
MATH. SCAND. 105 (2009), 199–217

LOG-SINE INTEGRALS INVOLVING SERIES
ASSOCIATED WITH THE ZETA FUNCTION

AND POLYLOGARITHMS

JUNESANG CHOI, YOUNG JOON CHO and H. M. SRIVASTAVA

Abstract
Motivated essentially by their potential for applications in a wide range of mathematical and
physical problems, the Log-Sine integrals have been evaluated, in the existing literature on the
subject, in many different ways. The main object of this paper is to show how nicely some general
formulas analogous to the generalized Log-Sine integral Ls(m)n

(
π
3

)
can be obtained by using the

theory of Polylogarithms. Relevant connections of the results presented here with those obtained
in earlier works are also indicated precisely.

1. Introduction and Preliminaries

Motivated essentially by their potential for applications in a wide range of
mathematical and physical problems, the Log-Sine integrals have been eval-
uated, in the existing literature on the subject, in many different ways. Here,
we mainly aim at showing how nicely some general formulas analogous to the
generalized Log-Sine integral Ls(m)n

(
π
3

)
can be obtained by using the theory of

Polylogarithms. We also give remarks on some related results on this subject.
For our purpose, we begin by recalling the following definitions and prop-

erties, which will be needed in our investigation.

Definition 1. The Log-Sine integrals Lsn(θ) of order n are defined by
(1.1)

Lsn(θ) := −
∫ θ

0

(
log

∣∣∣2 sin
x

2

∣∣∣)n−1
dx (n ∈ N \ {1}; N := {1, 2, 3, . . .});

The generalized Log-Sine integrals Ls(m)n (θ) of order n and indexm are defined
by

(1.2) Ls(m)n (θ) := −
∫ θ

0
xm

(
log

∣∣∣2 sin
x

2

∣∣∣)n−m−1
dx
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Definition 2. The Riemann Zeta function ζ(s) is defined by

(1.3) ζ(s) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
n=1

1

ns
= 1

1 − 2−s

∞∑
n=1

1

(2n− 1)s
(�(s) > 1

)

1

1 − 21−s

∞∑
n=1

(−1)n−1

ns

(�(s) > 0; s �= 1
)
.

The Hurwitz (or generalized) Zeta function ζ(s, a) is defined by

(1.4) ζ(s, a) :=
∞∑
k=0

(k + a)−s
(�(s) > 1; a �= 0,−1,−2, . . .

)
.

From Definition 2 it is easy to observe that

(1.5) ζ(s) = ζ(s, 1) = (
2s − 1

)−1
ζ

(
s,

1

2

)
= 1 + ζ(s, 2).

Definition 3. The Dilogarithm function Li2(z) is defined by

(1.6)

Li2(z) :=
∞∑
n=1

zn

n2
(|z| � 1)

= −
∫ z

0

log(1 − t)

t
dt.

The Polylogarithm function Lin(z) is defined by

(1.7)

Lin(z) :=
∞∑
k=1

zk

kn
(|z| � 1; n ∈ N \ {1})

=
∫ z

0

Lin−1(t)

t
dt (n ∈ N \ {1, 2}).

Clearly, we have

(1.8) Lin(1) = ζ(n) (n ∈ N \ {1}),

in terms of the Riemann Zeta function ζ(s) in (1.3).
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Definition 4. The generalized Clausen function Cln(θ) is defined by

(1.9) Cln(θ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
k=1

sin kθ

kn
(n is even)

∞∑
k=1

cos kθ

kn
(n is odd).

The associated Clausen function Gln(θ) of order n is defined by

(1.10) Gln(θ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
k=1

cos kθ

kn
(n is even)

∞∑
k=1

sin kθ

kn
(n is odd).

It is noted that, only the special case when n = 2, the generalized Clausen
function Cln(θ) satisfies the following relationship:

(1.11) Ls2(θ) = Cl2(θ)

with the Log-Sine integral Lsn(θ) of order n = 2 defined by (1.1).
The following well-known formulas are recorded (see [17, p. 334, Entry

(50.5.16)] and [27, p. 98], respectively):

(1.12) x · cot x = 1 +
∞∑
n=1

(−1)n
22nB2n

(2n)!
x2n (|x| < π)

and

(1.13) ζ(2n) = (−1)n+1 (2π)
2n

2 · (2n)!B2n (n ∈ N0 := N ∪ {0}),

where Bn denotes the well-known Bernoulli numbers (see, e.g., [27, p. 59]).
Now, through an eclectic review, we are showing how Log-Sine integrals

Lsn(θ) and the generalized Log-Sine integrals Ls(m)n (θ) of order n and indexm
in Definition 1 have been evaluated in various ways by many mathematicians.

The Log-Sine integrals Lsn(θ) in Definition 1 when the argument θ = π

satisfy the following recurrence relation (see, e.g., [19, p. 218, Eq. (7.112)];
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see also [27, p. 119, Eq. (111)]):

(1.14)
(−1)m

m!
Lsm+2(π) = π

(
1 − 2−m)

ζ(m+ 1)

+
m−1∑
k=2

(−1)k+1

k!

(
1 − 2k−m

)
ζ(m− k + 1)Lsk+1(π) (m ∈ N),

where ζ(s) denotes the Riemann Zeta function given in (1.3).
By mainly analyzing the generalized binomial theorem and the familiar

Weierstrass canonical product form of the Gamma function �(z) (see [27,
p. 1, Eq. (2)]), Shen [23, p. 1396, Eq. (19)] evaluated the Log-Sine integral
Lsk+1(2π) as follows:

(1.15)
1

2π

∫ 2π

0

(
log

∣∣∣2 sin
x

2

∣∣∣)k dx = (−1)k
k!

2k

∞∑
n� k

2

σnk (k, n ∈ N),

where σnk are given, in terms of the Stirling numbers s(n, k) of the first kind
(see, for details, [27, pp. 56–57]; see also [22]), by

σnk =
k−1∑
m=1

s(n, k −m)

n!

s(n,m)

n!
.

By using an idea analogous to that of Shen [23], Beumer [5] presented a
recursion formula for

D(n) := (−1)n−1

2 · (n− 1)!

∫ π

0

[
log

(
sin

x

2

)]n−1
dx (n ∈ N)

in the following form:

(1.16)
2n−1∑
k=1

(−1)k−1D(k)D(2n−k) = (−1)n+1 22n − 1

(2n)!
π2nB2n (n ∈ N),

where Bn are the Bernoulli numbers in (1.12) and (1.13), and

D(1) = π

2
and D(2) = π

2
log 2.

More recently, Batir [4] presented integral representations, involving Log-
Sine terms, for some series associated with

(
2k

k

)−1

k−n and

(
2k

k

)−2

k−n,
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and for some closely-related series, by using a number of elementary properties
of Polylogarithms.

Lewin [19, pp. 102–103; p. 164] presented the following integral formulas:

(1.17)
∫ π

2

0
log

(
2 sin

x

2

)
dx = −G

and

(1.18)
∫ π

2

0
x log

(
2 sin

x

2

)
dx = 35

32
ζ(3)− 1

2
πG,

where G denotes the Catalan constant defined by

(1.19) G :=
∞∑
m=0

(−1)m

(2m+ 1)2
∼= 0.91596 55941 77219 015 . . . .

Several other authors have concentrated upon the problem of evaluation of
the Log-Sine integral Lsn(θ) and the generalized Log-Sine integral Ls(m)n (θ)

of order n and indexm given in Definition 1 with the argument θ given by θ =
π
3 . (Throughout this paper, we choose the principal branch of the logarithm
function log z in case z is a complex variable.)

In particular, van der Poorten [29] proved that

(1.20)
∫ π

3

0
log2

(
2 sin

x

2

)
dx = 7

108
π3

and

(1.21)
∫ π

3

0
x log2

(
2 sin

x

2

)
dx = 17

6480
π4.

Zucker [32] established the following two integral formulas:

(1.22)
∫ π

3

0

{
log4

(
2 sin

x

2

)
− 3

2
x2 log2

(
2 sin

x

2

)}
dx = 253

3240
π5

and

(1.23)
∫ π

3

0

{
x log4

(
2 sin

x

2

)
− x3

2
log2

(
2 sin

x

2

)}
dx = 313

408240
π6.

Zhang and Williams [31] extensively investigated Lsn
(
π
3

)
and Ls(m)n

(
π
3

)
along with other integrals in order to present two general formulas (see [31,
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p. 272, Eqs. (1.6) and (1.7)]), which include the integral formulas (1.20) to
(1.23) as special cases. We choose to recall here one more explicit special case
of the Zhang-Williams integral formulas as follows:

(1.24)
∫ π

3

0

{
log6

(
2 sin

x

2

)
− 15

4
x2 log4

(
2 sin

x

2

)

+15

16
x4 log2

(
2 sin

x

2

)}
dx = 77821

26 · 36 · 7
π7.

Borwein et al. [7] expressed the central binomial sum:

S(k) :=
∞∑
n=1

1

nk
(2n
n

)

in an integral form as follows:

(1.25) S(k) = (−2)k−1

(k − 2)!
Ls(1)k

(π
3

)
(k ∈ N).

By doing so, they [7, Theorem 3.3] were able to evaluate the central binomial
sums S(k) (k = 2, . . . , 8) in terms of the multiple Clausen, Glaisher, and Zeta
values.

2. Analogous Log-Sine Integrals

In this section, we will show how nicely some general formulas analogous
to the generalized Log-Sine integral Ls(m)n

(
π
3

)
can be obtained by using the

theory of Polylogarithms. Indeed, by carrying out repeated integration by parts
in (1.7) in conjunction with (1.6), we obtain

Lemma.

(2.1) Lin(z)− Lin(w) =
∫ z

w

Lin−1(t)
dt

t

=
(n−2∑
k=1

(−1)k−1

k!
(log t)k Lin−k(t)+ (−1)n−1

(n− 1)!
(log t)n−1 log(1 − t)

)∣∣∣∣
z

t=w

+ (−1)n−1

(n− 1)!

∫ z

w

(log t)n−1 dt

1 − t
(n ∈ N \ {1}),
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where (and elsewhere in this paper) an empty sum is understood to be nil; in
particular,

(2.2)

ζ(n) = Lin(1) = (−1)n−1

(n− 1)!

∫ 1

0
(log t)n−1 dt

1 − t

= (−1)n−1

(n− 1)!

∫ 1

0

[
log(1 − t)

]n−1 dt

t
(n ∈ N \ {1}).

By beginning with (2.2), we can deduce the following analogous Log-Sine
integral formulas:

Theorem 1.

(2.3)
m∑
k=1

(−1)k+1

22k−1

(
2m

2k − 1

) ∫ π/3

0
(x − π)2k−1 log2m+1−2k

(
2 sin

x

2

)
dx

= (2m)!
2m−1∑
k=0

(−1)[k/2]

k!

(
π

3

)k
Cl2m+1−k

(
π

3

)
(m ∈ N);

(2.4)
m∑
k=0

(−1)k+1

22k

(
2m

2k

) ∫ π
3

0
(x − π)2k log2m−2k

(
2 sin

x

2

)
dx

= (−1)m
(

1 + 1

2m+ 1

) (
π

3

)2m+1

+ (2m)!
2m−1∑
k=0

(−1)[
k+1

2 ]

k!

(
π

3

)k
Gl2m+1−k

(
π

3

)
(m ∈ N);

(2.5)
m−1∑
k=0

(−1)k

22k+1

(
2m− 1

2k + 1

) ∫ π
3

0
(x − π)2k+1 log2m−2−2k

(
2 sin

x

2

)
dx

= (−1)m+1

(
1 + 1

2m

) (
π

3

)2m

− 2(2m− 1)!ζ(2m)

+ (2m− 1)!
2m−2∑
k=0

(−1)[
k
2 ]

k!

(
π

3

)k
Gl2m−k

(
π

3

)
(m ∈ N);
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(2.6)
m−1∑
k=0

(−1)k

22k

(
2m− 1

2k

) ∫ π
3

0
(x − π)2k log2m−1−2k

(
2 sin

x

2

)
dx

= (2m− 1)!
2m−2∑
k=0

(−1)[
k−1

2 ]

k!

(
π

3

)k
Cl2m−k

(
π

3

)
(m ∈ N),

where Cln(θ) and Gln(θ) denote the generalized Clausen function and the
associated Clausen function given in (1.9) and (1.10), respectively.

Proof. Substituting t = u−1 in (2.2) yields

(2.7) (−1)n−1
∫ e−iθ

1
(log t)n−1 dt

1 − t

=
∫ eiθ

1
(log t)n−1 dt

1 − t
+ 1

n
(iθ)n (0 � θ � π).

Furthermore, it is easily observed, by setting t = 1 − eix , that

(2.8)
∫ 1−eiθ

0
(log t)n−1 dt

1 − t
= −i

∫ θ

0

(
1

2
i(x − π)+ log

∣∣∣2 sin
x

2

∣∣∣
)n−1

dx

or, equivalently, that

(2.9)
∫ 1−eiθ

1
(log t)n−1 dt

1 − t
= −i

∫ θ

0

(
1

2
i(x − π)

+ log
∣∣∣2 sin

x

2

∣∣∣
)n−1

dx + (−1)n(n− 1)!ζ(n) (n ∈ N \ {1})

in view of (2.2). In its special case when n = 2m + 1 (m ∈ N) and w = 1,
(2.1) yields

(2.10)
∫ z

1
(log t)2m

dt

1 − t
= (2m)! Li2m+1(z)− (2m)!ζ(2m+ 1)

+ (2m)!
2m−1∑
k=1

(−1)k

k!
(log z)k Li2m+1−k(z)− (log z)2m log(1−z) (m ∈ N).

Putting z = ei
π
3 in (2.10) and using the following elementary identity:

(2.11) 1 − ei
π
3 = e−i

π
3 ,
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we get

(2.12)
∫ e

i π3

1
(log t)2m

dt

1 − t
= i(−1)m

(π
3

)2m+1 − (2m)! ζ(2m+ 1)

+ (2m)!
2m−1∑
k=0

(−1)k

k!

(
i
π

3

)k
Li2m+1−k

(
ei

π
3
)

(m ∈ N).

We now separate the even and odd parts of the sum occurring in (2.12) and
make use of (1.8) and (1.11). We thus obtain

(2.13)
2m−1∑
k=0

(−1)k

k!

(
i
π

3

)k
Li2m+1−k

(
ei

π
3
)

=
2m−1∑
k=0

(−1)[k/2]

k!

(π
3

)k
Cl2m+1−k

(π
3

)

+ i

2m−1∑
k=0

(−1)[
k+1

2 ]

k!

(π
3

)k
Gl2m+1−k

(π
3

)
.

Upon substituting from (2.13) into (2.12), and equating the real and imaginary
parts on each side of the resulting equation, we obtain

(2.14) �
(∫ e

i π3

1
(log t)2m

dt

1 − t

)
= −(2m)!ζ(2m+ 1)

+ (2m)!
2m−1∑
k=0

(−1)[k/2]

k!

(π
3

)k
Cl2m+1−k

(π
3

)
(m ∈ N)

and

(2.15) �
(∫ e

i π3

1
(log t)2m

dt

1 − t

)
= (−1)m

(π
3

)2m+1

+ (2m)!
2m−1∑
k=0

(−1)[
k+1

2 ]

k!

(π
3

)k
Gl2m+1−k

(π
3

)
(m ∈ N).

Setting n = 2m+ 1 (m ∈ N) and θ = π
3 in (2.7), we have

(2.16)
∫ e

−i π3

1
(log t)2m

dt

1 − t

=
∫ e

i π3

1
(log t)2m

dt

1 − t
+ (−1)m

2m+ 1

(π
3

)2m+1
i (m ∈ N).
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Also, by putting n = 2m + 1 (m ∈ N) and θ = π
3 in (2.9), and using (2.11),

we obtain

(2.17)
∫ e

−i π3

1
(log t)2m

dt

1 − t
= −(2m)!ζ(2m+ 1)

− i

∫ π
3

0

[
1

2
i(x − π)+ log

(
2 sin

x

2

)]2m

dx (m ∈ N).

Now, by using the binomial theorem, we find that

(2.18)

[
1

2
i(x − π)+ log

(
2 sin

x

2

)]2m

=
m∑
k=0

(−1)k
(

2m

2k

) (
x − π

2

)2k

log2m−2k
(

2 sin
x

2

)

+ i

m∑
k=1

(−1)k+1

(
2m

2k − 1

) (
x − π

2

)2k−1

log2m+1−2k
(

2 sin
x

2

)
(m ∈ N).

Substituting (2.18) into the integrand on the right-hand side of (2.17), and
equating the real and imaginary parts of each side of the resulting equation,
we obtain

(2.19) �
(∫ e

−i π3

1
(log t)2m

dt

1 − t

)
= −(2m)! ζ(2m+ 1)

+
m∑
k=1

(−1)k+1

22k−1

(
2m

2k − 1

) ∫ π
3

0
(x−π)2k−1 log2m+1−2k

(
2 sin

x

2

)
dx (m ∈ N)

and

(2.20) �
(∫ e

−i π3

1
(log t)2m

dt

1 − t

)

=
m∑
k=0

(−1)k+1

22k

(
2m

2k

) ∫ π
3

0
(x − π)2k log2m−2k

(
2 sin

x

2

)
dx (m ∈ N).

Finally, from (2.14), (2.15), (2.16), (2.19), and (2.20), we deduce the ana-
logous Log-Sine integral formulas (2.3) and (2.4).

Just as in our derivations of (2.3) and (2.4), if we set

n = 2m (m ∈ N), z = ei
π
3 and w = 1
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in (2.1), and apply (2.7) and (2.9) with θ = π
3 , we obtain the other analog-

ous Log-Sine integral formulas (2.5) and (2.6). This completes the proof of
Theorem 1.

3. Remarks on Cln(θ) and Gln(θ)

In view of Equations (2.3) to (2.6), we need to express the generalized Clausen
function Cln(θ) and its associated Clausen function Gln(θ) as explicitly as
possible, at least at the argument θ = π/3. To do this, we begin by rewriting
the following known formula:

(3.1)
∞∑
k=1

cos(2πkx)

kn
+ i

∞∑
k=1

sin(2πkx)

kn
= (2πi)n−1

(n− 1)!

(
ζ ′(1 − n, x)

+ (−1)n−1ζ ′(1 − n, 1 − x)− πi
Bn(x)

n

)
(0 < x < 1; n ∈ N \ {1})

which was proved by Adamchik [1, Eq. (9)] (see also [21, Eq. (21)]) who used
Lerch’s transform formula [18] and whereBn(x) are the Bernoulli polynomials
of degree n in x (see, for details, [27, pp. 59–61]). Now replacing n by 2n and
2n + 1 in (3.1) and equating the real and imaginary parts in each case, we
obtain the following formulas:

(3.2) Gln(2πx) = (−1)1+[ 1
2 n]2n−1πn

Bn(x)

n!
(0 � x � 1; n ∈ N\{1}),

which is a known result (cf. [19, p. 202, Eq. (7.60)]; see also [27, p. 119,
Eq. (109)]); and

(3.3) Cln(2πx) = (−1)1+[ 1
2 (n+1)] (2π)

n−1

(n− 1)!

[
ζ ′(1 − n, x)

+ (−1)n+1ζ ′(1 − n, 1 − x)
]

(0 < x < 1; n ∈ N \ {1}).
Srivastava et al. [28, Eq. (3.8) and Eq. (3.17)] presented the following

formulas:

(3.4) Cl2n+1

(π
3

)
= 1

2
(1 − 2−2n)(1 − 3−2n)ζ(2n+ 1) (n ∈ N)

and

(3.5) Cl2n

(π
3

)
=

√
3

62n

[
ζ

(
2n,

1

3

)

+ ζ

(
2n,

1

6

)
− 22n−1(32n − 1)ζ(2n)

]
(n ∈ N).
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Cvijović and Klinowski [15, Eq. (10a)] proved formulas which can be spe-
cialized in the following form:

(3.6) Cln

(
2πp

q

)
= 1

qn

q∑
k=1

ζ

(
n,
k

q

) [
1 + (−1)n

2
sin

(
2kπp

q

)

+ 1 − (−1)n

2
cos

(
2kπp

q

)]
(n, q + 1 ∈ N \ {1}; p ∈ Z),

which, upon replacing n by 2n + 1 and 2n with p = 1 and q = 6, leads to
(3.4) and (3.5), respectively.

We are ready now to consider some explicit expressions of (2.3) to (2.6).
Upon setting m = 1, 2, 3 in (2.4), and m = 2, 3 in (2.5), if we apply (3.2), we
obtain the following explicit analogous Log-Sine integral formulas.

Corollary 1. The following integral formulas hold true:

(3.7)
∫ π

3

0
log2

(
2 sin

x

2

)
dx = 7

108
π3,

(3.8)
∫ π

3

0
(x − π) log2

(
2 sin

x

2

)
dx = − 403

24 · 34 · 5
π4,

(3.9)
∫ π

3

0

[
3

2
(x − π)2 log2

(
2 sin

x

2

)
−log4

(
2 sin

x

2

)]
dx = 73

24 · 34 · 5
π5,

(3.10)
∫ π

3

0

[
2 (x − π) log4

(
2 sin

x

2

)

− (x − π)3 log2
(

2 sin
x

2

)]
dx = − 39883

24 · 36 · 5 · 7
π6,

and

(3.11)
∫ π

3

0

[
log6

(
2 sin

x

2

)
− 15

4
(x − π)2 log4

(
2 sin

x

2

)

+ 15

16
(x − π)4 log2

(
2 sin

x

2

)]
dx = 697

26 · 36 · 7
π7.

It should be noted that the integral formulas (1.20) to (1.24) can easily be
deduced from these last integral formulas (3.7) to (3.11) in Corollary 1.
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Upon setting m = 1, 2 in (2.3) and (2.6), if we apply (3.4) and (3.5), we
obtain Corollary 2 below.

Corollary 2. The following integral formulas hold true:

(3.12)
∫ π

3

0
(x − π) log

(
2 sin

x

2

)
dx = 2

3
ζ(3)

− 4
√

3

81
π3 +

√
3π

54

[
ζ

(
2,

1

3

)
+ ζ

(
2,

1

6

)]
,

(3.13)
∫ π

3

0

[
2(x − π) log3

(
2 sin

x

2

)
− 1

2
(x − π)3 log

(
2 sin

x

2

)]
dx

= 100

9
ζ(5)− 4π2

9
ζ(3)− 8

√
3

243
π5 +

√
3π

162

[
ζ

(
4,

1

3

)

+ ζ

(
4,

1

6

)]
−

√
3π3

243

[
ζ

(
2,

1

3

)
+ ζ

(
2,

1

6

)]
,

(3.14)
∫ π

3

0
log

(
2 sin

x

2

)
dx = 2

√
3

27
π2 −

√
3

36

[
ζ

(
2,

1

3

)
+ ζ

(
2,

1

6

)]
,

and

(3.15)
∫ π

3

0

[
log3

(
2 sin

x

2

)
− 3

4
(x − π)2 log

(
2 sin

x

2

)]
dx

= 2
√

3

243
π4 + 2π

3
ζ(3)+

√
3π2

108

[
ζ

(
2,

1

3

)

+ ζ

(
2,

1

6

)]
−

√
3

216

[
ζ

(
4,

1

3

)
+ ζ

(
4,

1

6

)]
.

4. Further Remarks and Observations

We consider the following general integral:

(4.1) Ls(m)m+2(z) =
∫ z

0
xm log

(
2 sin

x

2

)
dx (m ∈ N0).
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Applying integration by parts in (4.1), and using (1.12) and (1.13), we obtain

(4.2)
∫ z

0
xm log

(
2 sin

x

2

)
dx = zm+1

m+ 1
log

(
2 sin

z

2

)
− zm+1

(m+ 1)2

+ 2zm+1

m+ 1

∞∑
k=1

ζ(2k)

m+ 2k + 1

( z

2π

)2k
(|z| < 2π;m ∈ N).

If the known formulas Eq. (2.16) in [11, p. 515] and Eq. (2.13) in [11, p. 514]
are used, the infinite series in (4.2) can be expressed as finite series as follows

Theorem 2. The following integral formulas hold true:

(4.3)
∫ z

0
x2m log

(
2 sin

x

2

)
dx = z2m+1

2m+ 1
log

(
2 sin

z

2

)

+ (2π)2m+1

2m+ 1

2m+1∑
k=0

(
2m+ 1

k

)
·
[
ζ ′

(
−k, 1 − z

2π

)

+ (−1)kζ ′
(
−k, 1 + z

2π

)] ( z

2π

)2m+1−k
(|z| < 2π; m ∈ N0)

and

(4.4)
∫ z

0
x2m−1 log

(
2 sin

x

2

)
dx = z2m

2m
log

(
2 sin

z

2

)

+ (−1)m+1(2m− 1)!ζ(2m+ 1)+ (2π)2m

2m

2m∑
k=0

(
2m

k

)[
ζ ′

(
−k, 1 − z

2π

)

+ (−1)kζ ′
(
−k, 1 + z

2π

)] ( z

2π

)2m−k
(|z| < 2π;m ∈ N).

The special cases of (4.3) when m = 0 and (4.4) when m = 1 would, in
light of some of the identities in [27, Chapter 2], readily yield, respectively,
the integral formulas (4.5) and (4.6) below.

Corollary 3. The following integral formulas hold true:
(4.5)∫ π

3

0
log

(
2 sin

x

2

)
dx = 2π

[
ζ ′

(
−1,

5

6

)
− ζ ′

(
−1,

1

6

)]
= − Cl2

(π
3

)

= −π
3

log(2π)+ 2π log

(
�2

(
5
6

)
�2

(
7
6

)
)
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and
(4.6)∫ π

3

0
x log

(
2 sin

x

2

)
dx = 2ζ(3)

3
+ 2π2

3

[
ζ ′

(
−1,

5

6

)
− ζ ′

(
−1,

1

6

)]

= 2ζ(3)

3
− π2

9
log(2π)+ 2π2

3
log

(
�2

(
5
6

)
�2

(
7
6

)
)
,

where�2 denotes the double Gamma function (cf. [2], [3]; see also [27, pp. 94–
96]).

It should be remaked in passing that, in view of Equations (3.3), and (4.3)
to (4.6), closed-form expressions for the derivatives of ζ(s, a) at the negative
integer s and rational a are needed, some of which were evaluated byAdamchik
[1] and Miller and Adamchik [21].

It is also noted here that Srivastava et al. [28] studied extensively some
definite integrals in conjunction with series involving the Zeta function such
as in (4.2) whose closed-form evaluation has been an attractive and interesting
research subject since a letter dated 1729 from Goldbach to Daniel Bernoulli
(cf. [27, Chapter 3]; see also [9], [11], [12], [13], [16], [20], [24], and [25]).

In case (3.3) is used, (4.3) and (4.4) are readily rewritten as Corollary 4
below.

Corollary 4. The following integral formulas hold true:

(4.7)
∫ z

0
x2m log

(
2 sin

x

2

)
dx

= (2m)!
2m+2∑
k=2

(−1)k+[ 1
2 (k+1)]

(2m+ 2 − k)!
Clk(z)z

2m+2−k (|z| < 2π;m ∈ N0)

and

(4.8)
∫ z

0
x2m−1 log

(
2 sin

x

2

)
dx = (−1)m+1(2m− 1)!ζ(2m+ 1)

+ (2m− 1)!
2m+1∑
k=2

(−1)k+[ 1
2 (k+1)]

(2m+ 1 − k)!
Clk(z)z

2m+1−k (|z| < 2π;m ∈ N).

Upon settingm = 1 in (4.7) andm = 2 in (4.8) with z = π
3 , we can deduce

Corollary 5 below.
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Corollary 5. The following integral formulas hold true:

(4.9)
∫ π

3

0
x2 log

(
2 sin

x

2

)
dx = −2

√
3

729
π4 − 2π

9
ζ(3)

−
√

3π2

324

[
ζ

(
2,

1

3

)
+ ζ

(
2,

1

6

)]
+

√
3

648

[
ζ

(
4,

1

3

)
+ ζ

(
4,

1

6

)]

and

(4.10)
∫ π

3

0
x3 log

(
2 sin

x

2

)
dx = −2

√
3

243
π5 − π2

9
ζ(3)− 29

9
ζ(5)

−
√

3π3

972

[
ζ

(
2,

1

3

)
+ ζ

(
2,

1

6

)]
+

√
3π

648

[
ζ

(
4,

1

3

)
+ ζ

(
4,

1

6

)]
.

Definition 5. The Polygamma functions ψ(n)(z) (n ∈ N) are defined by

(4.11) ψ(n)(z) := dn+1

dzn+1
{log�(z)} = dn

dzn
{ψ(z)}

(n ∈ N0; z ∈ C \ Z−
0 ; Z−

0 := {0,−1,−2, . . .}),
which, in terms of the Hurwitz Zeta function ζ(s, a) given in (1.4), can be
written in the following form:

(4.12) ψ(n)(z) = (−1)n+1n!ζ(n+ 1, z) (n ∈ N; z ∈ C \ Z−
0 ).

By using (4.12), Shen’s procedure (see [23, pp. 1393–1394]) can be short-
ened considerably and it may also be easier to apply it to other situations of
a similar nature (see also [22] and [14]). For example, the integral formula
(1.15) can be restated as follows:

(4.13)
1

2π

∫ 2π

0

[
log

(
2 sin

x

2

)]n
dx = (−1)nn!

2n
an (n ∈ N0),

where the coefficients an are given by

2−2z�
(

1
2 − z

)
√
π�(1 − z)

=
∞∑
n=0

anz
n

or, equivalently, by the following simple recursion formula:

a1 = 0 and (n+ 1)an+1 = 2
n∑
k=1

an−k(2k − 1)ζ(k + 1) (n ∈ N).
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Similarly, by making use of a known result [19, p. 230, Equation (7.160)],
the following formulas can be obtained.

Corollary 6. Each of the following results holds true:

(4.14) (−1)m
∫ π

3

0

(
x − π

3

)2m+1
log

(
2 sin

x

2

)
dx

= −1

2
(2m+ 1)!

(
1 − 2−2m−2

) (
1 − 3−2m−2

)
ζ(2m+ 3)

+ (2m+ 1)!
m∑
k=0

(−1)k
(π

3

)2k ζ(2m+ 3 − 2k)

(2k)!
(m ∈ N0),

(4.15)
∫ π

3

0

(
log

sin x

sin
(
x + π

3

)
)2m+1

dx = (−1)m+1

(
3m+ 4

2m+ 3

) (π
3

)2m+3

+ (2m+ 2)!
m∑
k=0

(−1)k
(π

3

)2k+1 ζ(2m+ 2 − 2k)

(2k + 1)!
(m ∈ N0),

(4.16) (−1)m+1
∫ π

3

0

(
x − π

3

)2m
log

(
2 sin

x

2

)
dx

+ 1

2m+ 1

∫ π
3

0

[
log

(
sin x

sin
(
x + π

3

)
)]2m

dx

= (2m)!
m∑
k=1

(−1)k
(π

3

)2k−1 ζ(2m+ 3 − 2k)

(2k − 1)!
(m ∈ N),

and

(4.17)
m∑
k=0

(−1)k
(π

3

)2k ζ(2m+ 2 − 2k)

(2k)!

= 1

2
(−1)m

(
6m+ 5

(2m+ 2)!

) (π
3

)2m+2

+ 1

2
(1 − 2−2m−1)(1 − 3−2m−1)ζ(2m+ 2) (m ∈ N).

In their special cases when m = 0, the integral formulas (4.14) and (4.15)
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yield, respectively, the following remarkably simple results:

(4.18)
∫ π

3

0

(
x − π

3

)
log

(
2 sin

x

2

)
dx = 2

3
ζ(3)

and

(4.19)
∫ π

3

0
log

(
sin x

sin
(
x + π

3

)
)
dx = 5π3

81
,

which is the corrected version of the second entry in [19, p. 230, Eq. (7.161)].
We note in conclusion that (4.18) is recorded in [19, p. 230] and can also

be obtained from (4.5) and (4.6).
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15. Cvijović, D., and Klinowski, J., New formulae for the Bernoulli and Euler polynomials at

rational arguments, Proc. Amer. Math. Soc. 123 (1995), 1527–1535.



log-sine integrals 217

16. Garg, M., Jain, K., and Srivastava, H. M., Some relationships between the generalized Apostol-
Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct.
17 (2006), 803–815.

17. Hansen, E. R., A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ 1975.

18. Lerch, M., Note sur la fonction R(w, x, s) = ∑∞
k=0

e2kπix

(w+k)s , Acta Math. 11 (1887), 19–24.

19. Lewin, L., Polylogarithms and Associated Functions, North-Holland, New York and Amster-
dam 1981.

20. Lin, S.-D., Srivastava, H. M., and Wang, P.-Y., Some expansion formulas for a class of
generalized Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct. 17 (2006),
817–822.

21. Miller, J., and Adamchik, V. S., Derivatives of the Hurwitz zeta function for rational argu-
ments, J. Comput. Appl. Math. 100 (1998), 201–206.

22. Rassias, Th. M., and Srivastava, H. M., Some classes of infinite series associated with the
Riemann Zeta and Polygamma functions and generalized harmonic numbers, Appl. Math.
Comput. 131 (2002), 593–605.

23. Shen, L.-C., Remarks on some integrals and series involving the Stirling numbers and ζ(n),
Trans. Amer. Math. Soc. 347 (1995), 1391–1399.

24. Srivastava, H. M., A unified presentation of certain classes of series of the Riemann Zeta
function, Riv. Mat. Univ. Parma (4) 14 (1988), 1–23.

25. Srivastava, H. M., Sums of certain series of the Riemann Zeta function, J. Math. Anal. Appl.
134 (1988), 129–140.

26. Srivastava, H. M., Some rapidly converging series for ζ(2n+ 1), Proc. Amer. Math. Soc. 127
(1999), 385–396.

27. Srivastava, H. M., and Choi, J., Series Associated with the Zeta and Related Functions,
Kluwer, Dordrecht 2001.

28. Srivastava, H. M., Glasser, M. L., and Adamchik, V. S., Some definite integrals associated
with the Riemann zeta function, Z. Anal. Anwendungen 19 (2000), 831–846.

29. van der Poorten, A. J., Some wonderful formulas. . . : An introduction to polylogarithms,
pp. 269–286 in: Proceedings of the Queen’s Number Theory Conference (Kingston, Ont.
1979), Queen’s Papers in Pure andApplied Mathematics 54, Queen’s University, Kingston,
Ont. 1980.

30. Williams, K. S., and Zhang, N.-Y., Special values of the Lerch Zeta function and the evaluation
of certain integrals, Proc. Amer. Math. Soc. 119 (1993), 35–49.

31. Zhang, N.-Y., and Williams, K. S., Values of the Riemann Zeta function and integrals involving
log

(
2 sinh θ

2

)
and log

(
2 sin θ

2

)
, Pacific J. Math. 168 (1995), 271–289.

32. Zucker, I. J., On the series
∑∞
k=1

(2k
k

)−1
k−n and related sums, J. Number Theory 20 (1985),

92–102.

DEPARTMENT OF MATHEMATICS
DONGGUK UNIVERSITY
GYEONGJU 780-714
REPUBLIC OF KOREA
E-mail: junesang@mail.dongguk.ac.kr

DEPARTMENT OF MATHEMATICS EDUCATION
PUSAN NATIONAL UNIVERSITY
PUSAN 609-735
REPUBLIC OF KOREA
E-mail: choyj79@hanmail.net

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF VICTORIA
VICTORIA, BRITISH COLUMBIA V8W 3R4
CANADA
E-mail: harimsri@math.uvic.ca


