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SEPARABLE STATES AND POSITIVE MAPS II

ERLING STØRMER

Abstract

Using the natural duality between linear functionals on tensor products of C∗-algebras with the
trace class operators on a Hilbert space H and linear maps of the C∗-algebra into B(H), we give
two characterizations of separability, one relating it to abelianness of the definite set of the map,
and one on tensor products of nuclear and UHF C∗-algebras.

Introduction

The present paper is a continuation of [10]. We continue to study the duality
of positive linear maps from a C∗-algebra A into the bounded operators on a
Hilbert space and linear functionals on the tensor product of A with the trace
class operators. The paper consists of two rather independent parts. In the first
we consider the definite set Dφ of a map φ, i.e. the Jordan subalgebra of A
on which φ restricts to a Jordan homomorphism. The main result states that if
φ(A) = φ(Dφ), then the dual functional of φ is a separable positive functional
if and only if φ(A) is an abelian C∗-algebra. This is applied to give necessary
and sufficient conditions for the dual functional of the canonical projection of
a von Neumann algebra onto the fixed point set of a positive unital map to be
separable.

In the second part we prove a variation of the Horodecki theorem [3] char-
acterizing separable states by positive maps in the setting of tensor products
of a nuclear C∗-algebra A and an UHF-algebra B. We show that a state ρ
on A ⊗ B is the w∗-limit of convex sums of product states if and only if the
compositions ρ ◦ (ι⊗ ψ) are positive for all positive maps ψ of B into itself,
ι being the identity map on A.

For the reader’s convenience we recall some of the concepts considered in
the paper.

Let A be a C∗-algebra, or just an operator system. Let T denote the trace
class operators on a Hilbert space H , identified with B(H) when H is finite
dimensional. If B is another C∗-algebra let B(A,B) (resp. B(A,B)+) denote
the bounded linear (resp. positive linear) maps of A into B. We also use the
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notationB(A,H) forB(A,B(H)). For the following see [10]. If φ ∈ B(A,B)
its dual functional φ̃ on the projective tensor product A ⊗̂ T is defined by

φ̃(a ⊗ b) = Tr(φ(a)bt );
Tr is the usual trace onB(H), and bt is the transpose of bwith respect to a given
orthonormal basis for H . A mapping cone is a cone 0 �= K ⊆ B(B(H),H)+
which is closed in the topology of bounded pointwise weak convergence, and
which has a dense set of maps α such that for all a, b ∈ B(H) the map
x �→ aα(bxb∗)a∗ belongs to K . We say φ ∈ B(A,H)+ is K-positive if φ̃ is
positive on the cone

P(A,K) = {x ∈ A ⊗̂ T : ι⊗ α(x) ≥ 0 ∀ α ∈ K}.
Note that if x ∈ P(A,K) and β ∈ B(A,A) is completely positive, then

(ι⊗ α)(β ⊗ ι(x)) = (β ⊗ ι) ◦ (ι⊗ α)(x) ≥ 0,

hence β ⊗ ι(x) ∈ P(A,K). It follows that x ∈ P(A,K) if and only if
x ∈ A ⊗̂ T and β ⊗ α(x) ≥ 0 for all α ∈ K,β ∈ B(A,A) completely
positive.

A state on the tensor product of twoC∗-algebras is said to be separable if it is
a norm limit of convex sums of product states. Otherwise it is called entangled.
Following [4] we say a map φ ∈ B(A,H)+ is entanglement breaking if it is
S(H)-positive, where S(H) is the mapping cone generated by maps of the
form

ψ(x) =
n∑
i=1

ωi(x)ai,

where ωi is a normal state on B(H) and ai ∈ B(H)+. By [10], Theorem 2,
see also [4], φ is entanglement breaking if and only if φ̃ is a separable positive
linear functional.

A linear set J of self-adjoint operators is called a Jordan algebra if a, b ∈ J
implies their Jordan product a ◦ b = 1

2 (ab+ ba) ∈ J . J is called a JC-algebra
(resp. JW-algebra) if it is norm (resp. weakly) closed. In particular the self-
adjoint part Asa of a C∗-algebra (resp. von Neumann algebra) is a JC-algebra
(resp. JW-algebra).

Ifφ ∈ B(A,B)+ withA,B C∗-algebras, the definite setDφ ofφ is the set of
operators a ∈ A such that φ(a∗a) = φ(a)∗φ(a). In particular the self-adjoint
part (Dφ)sa is the set of self-adjoint operators such that φ(a2) = φ(a)2. Then
(Dφ)sa is a JC-algebra. If a ∈ Dφ, b ∈ A then φ(a ◦ b) = φ(a) ◦ φ(b), see
[9]. Note that in [10] we only considered the self-adjoint part ofDφ and called
that the definite set.
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The author is indebted to M. B. Ruskai for some valuable comments.

1. Separability and abelianness

It was shown in [10] that a map in B(A,H)+ of the form φ(x) = ∑
ωi(x)ai

with ωi states of A and ai ∈ B(H)+ has definite set whose image by φ is an
abelian C∗-algebra. In this section we shall elaborate on this and show that if
φ ∈ B(A,H)+ has image φ(A) = φ(Dφ) then φ̃ is separable if and only if
φ(A) is abelian. In the von Neumann algebra case when φ ∈ B(M,M)+ is
normal we apply this to the positive projection map Pφ onto the fixed point
set Mφ of φ in M. But first we show some preliminary results. The first is a
simplified dual characterization of decomposable and entanglement breaking
maps.

Proposition 1. Let A be an operator system, H a Hilbert space and
φ ∈ B(A,H)+. Let t denote the transpose map on B(H). Then we have

(i) φ is decomposable if and only if φ̃ is positive on the cone

{x ∈ (A ⊗̂ T )+ : (ι⊗ t)(x) ≥ 0}.

(ii) φ is entanglement breaking if and only if φ̃ is positive on the cone

{x ∈ A ⊗̂ T : (ι⊗ ω)(x) ≥ 0 ∀ normal states ω of B(H)}.

Proof. Ad (i). Let K be the mapping cone of all decomposable maps in
B(B(H),H). Then φ is K-positive if and only if φ̃ is positive on the cone

{x ∈ A ⊗̂ T : (ι⊗ α)(x) ≥ 0 ∀ α ∈ K},
or, since each copositive map is of the form β ◦ t with β completely positive,
it follows that if (ι⊗ t)(x) ≥ 0 then (ι⊗ β ◦ t)(x) = (ι⊗ β) ◦ (ι⊗ t)(x) ≥ 0.
Thus φ is K-positive if and only if φ̃ is positive on the cone {x ∈ (A ⊗̂ T )+ :
(ι ⊗ t)(x) ≥ 0}. But then it follows from [8], Theorem 3.6, that φ is K-
positive if and only if φ belongs to the closed cone generated by all maps
α ◦ ψ, α ∈ K,ψ ∈ B(A,H) completely positive, in other words, if and only
if φ is decomposable, completing the proof of (i).

Ad (ii). Assume φ̃ is positive on the cone

{x ∈ A ⊗̂ T : (ι⊗ ω)(x) ≥ 0 ∀ normal states ω of B(H)}.
If (ι⊗ ω)(x) ≥ 0, then

(ι⊗ aω)(x) = (1 ⊗ a)(ι⊗ ω)(x) ≥ 0
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if a ≥ 0, since (1 ⊗ a) and (ι ⊗ ω)(x) commute. Thus (ι ⊗ α)(x) ≥ 0 for
all α ∈ S(H), so φ is S(H)-positive, hence entanglement breaking, by [10],
Theorem 2. The converse is obvious. The proof is complete.

The following lemma is surely well known, but is included for completeness,

Lemma 2. Let A be a unital C∗-algebra and φ ∈ B(A,H) unital and
completely positive. Then the definite set Dφ is a C∗-subalgebra of A.

Proof. Let φ = V ∗πV be the Stinespring dilation of φ, where π is a
representation of A on a Hilbert space K , and V is a linear map of H into K .
Since φ is unital, V ∗V = 1, so V is an isometry. Let p = VV ∗. Then p is a
projection in B(K) such that the map pπp is the composition of φ with the
isomorphism x �→ V xV ∗ of B(H) into B(K). Thus x ∈ Dφ if and only if
x ∈ Dpπp. But then x ∈ (Dφ)sa if and only if

pπ(x)pπ(x)p = (pπ(x)p)2 = pπ(x2)p = pπ(x)2p,

hence if and only if pπ(x)(1 − p)π(x)p = 0, i.e. pπ(x)(1 − p) = 0, hence
if and only if pπ(x) = pπ(x)p = (pπ(x)p)∗ = π(x)p. Thus x ∈ Dφ if
and only if pπ(x) = π(x)p. Thus x, y ∈ Dφ implies their product xy ∈ Dφ ,
proving the lemma.

The next lemma is closely related to Theorem 10 in [10]

Lemma 3. Let φ ∈ B(A,H) be unital and entanglement breaking. Then
φ(Dφ) is an abelian C∗-algebra.

Proof. Since an entanglement breaking map is completely positive, Dφ

is a C∗-algebra by Lemma 2. Furthermore φ is a Jordan homomorphism on
Dφ . By [6] there are two orthogonal central projections e and f with sum 1
in the von Neumann algebra generated by φ(Dφ) such that φ1(a) = φ(a)e

is a *-homomorphism, and φ2(a) = φ(a)f is a *-antihomomorphism. Since
φ is entanglement breaking the composition of φ with the transpose map is
also entanglement breaking, hence completely positive. Thus both φ1 and φ2

are both homomorphisms and antihomomorphisms. But this is possible only
if their images are abelian. The proof is complete.

By the above together with some results in [10] we can now conclude the
following.

Theorem 4. LetA be a unitalC∗-algebra and φ a unital map inB(A,H)+
such that φ(A) = φ(Dφ). Then the following conditions are equivalent:

(i) φ is entanglement breaking.

(ii) φ(A) is an abelian C∗-algebra.

(iii) φ̃ is separable.
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Proof. By Theorem 2 in [10] (i) ⇔ (iii). By Corollary 3 in [10] (ii) ⇒ (iii),
and by Lemma 3 (i) ⇒ (ii). The proof is complete.

Let M ⊂ B(H) be a von Neumann algebra, and let φ ∈ B(M,M)+. Then
φn ∈ B(M,M)+ for all n ∈ N. It was shown in the proof of [1] Corollary 1.6,
that if φ is normal, then then the maps φn = 1

n
(φ + φ2 + · · · + φn) converge

in the point-ultraweak topology to a positive unital projection map Pφ , so
Pφ = (Pφ)

2, ofM onto the fixed point setMφ = {x ∈ M : φ(x) = x} of φ. We
call this projection map the averaging projection for φ. Suppose furthermore
that there exists a faithful normal state ρ on M such that ρ ◦ φ = ρ. Then
ρ ◦ φn = ρ for all n, hence ρ ◦ Pφ = ρ. It follows that Pφ is faithful and
normal. Indeed, if (aα) is an increasing net in M , and aα ↗ a, then

ρ(Pφ(a)) = ρ(a) = lim ρ(aα) = lim ρPφ(aα) ≤ ρPφ(a),

so by faithfulness of ρ, Pφ(a) = lim Pφ(aα), so Pφ is normal. Similarly one
shows that Pφ is faithful. Then by [1] Corollary 1.5, (Mφ)sa = Pφ(Msa) is a
JW-algebra. Furthermore Mφ ⊂ Dφ , for if a ∈ (Mφ)sa then by the Kadison-
Schwarz inequality, a2 = Pφ(a

2) ≥ Pφ(a)
2 = a2, so Pφ(a2) = Pφ(a)

2. Since
Pφ(M) = Mφ we thus have Pφ(M) = Pφ(Dφ). We have therefore shown the
following corollary to Theorem 4.

Corollary 5. Let M be a von Neumann algebra and φ a normal unital
map in B(M,M)+ such that there exists a faithful normal state ρ such that
ρ ◦ φ = ρ. Let Pφ be the averaging projection for φ. Then the following
conditions are equivalent:

(i) Pφ is entanglement breaking.

(ii) Mφ = Pφ(M) is an abelian von Neumann algebra.

(iii) P̃φ is a separable positive functional.

A JC-algebra is called reversible if it is closed under symmetric products
a1a2 . . . an + anan−1 . . . a1 for all n ∈ N, ai ∈ A. Examples of nonreversible
Jordan algebras are spin factors, which are the norm closed linear span of spin
systems, i.e. 1 and self-adjoint unitaries si, i ∈ I ⊂ N, satisfying sisj+sj si = 0
for i �= j , where Card I ≥ 7. By [7], Corollary 7.3, if P is a faithful positive
projection of a C∗-algebra B into itself, then P is decomposable if and only
if the image P(Bsa) of Bsa is a reversible JC-algebra. We get the following
corollary to Corollary 5.

Corollary 6. Let M be a von Neumann algebra and φ ∈ B(M,M)+ a
unital normal map. Suppose there exists a faithful normal state ρ such that
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ρ◦φ = ρ. Then if the JW-algebra (Mφ)sa is nonreversible, thenφ is nondecom-
posable. In particular there exists x ∈ (A ⊗̂ T )+ such that (ι ⊗ t)(x) ≥ 0,
while φ̃(x) < 0.

Proof. From the above discussion (Mφ)sa is nonreversible if and only if
Pφ is nondecomposable. If φ is decomposable, so is φn for all n ∈ N, hence
Pφ is decomposable, so that (Mφ)sa = Pφ(Msa) is reversible, contrary to
assumption. Thus φ is nondecomposable. By Proposition 1 the existence of x
is clear.

When Mφ is finite dimensional the structure of Pφ and its dual P̃φ is de-
scribed in the following more general result. Recall that the centralizer of a
state ρ on a C∗-algebra A is the set of a ∈ A such that ρ(ab) = ρ(ba) for all
b ∈ A.

Proposition 7. Let A ⊂ B be unital C∗-algebras acting on a Hilbert
spaceH withA finite dimensional abelian generated by its minimal projections
e1, . . . , en. Let P ∈ B(B,A)+ be a unital projection ofB ontoA, and suppose
ρ is a faithful state on B such that ρ ◦ P = ρ. Then we have:

(i) ei belongs to the centralizer of ρ for all i.

(ii) If ρi(a) = ρ(ei)
−1ρ(eiaei), a ∈ B, then

P(a) =
n∑
i=1

ρi(x)ei .

(iii) Let E:B ⊗ B(H) → B ⊗ B(H) be defined by

E(x) =
n∑
i=1

ρ(ei)
−1(ei ⊗ eti )x(ei ⊗ eti ).

Then
P̃ = (ρ ⊗ Tr) ◦ E.

Proof. (i) If a ∈ B then P(aei) = P(a)ei = eiP (a) = P(eia), hence

ρ(eia) = ρ(P (eia)) = ρ(P (aei)) = ρ(aei),

proving (i).
(ii) If a ∈ A then by (i)

ρ(a) =
n∑
i=1

ρ(eia) =
n∑
i=1

ρ(eiaei) =
n∑
i=1

ρ(P (eiaei)) =
n∑
i=1

ρ(eiP (a)ei).
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Since A is abelian generated by the e′i s, P(a) = ∑n
i=1 ωi(a)ei with ωi a state

on B. Thus

ρ(a) =
n∑
i=1

ρ

(
ei

( n∑
j=1

ωj(a)ej

)
ei

)
=

n∑
i=1

ωi(a)ρ(ei).

Note that ei = P(ei) = ∑n
j=1 ωj(ei)ej , hence ωi(ei) = 1, so ωi(ej ) = δij .

Thus if a = ejaej for i �= j , then ωi(a) = 0, and ρ(a) = ωj(a)ρ(ej ). Let ρj
be as in the statement of the proposition. Then ρj is a state on B with support
ej , and we have

P(a) =
n∑
j=1

ωj(a)ej =
n∑
j=1

ωj(ejaej )ej =
n∑
j=1

ρj (a)ej ,

proving (ii).
(iii) If a ⊗ b ∈ B ⊗̂ T then

P̃ (a ⊗ b) = Tr

( n∑
i=1

ρi(a)eib
t

)
=

n∑
i=1

ρi(a)Tr(eib
t ) =

n∑
i=1

ρi(a)Tr(etib)

=
n∑
i=1

ρ(ei)
−1ρ ⊗ Tr

(
(ei ⊗ eti )(a ⊗ b)(ei ⊗ eti )

)
= ρ ⊗ Tr ◦E.

The proof is complete.

2. Separability in C∗-algebras

The Horodecki Theorem states that if M and N are full matrix algebras, and
ρ is a state onM ⊗N with density operator h, the ρ is separable if and only if
ι⊗ ψ(h) ≥ 0 for all ψ ∈ B(N,M)+. We shall in the present section show a
version of this when M is a nuclear C∗-algebra and N a UHF-algebra. In that
case we cannot identify a state with a density operator, so we must reformulate
the theorem. First recall that a C∗-algebra A is nuclear if there exists a net
of triples (Mnλ(C), αλ, βλ), where αλ:A → Mnλ(C), and βλ:Mnλ(C) → A

are completely positive maps such that limλ βλ ◦ αλ(a) = a in norm for all
a ∈ A, see [11], Ch. XV, 1. A C∗-algebra B is a UHF-algebra if there is
a strictly increasing sequence (Nn)n∈N of C∗-subalgebras isomorphic to full
matrix algebras, whose union is norm dense in B. With A and B as above
A⊗ B has a unique C∗-norm.

We say a state ρ on the tensor product A⊗B of two C∗-algebras is weakly
separable if ρ is a w∗-limit of finite convex sums of product states.
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Theorem 8. Let A be a nuclear C∗-algebra and B a UHF-algebra. Let ρ
be a state on A⊗B. Then ρ is weakly separable if and only if ρ ◦ (ι⊗ψ) ≥ 0
for all ψ ∈ B(B,B)+.

We leave it as an open problem how to extend it to more general C∗-
algebras. The proof will be divided into some lemmas. One of them is the
finite dimensional version of the theorem. The first lemma is essentially a
restatement of Theorem 3.11 in [10]. Recall that whenH is finite dimensional
and A a C∗-algebra then A+ ⊗ B(H)+ denotes the closed cone generated by
tensors a ⊗ b with a and b positive operators in A and B(H) respectively.

Lemma 9. LetK andH be finite dimensional Hilbert spaces with dimK ≤
dimH . Let A ⊂ B(K) be a C∗-algebra. Then

A+ ⊗ B(H)+ = {x ∈ A⊗ B(H) : (ι⊗ ψ)(x) ≥ 0,∀ψ ∈ B(B(H),H)+}

Proof. Let P denote the cone on the right side above. Let φ ∈ B(A,H)+
and let EA be the trace invariant conditional expectation of B(K) onto A.
Then EA ◦ φ is a positive extension of φ to a map in B(B(K),H)+. Since
dimK ≤ dimH , φ is B2(H)+-positive by [8] Theorem 3.11, hence φ̃ is
positive on P . By [8], Lemma 2.1, every positive linear functional onA⊗B(H)
is of the form φ̃ with φ ∈ B(A,H)+. Thus every positive linear functional on
A⊗ B(H) which is positive on A+ ⊗ B(H)+ is positive on P . Since clearly
A+ ⊗ B(H)+ ⊂ P the two cones are equal by the Hahn-Banach Theorem.
The proof is complete.

Lemma 10. Let A, K and H be as in the previous lemma, and let ρ be a
state on A⊗ B(H). Then ρ is separable if and only if ρ ◦ (ι⊗ ψ) ≥ 0 for all
ψ ∈ B(B(H),H)+.

Proof. If ρ is separable it is clear that ρ ◦ (ι ⊗ ψ) ≥ 0 for all ψ ∈
B(B(H),H)+. To prove the converse let Tr be the trace on A⊗ B(H) which
is 1 on each minimal projection. If η ∈ B(A ⊗ B(H),A ⊗ B(H)) then its
adjoint map η∗ is defined by

Tr(η(x)y) = Tr(xη∗(y)).

Then η is positive if and only if η∗ is positive.
Let h be the density matrix for ρ in A⊗ B(H), and let a ∈ A, b ∈ B(H).

Then if ψ ∈ B(B(H),H)+ we have

ρ ◦ (ι⊗ ψ)(a ⊗ b) = Tr(h(ι⊗ ψ)(a ⊗ b)) = Tr((ι⊗ ψ∗)(h)(a ⊗ b)),

hence
ρ ◦ (ι⊗ ψ)(x) = Tr((ι⊗ ψ∗)(h)x)
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for x ∈ A ⊗ B(H). Thus (ι ⊗ ψ∗)(h) ≥ 0 for all ψ∗ ∈ B(B(H),H)+ and
hence for all ψ ∈ B(B(H),H)+. By Lemma 9 h ∈ A+ ⊗ B(H)+, so ρ is
separable, completing the proof.

The above lemma is false if dimK > dimH , even when dimK = 4 and
dimH = 2 Indeed, by a result of Woronowicz and the author, see [12], each
map in B(M2(C),M2(C))+ is decomposable. It follows that if ρ ◦ (ι⊗ t) ≥ 0,
then ρ ◦ (ι ⊗ ψ) ≥ 0 for all ψ ∈ B(M2(C),M2(C))+, hence ρ satisfies the
condition of the lemma. However, there exist maps when A = M4(C) which
satisfy the Peres (or the PPT) condition which are not separable, [2], hence the
conclusion of the lemma is false in this case.

An easy consequence of the above lemma is the following version of the
Horodecki Theorem. Note that the difference from the Horodecki Theorem
is that the maps ψ now map B(H) into itself and not into B(K). However,
since dimK ≤ dimH , it is easy to deduce the corollary from the Horodecki
Theorem.

Corollary 11. Let A, K and H be as in the above lemma, and let ρ be
a state on A⊗ B(H)with density matrix h. Then ρ is separable if and only if
(ι⊗ ψ)(h) ≥ 0 for all ψ ∈ B(B(H),H)+.

Proof. Let Tr be as in the above proof. Then

(ι⊗ ψ)(h) ≥ 0 ∀ ψ ∈ B(B(H),H)+ ⇔ Tr((ι⊗ ψ)(h)x) ≥ 0 ∀ x ≥ 0

⇔ ρ((ι⊗ ψ∗)(x))) ≥ 0 ∀ x,ψ.
By the last lemma this holds if and only if ρ is separable. The proof is complete.

Proof of Theorem. If ρ is a state on A ⊗ B which is a convex sum of
product states, then clearly ρ ◦ (ι⊗ψ) ≥ 0 for all ψ ∈ B(B,B)+. Hence if ρ
is a w∗-limit of convex sums of product states the same inequality holds.

Conversely assume ρ ◦ (ι ⊗ ψ) ≥ 0 for all ψ ∈ B(B,B)+. We want
to show ρ is a w∗-limit of states which are convex sums of product states.
Let x1, x2, . . . , xn ∈ A ⊗ B and ε > 0. We must find a state of the form∑n

i=1 λiρi ⊗ ωi on A⊗ B such that∣∣∣∣ρ(xj )−
n∑
i=1

λiρi ⊗ ωi(xj )

∣∣∣∣ < ε

for all j . To accomplish this we may assume the xj belong to the algebraic
tensor product of A and B, hence are of the form

xj =
mj∑
i=1

aji ⊗ bji, aji ∈ A, bji ∈ B.
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Since B is a UHF-algebra there exists a strictly increasing sequence Ni of
subalgebras of B with Ni � Mni (C) such that B is the norm closure of

⋃
i Ni .

By continuity of ρ we may assume there is k0 such that bji ∈ Nk for k ≥ k0.
Let Ek:B → Nk be the trace invariant conditional expectation of B onto Nk .
Thus each ψ ∈ B(Nk,Nk)

+ has an extension ψ ◦ Ek in B(B,B)+. Hence
ρ ◦ (ι⊗ ψ) ≥ 0 for all ψ ∈ B(Nk,Nk)+.

Since A is nuclear there exists a net of triples (Mnλ(C), αλ, βλ) such that
αλ:A → Mnλ(C), βλ: Mnλ(C) → A are completely positive and

lim
λ

‖βλ ◦ αλ(x)− x‖ = 0

for all x ∈ A. If we can show ρ ◦ (βλ ◦ αλ ⊗ Ek) is separable for arbitrary
large λ and k such that nλ ≤ nk , then ρ(xj ) is arbitrarily well approximated
by separable states for each j . But

ρ ◦ (βλ ◦ αλ ⊗ Ek) = ρ ◦ (βλ ⊗ Ek) ◦ (αλ ⊗ ι).

Thus it suffices to show that ρ ◦ (βλ ⊗ Ek) is separable.
We have thus reduced the proof to showing that ρ ◦ (βλ ⊗ ι) is a separable

functional on Mnλ(C)⊗Nk where nk ≥ nλ. For this let y ∈ (Mnλ(C)⊗Nk)
+.

Since βλ is completely positive βλ⊗ ι(y) ≥ 0 inA⊗Nk , hence by assumption,
if ψ ∈ B(Nk,Nk)+

ρ((βλ ⊗ ι) ◦ (ι⊗ ψ)(y)) = ρ ◦ (ι⊗ ψ)(βλ ⊗ ι(y)) ≥ 0.

It follows that the assumptions of Lemma 10 are satisfied, hence that ρ◦(βλ⊗ι)
is separable, completing the proof of Theorem 8.

It is obvious that a convex sum of product states on a tensor product of
C∗-algebras can be extended to a similar state on a tensor product of larger
algebras. This is not obvious for weakly separable states. However, we have

Corollary 12. Let A be a unital nuclear C∗-algebra and A0 ⊂ A a
C∗-subalgebra containing the identity. Let B be a UHF-algebra. The every
weakly separable state onA0 ⊗B has a weakly separable extension toA⊗B.

Proof. Let ρ be a weakly separable state on A0 ⊗ B. Let C denote the
norm closed cone in A ⊗ B generated by all operators of the form ι ⊗ ψ(x)

with x ∈ (A ⊗ B)+ and ψ ∈ B(B,B)+. Then C ∩ (A0 ⊗ B) is the similar
cone with x now in A0 ⊗B. By the first paragraph of the proof of the theorem
ρ is positive on C ∩ (A0 ⊗B), independently of the C∗-algebra being nuclear.
To conclude the proof of the corollary, by the theorem it suffices to show that
ρ has an extension to A⊗B which is positive on C. Since ι⊗ ι(x) = x for all
x, C ∩ (A0 ⊗B) ⊃ (A0 ⊗B)+, which has 1 ⊗ 1 as an interior point. It follows
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by a theorem of Krein-Rutman [5], Ch. V, 5.4, that ρ has an extension which
is positive on C, completing the proof.
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