Tσh(x) = σn/2h(σx).
Then T −1

σ = T1/σ and Tσ extends to a unitary operator in L2 for every σ . We
notice that

TσK(t)T
−1
σ = K(t/σ )

and
T1+t�a

t T
−1

1+t = (1 + t)a�a
0.

It follows that

�−a
t K(t)�

a
t = T −1

1+t�
−a
0 K(t/(1 + t))�a

0T1+t .

Therefore, it is enough to show that for 0 ≤ t ≤ 1 the operator �−a
0 K(t)�a

0
extends to a bounded operator on L2(Rn) and that there exists Ca > 0 such
that

(3.3) ‖�−a
0 K(t)�a

0‖L2(Rn)→L2(Rn) ≤ Ca, 0 ≤ t ≤ 1.

Take 0 ≤ t ≤ 1. We notice that (K(t)f,K(t)g) = 0 if dist(supp(f ),
supp(g)) > 2, since the supports of K(t)f and K(t)g do not overlap. Let
0 ≤ χ ∈ C∞

0 (R
n) be supported in the unit ball and satisfy

∫
χ(y) dy = 1. For

f ∈ C∞
0 (R

n) define fy(x) = f (x)χ(x − y). Then

(K(t)fy,K(t)fz) = 0 when |y − z| ≥ 4.
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Since f = ∫
fy dy it follows that

(�−a
0 K(t)�a

0f,�
−a
0 K(t)�a

0f )

=
∫∫

(�−a
0 K(t)�a

0fy,�
−a
0 K(t)�a

0fz) dy dz

=
∫∫

|y−z|≤4
(�−a

0 K(t)�a
0fy,�

−a
0 K(t)�a

0fz) dy dz

≤ C

∫
‖�−a

0 K(t)�a
0fy‖2 dy.

Since |x − y| ≤ 1 in the support of �a
0fy , we have that |x − y| ≤ t + 1 in the

support of K(t)�a
0fy . Hence

‖�−a
0 K(t)�a

0fy‖ ≤ C1〈y〉−a‖�a
0fy‖ ≤ C‖fy‖.

The proof of (3.3) is then completed by the fact that∫
‖fy‖2 dy ≤ C‖f ‖2.

Using (3.2) we get, when a < 0,∫∫
(1 + |x|2 + t2)a−1/2|Ku(x, t)|2 dx dt

=
∫∫

(1 + |x|2 + t2)a−1/2|(K(t)u)(x)|2 dx dt

≤ C

∫∫
(1 + |x|2 + t2)a−1/2|u(x)|2 dx dt

= C

(∫ ∞

−∞
(1 + t2)a−1/2 dt

) ∫
(1 + |x|2)a|u(x)|2 dx = C ′‖u‖2

(a,0)

when u ∈ S (Rn). This concludes the proof for the case b = 0, since S (Rn) is
dense in H(a,0).

In the case b < 0 the proposition follows from the fact that K commutes
with Dx and the operator (1 + |Dt |2 + |Dx |2)b〈Dx〉−b is bounded.

The previous proposition combined with Lemma 1.3 gives the next corol-
lary.

Corollary 3.2. Assume a1, a2, b1, b2, a3, b3 ∈ R, a3 > 0 and b3 ≥ 0.
ThenB2 is continuous fromH(a1,b1)×H(a2,b2) toH(a3,b3) ifA is continuous from
H(a1,b1) ×H(a2,b2) to H(a3+1/2,b3).
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We turn our attention to proving continuity properties for the bilinear oper-
atorA. We will first establish some useful formulas forA(f, g) and its Fourier
transform.

Let S: S (Rn)× S (Rn) → S (Rn+1) be the operator defined through

(3.4) S(f, g)(x, t) = tm+1
∫

Sn−1
f (x+tω)g(x−tω) dω, x ∈ Rn, t ∈ R.

It is easy to see that S extends to a bounded operator from L2(Rn) × L2(Rn)
to L2(Rn+1).

Lemma 3.3. Let Â(f, g)(ξ, τ ) denote the Fourier transform ofA(f, g)with
respect to both variables. Then

(3.5) Â(f, g)(ξ, τ ) = (τ/2)m

23i(2π)n−1
S(f̂ , ĝ)(ξ/2, τ/2),

when f , g ∈ S (Rn).

Proof. Let φ(ξ, t) be the Fourier transform ofA(f, g)(x, t) in the variable
x. Then

φ(ξ, t) = (2π)−n
∫∫

k0(y, t)f̂ (η)ĝ(ξ − η)e−i〈2η−ξ,y〉 dy dη

= (2π)−n2−n
∫∫

k0(y, t)f̂

(
ξ + η

2

)
ĝ

(
ξ − η

2

)
e−i〈η,y〉 dy dη

= (2π)−n2−n
∫

sin(|η|t)
|η| f̂

(
ξ + η

2

)
ĝ

(
ξ − η

2

)
dη.

It follows that

Â(f, g)(ξ, τ )

= (2π)−n2−n
∫∫

Rn×R

e−iτ t e
it |η| − e−it |η|

2i|η| f̂

(
ξ + η

2

)
ĝ

(
ξ − η

2

)
dt dη

= (2π)−(n−1)i−12−(n+1)|τ |−1∫
Rn
(δ(|η| − τ)− δ(|η| + τ))f̂

(
ξ + η

2

)
ĝ

(
ξ − η

2

)
dη

= (2π)−(n−1)i−12−(n+1)τ n−2
∫

Sn−1
f̂

(
ξ + τω

2

)
ĝ

(
ξ − τω

2

)
dω.
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This combined with (3.4) gives the lemma.

Lemma 3.4. We have

(3.6) k0(x, t) = ∂mt κ0(x, t),

where the smooth mapping R � t → κ0(·, t) ∈ D ′(Rn) is given by

(3.7) 〈κ0(·, t), ϕ〉 = π(2π)−(n+1)/2tm+1
∫

Sn−1
ϕ(tω) dω

+
∫ ∞

t

p(t/r)rm
(∫

Sn−1
ϕ(rω) dω

)
dr

for every ϕ ∈ C∞
0 (R

n). Here

p(s) = 1

m!(4π)m+1

(
− d

ds

)m+1

(1 − s2)m,

with the convention that p(s) = 0 when m = 0.

Remark 3.5. When m = 0, that is, n = 3 the polynomial p vanishes.
Therefore only the first term appears in the right-hand side of (3.7). We have
used here the convention that 0! = 1.

Proof. We notice that p(s) is a polynomial of degree m− 1 which is odd
(even) if m is even (odd). The polynomial rmp(t/r) is therefore odd in r and
odd (even) in t ifm is even (odd). Set ϕ̃(t) = ∫

Sn−1 ϕ(tω) dω when t ∈ R. This
is a smooth and even function of t . If m is even then∫ ∞

t

p(t/r)rmϕ̃(r) dr =
∫ ∞

−t
p(t/r)rmϕ̃(r) dr = −

∫ ∞

−t
p(−t/r)rmϕ̃(r) dr

which shows that the left-hand side is an odd function of t . Ifm is odd similar
arguments show that the left-hand side is even in t . Hence, if we define κ0 as
in the lemma it follows that κ0(·, t) is a smooth distribution valued function of
t which is odd (even) if m is even (odd).

Define
U0(x, t) =

∫
Sn−1

δ(m+1)(〈x, ω〉 − t) dω.

It follows from (1.5) that

k0(x, t) = ∂mt π(2π)
−nU0(x, t).



quadratic term in the backscattering transformation 229

HereU0(·, t) is a smooth distribution valued function of t with the same parity
as κ0(·, t). The lemma follows therefore if we prove that

κ0(x, t) = π(2π)−nU0(x, t)

when t > 0.
We may write

U0(x, t) = (−∂t )m+2
∫

Sn−1
Y+(〈x, ω〉 − t) dω

= cn−1(−∂t )m+2
∫ 1

−1
Y+(|x|s − t)(1 − s2)m ds

= cn−1(−∂t )m+1
∫ 1

−1
δ(|x|s − t)(1 − s2)m ds,

where cn−1 = 2πm+1/m! is the area of the (n − 2)-dimensional unit sphere.
In {t > 0} we have

〈U0(·, t), ϕ〉 = cn−1(−∂t )m+1
∫ ∞

0

∫ 1

−1
δ(sr − t)rn−1(1 − s2)mϕ̃(r) ds dr

= cn−1(−∂t )m+1
∫ 1

0
(t/s)n−1(1 − s2)ms−1ϕ̃(t/s) ds

= cn−1(−∂t )m+1
∫ ∞

t

rn−2(1 − t2/r2)mϕ̃(r) dr.

Set q(s) = cn−1(− d/ ds)m+1(1 − s2)m = π−1(2π)np(s). A simple computa-
tion then gives

〈U0(·, t), ϕ〉 = cn−1m!2mtm+1ϕ̃(t)+
∫ ∞

t

q(t/r)rmϕ̃(r) dr

= π−1(2π)n〈κ0(·t), ϕ〉.
This finishes the proof of the lemma.

Corollary 3.6. With the notation in the previous lemma, we have

A(f, g)(x, t)

= ∂mt

(
π(2π)−(n+1)/2S(f, g)(x, t)+

∫ ∞

t

p(t/r)r−1S(f, g)(x, r) dr

)

for every f , g ∈ C∞
0 (R

n).
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It has become clear that, in order to get continuity properties of A, we need
to study the bilinear operator S. We start with an elementary lemma, where
meas(·) denotes the surface measure on Sn−1.

Lemma 3.7. There is a constant C such that

(3.8) meas
({ω ∈ Sn−1; r/2 < |x − tω| < 2r, |x + tω| < s}) ≤ C

(
s

r

)n−1

when r, s > 0, x ∈ Rn, t ∈ R.

Proof. It is enough to prove the lemma for s < r/4. Denote

M(x, t; r, s) = {ω ∈ Sn−1; r/2 < |x − tω| < 2r, |x + tω| < s}.
Since

meas(M(x,−t; r, s)) = meas(M(x, t; r, s))
we may assume t ≥ 0.

Ifω ∈ M(x, t; r, s)we must have 〈x, ω〉 ≤ 0. It follows that r/2 < |x|+t <
2
√

2r whenM(x, t; r, s) �= ∅. Also ||x|− t | < s < r/4, hence |x|, t and r are
of the same order of magnitude. Using the fact that the push-forward of the
measure dω on Sn−1 under the mapping ω �→ τ = 〈x, ω〉/|x| ∈ [−1, 1] is a
multiple of the measure (1 − τ 2)m dτ we easily see that

meas(M(x, t; r, s)) ≤ C

∫
N(x,t,s)

(1 − τ)m dτ,

where
N(x, t, s) = {τ ∈ (0, 1); |x|2 + t2 − 2|x|tτ < s2}.

Since∫
N(x,t,s)

(1 − τ)m dτ ≤
∫ s2−(|x|−t)2

2|x|t

0
τm dτ ≤ C

(
s2 − (|x| − t)2

2|x|t
)m+1

,

we have proved that

meas(M(x, t; r, s)) ≤ C(s2/(|x|t)) n−1
2 .

Recalling that |x| and t are of the same order of magnitude as r , we see that
(3.8) holds.

Lemma 3.8. Assume r, s > 0, φ, ψ ∈ C∞
0 (R

n), φ is supported in the set
where r/2 < |x| < 2r , ψ is supported in the set where |x| < s, and a ∈ R.
Then there is a constant C = C(a), independent of r , s, φ and ψ , such that

(3.9) ‖S(φ,ψ)‖(a,0) ≤ C(s/r)m+1 max(〈r〉a, 〈r + s〉a)‖φ‖ ‖ψ‖.
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Proof. It follows from Lemma 3.7 and Cauchy’s inequality applied to the
integration with respect to ω that there is a constant C such that
(3.10)

|S(φ,ψ)(x, t)|2 ≤ Ctn−1(s/r)2(m+1)
∫

|φ(x + tω)|2|ψ(x − tω)|2 dω.

Since 2(|x|2 + t2) = |x + tω|2 + |x − tω|2 when ω ∈ Sn−1, one has

(3.11) (1 + |x|2 + t2)a|S(φ,ψ)(x, t)|2

≤ Ctn−1
( s
r

)2(m+1)
∫
(1+|x+tω|2+|x−tω|2)a|φ(x+tω)|2|ψ(x−tω)|2 dω

≤ C1t
n−1

( s
r

)2(m+1)
max(〈r〉2a, 〈r + s〉2a)

∫
|φ(x + tω)|2|ψ(x − tω)|2 dω.

An integration with respect to x and t in (3.11) gives (3.9).

Lemma 3.9. Let a′, a′′, a ∈ R satisfy

(3.12) a < m+ 1 + min(a′, a′′), a ≤ a′ + a′′.

Then S is continuous from H(a′,0) ×H(a′′,0) to H(a,0).

Proof. Choose χ ∈ C∞
0 (R

n) a smooth decreasing function of |x| such that
χ(x) = 1 when |x| < 1, χ(x) = 0 when |x| > 2 and 0 ≤ χ ≤ 1. Set

χj (x) = χ(2−j x)− χ(21−j x), j ≥ 1, χ0(x) = χ(x)

when x ∈ Rn. Then f =
∞∑
0
χjf with convergence in S (Rn) when f is in that

space. In addition, when ρ ∈ R, there is C = C(ρ) ≥ 0 such that

(3.13) C−1
∞∑
0

22ρj‖χjf ‖2 ≤ ‖f ‖2
(ρ,0) ≤ C

∞∑
0

22ρj‖χjf ‖2.

Consider f, g ∈ S (Rn) and denote sj = 2a
′j‖χjf ‖, σk = 2a

′′k‖χkg‖.
These are �2(N)-sequences with �2 norm bounded from above by a constant C
times ‖f ‖(a′,0) and ‖g‖(a′′,0), respectively. Set ε = m + 1 + min(a′, a′′) − a.
Then ε > 0 and we shall show that there is a constant C > 0, which depends
on a, a′, a′′ only, such that

(3.14) ‖S(χjf, χkg)‖(a,0) ≤ C2−ε|j−k|sjσk.
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Hence

‖S(f, g)‖(a,0) ≤
∑
j,k≥0

‖S(χjf, χkg)‖(a,0) ≤ C1

∑
j,k≥0

2−ε|j−k|sjσk

≤ C2

(∑
j≥0

s2
j

)1/2(∑
j≥0

σ 2
k

)1/2

≤ C‖f ‖(a′,0)‖g‖(a′′,0).

This would prove the statement.
It remains to prove (3.14). Since S is symmetric, and since the condition

(3.12) is symmetric in (a′, a′′), it suffices to prove (3.14) when j ≥ k. The
previous lemma shows that

(3.15) |S(χjf, χkg)| ≤ C2−ρjk sjσk,

where
ρjk = (j − k)(m+ 1)− aj + a′j + a′′k

= (j − k)(m+ 1 + a′ − a)+ (a′ + a′′ − a)k

≥ (j − k)(m+ 1 + min(a′, a′′)− a)

= (j − k)ε.

This proves (3.14).

Lemma 3.10. Define

T (f, g)(x, t) =
∫ ∞

t

p(t/r)r−1S(f, g)(x, r) dr,

when f, g ∈ C∞
0 (R

n). Then

‖T (f, g)‖(a,0) ≤ 2 max|s|≤1
|p(s)| · ‖S(f, g)‖(a,0)

when a ≥ 0.

Proof. We recall that

p(t/r)r−1S(f, g)(x, r) = p(t/r)rmr−(m+1)S(f, g)(x, r)

is an odd function of r . Hence

|T (f, g)(x, t)| ≤
∣∣∣∣
∫ ∞

|t |
p(t/r)r−1S(f, g)(x, r) dr

∣∣∣∣
≤ C

∫ ∞

|t |
r−1|S(f, g)(x, r)| dr
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where C = max|s|≤1 |p(s)|. When a ≥ 0 we get

(1+|x|2+t2)a/2|T (f, g)(x, t)| ≤ C

∫ ∞

|t |
r−1(1+|x|2+r2)a/2|S(f, g)(x, r)| dr.

The lemma follows therefore if we notice that∫ ∞

0
H 2(t) dt ≤ 4

∫ ∞

0
h2(t) dt

when H(t) = ∫ ∞
t
t−1h(t) dt and 0 ≤ h ∈ C0(R). In fact, if h̃(s) = es/2h(es)

and H̃ (s) = es/2H(es), then∫ ∞

0
h2(t) dt = ‖h̃‖2

L2(R),

∫ ∞

0
H 2(t) dt = ‖H̃‖2

L2(R),

and H̃ = γ ∗ h̃, where γ (s) = (1 − Y+(s))es/2 has L1 norm equal to 2.

Proposition 3.11. (i) When a′, a′′, a ∈ R satisfy

0 ≤ a < m+ 1 + min(a′, a′′), a ≤ a′ + a′′,

then A extends to a continuous bilinear operator from H(a′,0) × H(a′′,0) to
H(a,−m).

(ii) When b′, b′′, b ∈ R satisfy

b < m+ 1 + min(b′, b′′), b ≤ b′ + b′′,

then A extends to a continuous bilinear operator from H(0,b′) × H(0,b′′) to
H(0,b−m).

Proof. A combination of Corollary 3.6, Lemma 3.9 and Lemma 3.10 gives
(i), and (ii) follows from Lemma 3.3 and Lemma 3.9.

Proposition 3.12. Let (a′, b′, a′′, b′′, a, b) ∈ R6 satisfy

0 ≤ a < m+ 1 + min(a′, a′′), a ≤ a′ + a′′,

(3.16) b < m+ 1 + min(b′, b′′), b ≤ b′ + b′′,

a + b < m+ 1 + min(a′, a′′)+ min(b′, b′′).

Then A is continuous from H(a′,b′) ×H(a′′,b′′) to H(a,b−m).

Proof. If (a′, b′, a′′, b′′, a, b) ∈ R6 satisfies (3.16), it is easy to see that
there is an θ ∈ (0, 1) such that

a < θ(m+ 1)+ min(a′, a′′), b < (1 − θ)(m+ 1)+ min(b′, b′′).
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This shows that a′/θ , a′′/θ , a/θ , respectively b′/(1−θ), b′′/(1−θ), b/(1−θ)
satisfy the conditions in Proposition 3.11, hence

(a′/θ, 0, a′′/θ, 0, a/θ,−m) ∈ I (A),
(0, b′/(1 − θ), 0, b′′/(1 − θ), 0,−m+ b/(1 − θ)) ∈ I (A).

The proposition then follows by Theorem 2.1.

Proof of Theorem 1.1. Theorem 1.1 follows from Proposition 3.12 ap-
plied for (a′, b′, a′′, b′′, a + 1/2, b), and from Corollary 3.2.
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