ON THE SPECTRUM OF THE GENERALIZED GELFAND PAIR $\left(U(p, q), H_{n}\right), p+q=n$

TOMÁS GODOY and LINDA SAAL

Abstract

It is known that the spectrum of the Gelfand pair $\left(U(n), H_{n}\right)$ is homeomorphic to the Heisenberg fan.

In this paper after defining a suitable notion of spectrum, we prove an analogous result for the generalized Gelfand pair $\left(U(p, q), H_{n}\right), p+q=n$.

1. Introduction

Let $n \in \mathrm{~N}$ and let p, q nonnegative integers such that $p+q=n$. Let H_{n} be the Heisenberg group defined by $H_{n}=\mathrm{C}^{n} \times \mathrm{R}$ with group law $(z, t)\left(z^{\prime}, t^{\prime}\right)=$ $\left(z+z^{\prime}, t+t^{\prime}-\frac{1}{2} \operatorname{Im} B\left(z, z^{\prime}\right)\right)$ where $B(z, w)=\sum_{j=1}^{p} z_{j} \bar{w}_{j}-\sum_{j=p+1}^{n} z_{j} \bar{w}_{j}$. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{R}^{n}$, we write $x=\left(x^{\prime}, x^{\prime \prime}\right)$ with $x^{\prime} \in \mathrm{R}^{p}, x^{\prime \prime} \in \mathrm{R}^{q}$. So, $\mathrm{R}^{2 n}$ can be identified with C^{n} via the map $\varphi\left(x^{\prime}, x^{\prime \prime}, y^{\prime}, y^{\prime \prime}\right)=\left(x^{\prime}+i y^{\prime}, x^{\prime \prime}-i y^{\prime \prime}\right)$, $x^{\prime}, y^{\prime} \in \mathrm{R}^{p}, x^{\prime \prime}, y^{\prime \prime} \in \mathrm{R}^{q}$. In this setting, the form $-\operatorname{Im} B(z, w)$ agrees with the standard symplectic form on $\mathrm{R}^{2(p+q)}$, and the vector fields $X_{j}=-\frac{1}{2} y_{j} \frac{\partial}{\partial t}+\frac{\partial}{\partial x_{j}}$, $Y_{j}=\frac{1}{2} x_{j} \frac{\partial}{\partial t}+\frac{\partial}{\partial y_{j}}, j=1, \ldots, n$ and $U=\frac{\partial}{\partial t}$ form a standard basis for the Lie algebra h_{n} of H_{n}. Thus H_{n} can be viewed as $\mathrm{R}^{n} \times \mathrm{R}^{n} \times \mathrm{R}$ via the map $(x, y, t) \rightarrow(\varphi(x, y), t)$. From now on, we will use freely this identification.

Let $\mathscr{S}\left(H_{n}\right)$ be the Schwartz space on H_{n} and let $\mathscr{S}^{\prime}\left(H_{n}\right)$ be the space of corresponding tempered distributions. Consider the action, by automorphism, of $U(p, q)$ on H_{n} given by $g .(z, t)=(g z, t)$. So $U(p, q)$ acts on $L^{2}\left(H_{n}\right)$, $\mathscr{S}\left(H_{n}\right)$ and $\mathscr{S}^{\prime}\left(H_{n}\right)$ in the canonical way.

Let $U(p, q) H_{n}$ denote the semidirect product of $U(p, q)$ and H_{n}. It is well known that the pair $\left(U(p, q) H_{n}, U(p, q)\right)$ is a generalized Gelfand pair, that is, for each irreducible unitary representation π of $U(p, q) H_{n}$, the space of distribution vectors fixed by $U(p, q)$ is at most one dimensional. This definition extends the notion of Gelfand pair, which in our case happens when $p=0$ or $q=0$. As usual we will write $\left(U(p, q), H_{n}\right)$ to refer to the generalized Gelfand pair $\left(U(p, q) H_{n}, U(p, q)\right)$. A consequence of being a generalized Gelfand pair is that the subalgebra $\mathscr{U}_{U(p, q)}\left(h_{n}\right)$ of the left invariant and $U(p, q)$ invariant
differential operators is commutative. We refer to [13] for a detailed study of the theory of generalized Gelfand pairs. By another way, it is easy to see that this subalgebra is generated by L and U where $L=\sum_{j=1}^{p}\left(X_{j}^{2}+Y_{j}^{2}\right)-$ $\sum_{j=p+1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)$ and U is as above (cf. [7]).

The description of the unitary dual of $U(p, q) H_{n}$ is given in [15]. Let \mathscr{P} be the cone of the bi- $U(p, q)$-invariant, positive-definite distributions on $U(p, q) H_{n}$. We say that $T \in \mathscr{P}$ is extremal in \mathscr{P} if and only if $S \in \mathscr{P}$ and $T-S \in \mathscr{P}$ imply $S=\alpha T$ for some $\alpha \in$ R. For $S, S^{\prime} \in \mathscr{P}$ we write $S \sim S^{\prime}$ if and only if $S=\alpha S^{\prime}$ for some $\alpha>0$. Thus \sim is an equivalence relation on \mathscr{P}. For $S \in \mathscr{P}$ we put [S] for its equivalence class.

By general theory (see [5], [13]) one knows that there exists a one to one correspondence between the set of unitary representations π of $U(p, q) H_{n}$ admitting a cyclic distribution vector ξ_{π} fixed by $U(p, q)$ (spherical representations), and the set of the equivalence class of bi- $U(p, q)$-invariant, positive-definite distributions. More precisely, for such π and ξ_{π}, and for $\varphi \in C^{\infty}\left(U(p, q) H_{n}\right)$, it is easy to see that $\pi(\varphi) \xi_{\pi}$ is a C^{∞}-vector for π. Define $T_{\pi} \in D^{\prime}\left(U(p, q) H_{n}\right)$ by

$$
T_{\pi}(\varphi)=\left\langle\xi_{\pi}, \pi(\varphi) \xi_{\pi}\right\rangle
$$

(T_{π} is called a reproducing distribution for π.) With these notations, the quoted correspondence is given by $\pi \rightarrow\left[T_{\pi}\right]$. We recall also that π is irreducible if and only if T_{π} is extremal in \mathscr{P}. As usual, we will identify the bi- $U(p, q)$ invariant distributions on $U(p, q) H_{n}$ with the $U(p, q)$-invariant distributions on H_{n}.

Let us recall some facts concerning the compact case $p=n, q=0$, i.e., when $U(p, q)=U(n)$. Since $\left(U(n), H_{n}\right)$ is a Gelfand pair, the convolution algebra of the $U(n)$-invariant integrable functions on H_{n} is commutative. Its spectrum, denoted by $\Delta\left(U(n), H_{n}\right)$ can be identified, via integration, with the set of bounded spherical functions of the pair $\left(U(n), H_{n}\right)$. Moreover, for this Gelfand pair (as remarked in [2]), the set of bounded spherical functions is precisely the set of positive definite spherical functions, and so $\Delta\left(U(n), H_{n}\right)$ is the set of extremal points in the cone of $U(n)$-invariant, positive definite functions on H_{n}. These spherical functions can be classified (see [1]) as:
a) The spherical functions of type I, i.e., those that restricted to the center of H_{n} are nontrivial characters. These are given by

$$
\Phi_{\lambda, k}(z, t)=e^{-i \lambda t} \mathscr{L}_{k}^{n-1}\left(\frac{|\lambda|}{2}|z|^{2}\right) e^{-\frac{|\lambda|}{4}|z|^{2}}, \quad \lambda \neq 0, k \geq 0
$$

where \mathscr{L}_{k}^{n-1} is the Laguerre polynomial of order $n-1$ and degree k normalized by $\mathscr{L}_{k}^{n-1}(0)=1$.
b) The spherical functions η_{w} of type II, i.e., those that are constant on the center. They are given, for $w \in C^{n}-\{0\}$, by

$$
\eta_{w}(z, t)=\frac{2^{n-1}(n-1)!}{(|z||w|)^{n-1}} J_{n-1}(|z||w|)
$$

where J_{n-1} is the Bessel function of order $n-1$ of the first kind, and by

$$
\eta_{0}(z, t)=1
$$

In [3] is defined a map $\mathscr{E}: \Delta\left(U(n), H_{n}\right) \rightarrow[0, \infty) \times \mathrm{R}$ by $\mathscr{E}(\Psi)=(-\widehat{L}(\Psi)$, $i \widehat{U}(\Psi))$, where $\widehat{L}(\Psi)$ and $\widehat{U}(\Psi)$ denote the eigenvalues of L and U respectively, associated to Ψ. The image of \mathscr{E} is the so called Heisenberg fan $\mathscr{A}\left(U(n), H_{n}\right)$ and it is the set

$$
\{(|\lambda|(2 k+n), \lambda): \lambda \neq 0, k \in N \cup\{0\}\} \cup\{[0, \infty) \times\{0\}\} .
$$

There, it is proved that \mathscr{E} is a homeomorphism from $\Delta\left(U(n), H_{n}\right)$ (equipped with the Gelfand topology) onto the Heisenberg fan (provided with the topology induced by R^{2}).

We assume from now on that $n \geq 2, p \geq 1, q \geq 1$ and we turn now to the generalized Gelfand pair $\left(U(p, q), H_{n}\right), p+q=n$. Let E be the set of extremal points of \mathscr{P}. Motivated by the quoted results in the compact case, we define

Definition 1.1. $\Delta\left(U(p, q), H_{n}\right)=E / \sim$, equipped with the quotient topology of the pointwise convergence topology of $\mathscr{S}^{\prime}\left(H_{n}\right)$.

In order to describe $\Delta\left(U(p, q), H_{n}\right)$ we need to recall some facts. For $\lambda \neq 0$, let π_{λ} denote the Schroedinger representation of H_{n}, realized on $L^{2}\left(\mathrm{R}^{n}\right)$. According to [10], this representation can be extended to a representation $\tilde{\pi}_{\lambda}$ of $U(p, q) H_{n}$ by the rule $\tilde{\pi}_{\lambda}(k, z, t)=W_{\lambda}(k) \pi_{\lambda}(z, t)$, for $k \in U(p, q)$, $(z, t) \in H_{n}$, where W_{λ} denotes the metaplectic representation of $U(p, q)$ (defined there) acting on $L^{2}\left(\mathrm{R}^{n}\right)$. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $\alpha_{i} \in \mathrm{~N} \cup\{0\}$, let $\|\alpha\|=\sum_{i=1}^{p} \alpha_{i}-\sum_{i=p+1}^{n} \alpha_{i}$ and, for $x=\left(x_{1}, \ldots, x_{n}\right)$, let $h_{\alpha}(x)=$ $h_{\alpha_{1}}\left(x_{1}\right) \ldots h_{\alpha_{n}}\left(x_{n}\right)$ where h_{l} denotes the l-th Hermite function. For $k \in Z$, let H_{k} be the closed subspace of $L^{2}\left(\mathrm{R}^{n}\right)$ generated by $\left\{h_{\alpha}:\|\alpha\|=k\right\}$. Then (see e.g. [4]) W_{λ} decomposes in irreducible representations of $U(p, q)$ as

$$
L^{2}\left(\mathrm{R}^{n}\right)=\bigoplus_{k \in \mathrm{Z}} H_{k}
$$

Let γ_{k} denote the restriction of W_{λ} to H_{k} and let γ_{k}^{*} be its adjoint representation.

For $v \in \mathbb{C}^{n}$ let also $\chi_{v}(z, t)=e^{i \operatorname{Re} B(z, v)}$ and let K_{v} be the stabilizer of v in $U(p, q)$, that is $K_{v}=\{g \in U(p, q): g v=v\}$, and extends χ_{v} to $K_{v} H_{n}$ by $\widetilde{\chi}_{v}(k, z, t)=\chi_{v}(z, t)$. Then $\Xi_{v}:=\operatorname{Ind}_{K_{v} H_{n}}^{U(p, q) H_{n}}\left(\widetilde{\chi}_{v}\right)$ is an irreducible representation of $U(p, q) H_{n}$, and for $v, v^{\prime} \in \mathrm{C}^{n}$ it holds that Ξ_{v} is equivalent to $\Xi_{v^{\prime}}$ if and only if $B(v)=B\left(v^{\prime}\right)$ (see [15]).

The spherical representations of $U(p, q) H_{n}$ are given in [15]. They are
i) Those of the form $\gamma_{k}^{*} \otimes \tilde{\pi}_{\lambda}$. For them, a reproducing distribution $S_{\lambda, k}$, found in [14], is given by

$$
\begin{equation*}
\left\langle S_{\lambda, k}, \varphi\right\rangle=\operatorname{tr} \pi_{\lambda}(\varphi)_{\mid H_{k}} \tag{1.1}
\end{equation*}
$$

ii) Those of the form Ξ_{v}. A corresponding reproducing distribution is given by

$$
\begin{equation*}
\left\langle S_{\sigma}, \varphi\right\rangle=\int_{B(u, u)=-\sigma} \int_{H_{n}} e^{i \operatorname{Re} B(u, z)} \varphi(z, t) d z d t d \mu_{\sigma}(u) \tag{1.2}
\end{equation*}
$$

where $\sigma=B(v, v)$ and $d \mu_{\sigma}$ denotes the surface measure on $B(u, u)=\sigma$. In other words S_{σ} is a sort of Fourier Transform of the measure $d \mu_{\sigma}$.
iii) The trivial representation, with reproducing distribution 1.

The above list shows that for each $\left[T_{\pi}\right] \in \Delta\left(U(p, q), H_{n}\right), T_{\pi}$ is a tempered distribution on H_{n}.

Observe that if Ψ is an extremal point of \mathscr{P}, then Ψ is a joint eigendistribution of $-L$ and $i U$ (cf. [5]). Indeed, $-L\left(S_{\lambda, k}\right)=|\lambda|(2 k+p-q) S_{\lambda, k}$, $i U\left(S_{\lambda, k}\right)=\lambda S_{\lambda, k}$ and $-L\left(S_{\sigma}\right)=\sigma S_{\sigma}, i U\left(S_{\sigma}\right)=0$ (cf. [14], [7]). Following [3], we define the map $\mathscr{E}: \Delta\left(U(p, q), H_{n}\right) \rightarrow \mathrm{R}^{2}$ by

$$
\mathscr{E}([\Psi])=(-\widehat{L}(\Psi), i \widehat{U}(\Psi))
$$

where $\widehat{L}(\Psi)$ and $\widehat{U}(\Psi)$ denote the eigenvalues of L and U respectively, associated to Ψ. Let $\mathscr{A}\left(U(p, q), H_{n}\right)$ denote the image of \mathscr{E}. Equipped with the relative topology of R^{2} it is called the Heisenberg fan of the generalized Gelfand pair $\left(U(p, q), H_{n}\right)$ and it is given by
$\mathscr{A}\left(U(p, q), H_{n}\right)=\{(|\lambda|(2 k+p-q), \lambda): \lambda \neq 0, k \in \mathrm{Z}\} \cup\{(\sigma, 0): \sigma \in \mathrm{R}\}$
Our main result is the following
Theorem 1.2. The map $\mathscr{E}: \Delta\left(U(p, q), H_{n}\right)-\{[1]\} \rightarrow \mathscr{A}\left(U(p, q), H_{n}\right)$ is a homeomorphism.

Remark 1.3. As observed by J. Faraut in [5], and in contrast with the compact case, in the case of a generalized Gelfand pair a spherical distribution is not necessarily an extremal point of \mathscr{P}. For example, in our case, the solution
space of $-L(S)=0, i U(S)=0$ is two dimensional and a basis is given by $\left\{1, S_{0}\right\}$. After the proof of the above Theorem, it is easy to see that [1] is an isolate point of $\Delta\left(U(p, q), H_{n}\right)$.

2. The joint eigendistributions of L and $i T$

We begin this section by describing the space $\mathscr{S}^{\prime}\left(\mathrm{C}^{n}\right)^{U(p, q)}$ of tempered distributions which are $U(p, q)$ invariant. We adapt the results by A. Tengstrand detailed in [12], for the passage from the real to the complex case.

To this end, we take bipolar coordinates on C^{n} : for $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, we set $\sigma=\sum_{j=1}^{p}\left(x_{j}^{2}+y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(x_{j}^{2}+y_{j}^{2}\right), \rho=\sum_{j=1}^{n}\left(x_{j}^{2}+y_{j}^{2}\right), u=$ $\left(x_{1}, y_{1}, \ldots, x_{p}, y_{p}\right)$ and $v=\left(x_{p+1}, y_{p+1}, \ldots, x_{n}, y_{n}\right)$. So $u=\left(\frac{\rho+\sigma}{2}\right)^{\frac{1}{2}} \omega_{u}$, $v=\left(\frac{\rho-\sigma}{2}\right)^{\frac{1}{2}} \omega_{v}$, where ω_{u} belongs to the $2 p-1$ dimensional sphere $S^{2 p-1}$ and $\omega_{v} \in S^{2 q-1}$.

By the change of variables theorem, we have that

$$
\begin{array}{r}
\int_{C^{n}} f(z) d z=\int_{-\infty}^{\infty} \int_{|\sigma|<\rho} \int_{S^{2 p-1} \times S^{2 q-1}} f\left(\left(\frac{\rho+\sigma}{2}\right)^{\frac{1}{2}} \omega_{u},\left(\frac{\rho-\sigma}{2}\right)^{\frac{1}{2}} \omega_{v}\right) \\
d \omega_{u} d \omega_{v}(\rho+\sigma)^{p-1}(\rho-\sigma)^{q-1} d \rho d \sigma
\end{array}
$$

We define the map M on $\mathscr{S}\left(\mathrm{R}^{2 n}\right)$ by

$$
M f(\rho, \tau)=\int_{S^{2 p-1} \times S^{2 q-1}} f\left(\left(\frac{\rho+\tau}{2}\right)^{\frac{1}{2}} \omega_{u},\left(\frac{\rho-\tau}{2}\right)^{\frac{1}{2}} \omega_{v}\right) d \omega_{u} d \omega_{v}
$$

and

$$
N f(\tau)=\int_{|\tau|}^{\infty} M f(\rho, \sigma)(\rho+\tau)^{p-1}(\rho-\tau)^{q-1} d \rho
$$

In other words, $N f$ is the integral of f on the surface $B(z, z)=\tau$ provided with a suitable surface measure.

Let H denote the Heaviside function (i.e., $H(\tau)=\chi_{(0, \infty)}(\tau)$) and let \mathscr{H} be the space of the functions $\varphi: \mathrm{R} \rightarrow \mathrm{C}$ such that $\varphi(\tau)=\varphi_{1}(\tau)+\tau^{n-1} \varphi_{2}(\tau) H(\tau)$, $\varphi_{1}, \varphi_{2} \in \mathscr{S}(\mathrm{R})$. It is proved in [12] that \mathscr{H}, with an adequate topology, is a Fréchet space. Moreover, following straighforward the proof of Lemma 4.2 and Lemma 4.3 there, we obtain that

$$
N: \mathscr{S}\left(\mathrm{R}^{2 n}-\{0\}\right) \rightarrow \mathscr{S}(\mathrm{R}), \quad \text { and } \quad N: \mathscr{S}\left(\mathrm{R}^{2 n}\right) \rightarrow \mathscr{H}
$$

are (linear) continuous, surjective maps. Now, let $\mu \in \mathscr{S}^{\prime}\left(\mathrm{R}^{2 n}\right)^{U(p, q)}$. Then, there exists a unique $T \in \mathscr{S}^{\prime}(\mathrm{R})$ such that

$$
\langle\mu, f\rangle=\langle T, N f\rangle \quad \text { for every } \quad f \in \mathscr{S}\left(\mathrm{R}^{2 n}-\{0\}\right)
$$

Indeed, let $\Phi\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\left(\rho, \tau, \omega_{u}, \omega_{v}\right)$ the change of coordinates and let $J\left(\Phi^{-1}\right)$ be the Jacobi determinant. If $\mu \circ \Phi$ is the distribution defined by $\langle\mu \circ \Phi, f\rangle=\left\langle\mu,\left(f \circ \Phi^{-1}\right) J\left(\Phi^{-1}\right)\right\rangle$, then as $U(p, q)$ acts transitively on the surface $B(z, z)=\tau, \mu \circ \Phi$ is independent of ρ, ω_{u} and ω_{v}. So, T is well defined and the uniqueness of T follows from the surjectivity of N.

Moreover, the adjoint map of $N, N^{\prime}: \mathscr{H}^{\prime} \rightarrow \mathscr{S}^{\prime}\left(\mathrm{R}^{2 n}\right)^{U(p, q)}$, is injective and the same lines of Theorem 5.1 in [12] prove that N^{\prime} is a homeomorphism.

For $f \in \mathscr{S}\left(H_{n}\right)$, we will write $N f(\tau, t)$ for $N(f(., t))(\tau)$. We have that for all $\varphi \in \mathscr{S}\left(\mathbf{R}^{2}\right)$

$$
\int_{-\infty}^{\infty} \int_{C^{n}} \varphi(B(z), t) f(z, t) d z d t=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} N f(\tau, t) \varphi(\tau, t) d \tau d t
$$

Our next step is to compute, for $\sigma \in \mathrm{R}$, the solutions $S \in S^{\prime}\left(H_{n}\right)^{U(p, q)}$ of the problem

$$
\left\{\begin{align*}
-L(S) & =\sigma S \tag{2.1}\\
i U(S) & =0
\end{align*}\right.
$$

i.e., the $U(p, q)$ invariant tempered joint eigendistributions of $-L$ and $i U$ corresponding to a pair $(\sigma, \lambda) \in \mathscr{A}\left(U(p, q), H_{n}\right)$ with $\lambda=0$. For such a solution $S, U(S)=0$ gives $S=F \otimes 1$ with $F \in S^{\prime}\left(\mathrm{R}^{2 n}\right)$. Since
$L=\square+\left(\sum_{j=1}^{p}\left(x_{j}^{2}+y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(x_{j}^{2}+y_{j}^{2}\right)\right) \frac{\partial^{2}}{\partial t^{2}}+\frac{\partial}{\partial t} \sum_{j=1}^{n}\left(x_{j} \frac{\partial}{\partial y_{j}}-y_{j} \frac{\partial}{\partial x_{j}}\right)$,
where

$$
\square=\sum_{j=1}^{p}\left(\frac{\partial^{2}}{\partial x_{j}^{2}}+\frac{\partial^{2}}{\partial y_{j}^{2}}\right)-\sum_{j=p+1}^{n}\left(\frac{\partial^{2}}{\partial x_{j}^{2}}+\frac{\partial^{2}}{\partial y_{j}^{2}}\right),
$$

and S is $U(p, q)$ invariant, from (2.1) we get

$$
\begin{equation*}
-\square(F)=\sigma F \tag{2.2}
\end{equation*}
$$

Conversely, for each solution $F \in S^{\prime}\left(\mathrm{R}^{2 n}\right)$ of this equation, $S=F \otimes 1$ solves (2.1). It is proved in [12] that $N(\square f)=D(N f)$ for $f \in S\left(\mathrm{R}^{2 n}\right)$, where D is the differential operator

$$
\begin{equation*}
D=4\left(\tau \frac{\partial^{2}}{\partial \tau^{2}}+(2-n) \frac{\partial}{\partial \tau}\right) \tag{2.3}
\end{equation*}
$$

Writing $F=N^{\prime}(T)$ with $T \in \mathscr{H}^{\prime}$, (2.2) becomes $D^{\prime} T=-\sigma T$, where D^{\prime} is the adjoint of D given by $D^{\prime} T=4\left(\tau T^{\prime \prime}+n T^{\prime}\right)$, i.e., (2.2) is equivalent to

$$
\begin{equation*}
D^{\prime} T+\sigma T=0 \tag{2.4}
\end{equation*}
$$

If $T \in \mathscr{H}^{\prime}$ is a solution of (2.4) then (since D is elliptic) its restrictions $T_{\mid \mathscr{D}(0, \infty)}$ and $\left.T_{\mathscr{D}(-\infty, 0)}\right)$ are functions belonging to $C^{\infty}(0, \infty)$ and $C^{\infty}(-\infty, 0)$, respectively. They are solutions, on the respective semiaxis, of the equation

$$
\begin{equation*}
4\left(\tau v^{\prime \prime}(\tau)+n v^{\prime}(\tau)\right)+\sigma v(\tau)=0 \tag{2.5}
\end{equation*}
$$

Consider the case $\sigma>0$. A computation shows that a function $y:(0, \infty) \rightarrow \mathbf{R}$ is a solution of (2.5) if and only if

$$
y(\tau)=\frac{w\left((\sigma \tau)^{\frac{1}{2}}\right)}{(\sigma \tau)^{\frac{n-1}{2}}}
$$

for some w that solves, on $(0, \infty)$, the Bessel equation of order $n-1$

$$
\begin{equation*}
\tau^{2} w^{\prime \prime}(\tau)+\tau w^{\prime}(\tau)+\left(\tau^{2}-(n-1)^{2}\right) w(\tau)=0, \quad \tau>0 \tag{2.6}
\end{equation*}
$$

For $m \in N \cup\{0\}$, let J_{m} be the Bessel function of first kind of order m,

$$
\begin{equation*}
J_{m}(\tau)=\left(\frac{\tau}{2}\right)^{m} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+m)!}\left(\frac{\tau}{2}\right)^{2 k} \tag{2.7}
\end{equation*}
$$

and let $N_{m}:(0, \infty) \rightarrow \mathrm{R}$ be the Neumann function defined by

$$
\begin{align*}
N_{m}(\tau)= & \frac{2}{\pi} J_{m}(\tau) \log \left(\frac{\tau}{2}\right)-\frac{1}{\pi} \sum_{k=0}^{m-1} \frac{(m-k-1)!}{k!}\left(\frac{\tau}{2}\right)^{2 k-m} \tag{2.8}\\
& -\frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+m)!}[\psi(k+1)+\psi(k+m+1)]\left(\frac{\tau}{2}\right)^{m+2 k} \tag{2.9}
\end{align*}
$$

where $\psi(m+1):=-\gamma+\sum_{j=1}^{m} \frac{1}{j}$ and γ is the Euler constant.
For $\tau>0, \sigma>0$ and $m \in \mathbf{N} \cup\{0\}$, let

$$
\begin{equation*}
y_{m}(\tau)=m!\frac{J_{m}\left((\sigma \tau)^{\frac{1}{2}}\right)}{(\sigma \tau)^{\frac{m}{2}}}, \quad z_{m}(\tau)=\frac{N_{m}\left((\sigma \tau)^{\frac{1}{2}}\right)}{(\sigma \tau)^{\frac{m}{2}}} \tag{2.10}
\end{equation*}
$$

We observe that, for $\tau>0$,

$$
\begin{equation*}
y_{m}(\tau)=m!\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+m)!}\left(\frac{\sigma \tau}{4}\right)^{k} \tag{2.11}
\end{equation*}
$$

and so y_{m} has an analytic extension to R , still denoted by y_{m}, given by (2.11). Note that $\left\{J_{n-1}, N_{n-1}\right\}$ is a basis of the space of the solutions of (2.6) on $(0, \infty)$ and so $\left\{y_{n-1}, z_{n-1}\right\}$ is a basis of the solution space of (2.5) on $(0, \infty)$. Moreover, since y_{n-1} is analytic on R, it solves (2.5) on the whole line. A suitable (for our purposes) solution \tilde{y}_{n-1}, linearly independent with y_{n-1}, of the equation (2.5) on $(-\infty, 0)$ can be chosen as follows. We propose $\tilde{y}_{n-1}(\tau)=c(\tau) y_{n-1}(\tau)$ which gives the equation $\tau y_{n-1}(\tau) c^{\prime \prime}(\tau)+\left(n y_{n-1}(\tau)+2 \tau y_{n .1}^{\prime}(\tau)\right) c^{\prime}(\tau)=0$ that solved for c gives $c(\tau)=A \int_{-\infty}^{\tau} \frac{1}{y_{n-1}^{2}(s)|s|^{n}} d s+B$ with A and B arbitrary constants ($c(\tau)$ is well defined by Lemma 2.1 below). We pick $A=1, B=0$ to obtain

$$
\tilde{y}_{n-1}(\tau)=y_{n-1}(\tau) \int_{-\infty}^{\tau} \frac{1}{y_{n-1}^{2}(s)|s|^{n}} d s
$$

So a basis of the solution space of (2.5) on $(-\infty, 0)$ is given by $\left\{y_{n-1}, \tilde{y}_{n-1}\right\}$.
Lemma 2.1. Assume that $\sigma>0$. Then for $\tau<0$ it holds that $y_{n-1}(\tau)>0$ and $y_{n-1}^{\prime}(\tau)<0$. Moreover, there exist positive constants A, B such that for τ negative with absolute value large enough

$$
\begin{equation*}
y_{n-1}(\tau) \geq A e^{B|\tau|^{\frac{1}{2}}}, \quad y_{n-1}^{\prime}(\tau) \leq-A e^{B|\tau|^{\frac{1}{2}}} \tag{2.12}
\end{equation*}
$$

Proof. For $\tau<0$, from (2.11),

$$
\begin{aligned}
y_{n-1}(\tau) & =(n-1)!\sum_{k=0}^{\infty} \frac{1}{k!(k+n-1)!}\left(\frac{\sigma|\tau|}{4}\right)^{k} \\
& \geq(n-1)!\sum_{k=0}^{\infty} \frac{1}{(k+n-1)!^{2}}\left(\frac{\sigma|\tau|}{4}\right)^{k} \\
& \geq(n-1)!\left(\frac{\sigma|\tau|}{4}\right)^{-(n-1)} \sum_{k=0}^{\infty} \frac{1}{(2(k+n-1))!}\left(\sqrt{\frac{\sigma|\tau|}{4}}\right)^{2(k+n-1)} .
\end{aligned}
$$

So, $y_{n-1}(\tau)>0$ and

$$
y_{n-1}(\tau) \geq(n-1)!\left(\frac{\sigma|\tau|}{4}\right)^{-(n-1)}\left(\cosh \sqrt{\frac{\sigma|\tau|}{4}}-P_{n-2}\left(\sqrt{\frac{\sigma|\tau|}{4}}\right)\right)
$$

where P_{n-2} is the Taylor polynomial, around the origin, and of degree $n-2$,
of cosh. This gives the first inequality in (2.12). Similarly, for $\tau<0$,

$$
\begin{aligned}
y_{n-1}^{\prime}(\tau) & =-(n-1)!\frac{\sigma}{4} \sum_{k=1}^{\infty} \frac{1}{(k-1!)(k+n-1)!}\left(\frac{\sigma|\tau|}{4}\right)^{k-1} \\
& \leq-(n-1)!\sum_{k=1}^{\infty} \frac{1}{(k+n-1)!^{2}}\left(\frac{\sigma|\tau|}{4}\right)^{k-1} \\
& =-(n-1)!\sum_{k=0}^{\infty} \frac{1}{(k+n)!^{2}}\left(\frac{\sigma|\tau|}{4}\right)^{k}
\end{aligned}
$$

In particular, $y_{n-1}^{\prime}(\tau)<0$. Proceeding as before we obtain that

$$
y_{n-1}^{\prime}(\tau) \leq-(n-1)!\left(\frac{\sigma|\tau|}{4}\right)^{-n}\left(\cosh \sqrt{\frac{\sigma|\tau|}{4}}-Q_{n-1}\left(\sqrt{\frac{\sigma|\tau|}{4}}\right)\right)
$$

for a polynomial Q_{n-1} of degree $n-1$, which implies the remaining assertion of the Lemma.

The following provides information about the asymptotic behavior of z_{n-1} and \tilde{y}_{n-1} at the origin and at $-\infty$.

Lemma 2.2. Assume that $\sigma>0$. Then
i) $\lim _{\tau \rightarrow 0^{+}} \tau^{n-1} z_{n-1}(\tau)=-\frac{2^{n-1} \Gamma(n-1)}{\pi \sigma^{n-1}}, \lim _{\tau \rightarrow+\infty} z_{n-1}(\tau)=0$
ii) $\lim _{\tau \rightarrow 0^{-}} \tau^{n-1} \tilde{y}_{n-1}(\tau)=-\frac{1}{n-1}, \lim _{\tau \rightarrow-\infty} \tilde{y}_{n-1}(\tau)=0$
iii) \tilde{y}_{n-1} is integrable on $(-\infty,-1)$.

Proof. The assertions in i) are a direct consequence of the asymptotic behavior of N_{n-1} at the origin and at $+\infty$. The first assertion of ii) follows from the definition of \tilde{y}_{n-1} and the L'Hôpital rule. To see the second one, we note that from Lemma 2.1 we have $\tilde{y}_{n-1}(\tau)>0$ for $\tau<0$. Also, for τ negative with absolute value large enough,

$$
\begin{aligned}
& 0<\tilde{y}_{n-1}(\tau)=y_{n-1}(\tau) \int_{-\infty}^{\tau} \frac{1}{y_{n-1}^{2}(s)|s|^{n}} d s \\
& \quad \leq \int_{-\infty}^{\tau} \frac{1}{y_{n-1}(s)|s|^{n}} d s \leq A^{\prime} e^{-B|\tau|^{\frac{1}{2}}}
\end{aligned}
$$

for some positive constants A^{\prime} and B. Thus iii) holds and also $\lim _{\tau \rightarrow-\infty} \tilde{y}_{n-1}(\tau)=$ 0 .

Lemma 2.3. Assume that $\sigma>0$. Then
i) there exist the limits $\lim _{\tau \rightarrow 0^{+}} \tau^{n} z_{n-1}^{\prime}(\tau), \lim _{\tau \rightarrow 0^{-}} \tau^{n} \tilde{y}_{n-1}^{\prime}(\tau)$ and they are finite and different from zero.
ii) $\lim _{\tau \rightarrow \infty} z_{n-1}^{\prime}(\tau)=0$ and $\lim _{\tau \rightarrow-\infty} \widetilde{y}_{n-1}^{\prime}(\tau)=0$.

Proof. A computation using the definition of z_{n-1}, that $2 N_{n-1}^{\prime}=N_{n-2}-$ N_{n} and the asymptotic behavior of then Neumann functions (see [8], p. 134 and 135) gives the assertions of the lemma about z_{n-1}. On other hand, from the definition of \tilde{y}_{n-1},

$$
\begin{equation*}
\tilde{y}_{n-1}^{\prime}(\tau)=y_{n-1}^{\prime}(\tau) \int_{-\infty}^{\tau} \frac{1}{y_{n-1}^{2}(s)|s|^{n}} d s+\frac{1}{y_{n-1}(\tau)|\tau|^{n}} \tag{2.13}
\end{equation*}
$$

Since y_{n-1} is continuous and $y_{n-1}(0)=1$, from (2.13) it follows that the limit $\lim _{\tau \rightarrow 0^{-}} \tau^{n} \tilde{y}_{n-1}^{\prime}(\tau)$ exists, is finite and different from zero. To prove the remaining assertion of the lemma we rewrite (2.5) as

$$
4 \frac{d}{d \tau}\left(\tau \widetilde{y}_{n-1}^{\prime}(\tau)\right)=-4(n-1) \widetilde{y}_{n-1}^{\prime}(\tau)-\sigma \widetilde{y}_{n-1}^{\prime}(\tau)
$$

Now, for $\tau<-1$, an integration on $(\tau,-1)$ gives

$$
\begin{aligned}
-4\left(\widetilde{y}_{n-1}^{\prime}(-1)+\tau\right. & \left.\tau \widetilde{y}_{n-1}^{\prime}(\tau)\right) \\
& =-4(n-1)\left(\tilde{y}_{n-1}(-1)-\tilde{y}_{n-1}(\tau)\right)-\sigma \int_{\tau}^{-1} \tilde{y}_{n-1}(s) d s
\end{aligned}
$$

and so $\tilde{y}_{n-1}^{\prime}(\tau)=A \tau^{-1} \tilde{y}_{n-1}(\tau)+B \tau^{-1}-\sigma \tau^{-1} \int_{\tau}^{-1} \tilde{y}_{n-1}(s) d s$ with A and B independent of τ. Thus, by Lemma 2.2, $\lim _{\tau \rightarrow-\infty} \tilde{y}_{n-1}^{\prime}(\tau)=0$.

From the asymptotic behavior of J_{n-1} at $+\infty$ (cf. [8], p. 134-135), we have that $\lim _{\tau \rightarrow+\infty} y_{n-1}(\tau)=0$. In particular, $y_{n-1} H \in \mathscr{H}^{\prime}$.

Proposition 2.4. For $\sigma>0$ the distribution $T=\left(y_{0} H\right)^{(n-1)}$ is a solution in \mathscr{H}^{\prime} of $D^{\prime} T+\sigma T=0$.

Proof. We first look for distributions $\widetilde{\sim} \underset{\sim}{T}=y_{n-1} H+\sum_{j=0}^{n-2} c_{j} \delta^{(j)}$ with $c_{0}, \ldots, c_{n-2} \in \mathrm{R}$ such that $D^{\prime} \widetilde{T}+\sigma \widetilde{T}=0$. Let $S=y_{n-1} H$. A computation shows that $D^{\prime} S=4(n-1) y_{n-1}(0) \delta=4(n-1) \delta$. Also, for $0 \leq j \leq n-2$, $D^{\prime}\left(\delta^{(j)}\right)+\sigma \delta^{(j)}=4(n-2-j) \delta^{(j+1)}+\sigma \delta^{(j)}$. So $D^{\prime} \widetilde{T}+\sigma \widetilde{T}=0$ if and only if $c_{0}=-\frac{4(n-1)}{\sigma}$ and $c_{j}=-\frac{4(n-1-j)}{\sigma} c_{j-1}$ for $j=1, \ldots, n-2$, i.e., if and only if $c_{j}=\left(-\frac{4}{\sigma}\right)^{j+1} \frac{(n-1)!}{(n-2-j)!}$. Let \widetilde{T} be defined with these constants and observe that

$$
\left(y_{0} H\right)^{(n-1)}=y_{0}^{(n-1)}+\sum_{j=0}^{n-2} y_{0}^{(j)}(0) \delta^{(n-2-j)},
$$

so the proposition will follow if we show that for some constant $A \neq 0$,

$$
y_{0}^{(n-1)}=A y_{n-1} \quad \text { and } \quad y_{0}^{(j)}(0)=A c_{n-2-j} \quad \text { for } 0 \leq j \leq n-2,
$$

but, taking the corresponding derivatives in the series expansion for y_{0}, it is easy to see that these conditions are fulfilled by $A=\left(-\frac{\sigma}{4}\right)^{n-1}$.

For $g \in C(0,+\infty)$ with growth at most polynomial at $+\infty$ and such that $\lim _{\tau \rightarrow 0^{+}} \tau^{n-1} g(\tau)$ exists and is finite we define $P f^{+}(g) \in \mathscr{H}^{\prime}$ by

$$
\left\langle P f^{+}(g), \varphi\right\rangle=: \int_{0}^{1} g(\tau)\left(\varphi(\tau)-\sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} \tau^{j}\right) d \tau+\int_{1}^{\infty} g(\tau) \varphi(\tau) d \tau
$$

Similarly, for $g \in C(-\infty, 0)$ satisfying the analogous conditions at $-\infty$ and at the origin, let $P f^{-}(g) \in \mathscr{H}^{\prime}$ given by

$$
\left\langle P f^{-}(g), \varphi\right\rangle=: \int_{-1}^{0} g(\tau)\left(\varphi(\tau)-\sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} \tau^{j}\right) d t+\int_{-\infty}^{-1} g(\tau) \varphi(\tau) d \tau
$$

We recall that for $\varphi \in \mathscr{H}$, since $\varphi(\tau)=\varphi_{1}(\tau)+\tau^{n-1} H(\tau) \varphi_{2}(\tau)$ with $\varphi_{1}, \varphi_{2} \in$ $S(\mathrm{R}), \varphi$ has an asymptotic development, near the origin, of the form

$$
\begin{equation*}
\varphi(\tau) \simeq \sum_{j \geq 0} B_{j}(\varphi) \tau^{j}+\sum_{j \geq n-1} A_{j}(\varphi) \tau^{j} H(\tau) \tag{2.14}
\end{equation*}
$$

with $A_{j}(\varphi)=0$ for $0 \leq j \leq n-2$. It is proved in [12] that if $S \in \mathscr{H}^{\prime}$ is supported at the origin then $S=\sum_{j=0}^{m} \alpha_{j} A_{j}+\sum_{j=0}^{m} \beta_{j} B_{j}$ for some $m \in \mathrm{~N} \cup\{0\}$ and $\alpha_{1}, \ldots, \alpha_{m} ; \beta_{1}, \ldots, \beta_{m} \in \mathrm{C}$.

If $v \in C^{2}(0, \infty)$ (respectively $v \in C^{2}(-\infty, 0)$) is a solution of $D^{\prime} v+\sigma v=$ 0 on $(0, \infty)$ (respectively on $(-\infty, 0)$) satisfying that $\lim _{\tau \rightarrow 0^{*}}\left(\tau^{n-1} v(\tau)\right)$ exists and is finite (resp. $\lim _{\tau \rightarrow 0^{-}}\left(\tau^{n-1} v(\tau)\right)$ exists and is finite), an integration by parts shows that, for $0<a<b \leq+\infty$ (resp. $-\infty \leq a<b<0$),

$$
\begin{equation*}
\int_{a}^{b} v(\tau)(D+\sigma I)(\varphi)(\tau) d \tau=R(v, b, \varphi)-R(v, a, \varphi) \tag{2.15}
\end{equation*}
$$

where, for $\xi \in \mathrm{R}-\{0\}$,

$$
\begin{equation*}
R(v, \xi, \varphi):=4 \xi\left(v(\xi) \varphi^{\prime}(\xi)-v^{\prime}(\xi) \varphi(\xi)\right)+4(1-n) v(\xi) \varphi(\xi) \tag{2.16}
\end{equation*}
$$

and $R(v, \pm \infty, \varphi):=\lim _{\xi \rightarrow \pm \infty} R(v, \xi, \varphi)$.

Lemma 2.5. i) Assume $\sigma>0$. Then there exist constants c_{0}, \ldots, c_{n-1} and d_{0}, \ldots, d_{n-1} with $c_{n-1} \neq 0$ and $d_{n-1} \neq 0$ such that

$$
\begin{align*}
& \left(D^{\prime}+\sigma I\right) P f^{+}\left(z_{n-1}\right)=\sum_{j=0}^{n-2} c_{j} B_{j}+c_{n-1}\left(A_{n-1}+B_{n-1}\right) \tag{2.17}\\
& \left(D^{\prime}+\sigma I\right) P f^{-}\left(\widetilde{y}_{n-1}\right)=\sum_{j=0}^{n-2} d_{j} B_{j}+d_{n-1} B_{n-1} \tag{2.18}
\end{align*}
$$

ii) For $\sigma=0$ and $a, b \in \mathrm{R}$, the assertions in i) hold with z_{n-1} and \tilde{y}_{n-1} replaced by $a+b \tau^{1-n}$.

Proof. A computation shows that for $\varphi \in \mathscr{H}, P_{n-2}(D \varphi)=D\left(P_{n-2} \varphi\right)$, where $P_{n-2}(\varphi)$ denotes the Taylor polynomial of φ of degree $n-2$ around the origin. Then, from (2.15),

$$
\begin{aligned}
& \left\langle P f^{+}\left(z_{n-1}\right),(D+\sigma I) \varphi\right\rangle \\
& \quad=\int_{0}^{1} z_{n-1}\left((D+\sigma I) \varphi-P_{n-2}(D+\sigma I) \varphi\right)+\int_{1}^{\infty} z_{n-1}(D+\sigma I) \varphi \\
& = \\
& \quad \int_{0}^{1} z_{n-1}(D+\sigma I)\left(\varphi-P_{n-2} \varphi\right)+\int_{1}^{\infty} z_{n-1}(D+\sigma I) \varphi \\
& = \\
& \quad R\left(z_{n-1}, 1, \varphi-P_{n-2} \varphi\right)-\lim _{\varepsilon \rightarrow 0} R\left(z_{n-1}, \varepsilon, \varphi-P_{n-2} \varphi\right) \\
& \quad \quad+\lim _{b \rightarrow+\infty} R\left(z_{n-1}, b, \varphi\right)-R\left(z_{n-1}, 1, \varphi\right)
\end{aligned}
$$

By Lemmas 2.2 and 2.3, $\lim _{b \rightarrow \infty} R\left(z_{n-1}, b, \varphi\right)=0$. Thus

$$
\left\langle\left(D^{\prime}+\sigma I\right) P f^{+}\left(z_{n-1}\right), \varphi\right\rangle=-R\left(1, P_{n-2}(\varphi)\right)-\lim _{\varepsilon \rightarrow 0^{+}} R\left(\varepsilon, \varphi-P_{n-2}(\varphi)\right)
$$

A computation using the asymptotic development (2.14) gives that

$$
R\left(z_{n-1}, \varepsilon, \varphi-P_{n-2} \varphi\right)=-4 z_{n-1}^{\prime}(\varepsilon) \varepsilon^{n}\left(A_{n-1}(\varphi)+B_{n-1}(\varphi)\right)+o(\varepsilon)
$$

with $\lim _{\varepsilon \rightarrow 0^{+}} o(\varepsilon)=0$. Then, by Lemma 2.3,

$$
\left\langle\left(D^{\prime}+\sigma I\right) P f^{+}\left(z_{n-1}\right), \varphi\right\rangle=-R\left(1, P_{n-2} \varphi\right)-c_{n-1}\left(A_{n-1}(\varphi)+B_{n-1}(\varphi)\right)
$$

for some constant with $c_{n-1} \neq 0$. This gives (2.17) and the proof of (2.18) is similar using that $R\left(z_{n-1},-\varepsilon, \varphi-P_{n-2} \varphi\right)=-4 \widetilde{y}_{n-1}^{\prime}(-\varepsilon)(-\varepsilon)^{n} B_{n-1}(\varphi)+$ $o(\varepsilon)$. The same arguments give also ii).

For $S \in \mathscr{H}^{\prime}$ supported at the origin we have

$$
S=\sum_{j=0}^{\infty} \alpha_{j} A_{j}+\sum_{j=0}^{\infty} \beta_{j} B_{j}
$$

with each $\alpha_{j}, \beta_{j} \in C$ and $\alpha_{j}=\beta_{j}=0$ for j large enough. So, from (2.14) a computation gives that, for $\sigma \in \mathrm{R}$,

$$
\begin{equation*}
+\sum_{j=1}^{\infty}\left(4 j(j+1-n) \alpha_{j-1}+\sigma \alpha_{j}\right) A_{j}+\sum_{j=0}^{\infty}\left(4 j(j+1-n) \beta_{j-1}+\sigma \beta_{j}\right) B_{j} \tag{2.19}
\end{equation*}
$$

Lemma 2.6. Let $S \in \mathscr{H}^{\prime}$ supported at the origin and let $\sigma \neq 0$.
i) $I f$

$$
\begin{equation*}
\left(D^{\prime}+\sigma I\right) S=\sum_{j=0}^{n-2} c_{j} B_{j}+c_{n-1} A_{n-1}+d_{n-1} B_{n-1} \tag{2.20}
\end{equation*}
$$

with $c_{0}, c_{1}, \ldots, c_{n-1}, d_{n-1} \in C$, then $c_{n-1}=d_{n-1}=0$.
ii) If $D^{\prime} S+\sigma S=0$, then $S=0$.

Proof. i) From (2.20) and (2.19) we get, for $j \geq n$,

$$
\begin{equation*}
4 j(j+1-n) \alpha_{j-1}+\sigma \alpha_{j}=0 \tag{2.21}
\end{equation*}
$$

and also $\sigma \alpha_{n-1}=c_{n-1}$. So $c_{n-1} \neq 0$ implies $\alpha_{n-1} \neq 0$ and thus $\alpha_{j} \neq 0$ for $j \geq n$ which is a contradiction. Then $c_{n-1}=0$ and similarly $d_{n-1}=0$.
ii) If $D^{\prime} S+\sigma S=0$ then, from (2.19), $\alpha_{0}=0$ and also $4 j(j+1-n) \alpha_{j-1}+$ $\sigma \alpha_{j}=0$ for $j \geq 1$ Thus $\alpha_{j}=0$ for all j and similarly $\beta_{j}=0$ for each j.

The following lemma is a direct consequence of (2.19) and the fact that $A_{n-2}=0$

Lemma 2.7. Let $S \in \mathscr{H}^{\prime}$ supported at the origin,
i) If $D^{\prime} S=0$ then $S=c B_{n-2}$ for some $c \in \mathrm{C}$.
ii) If $D^{\prime} S=c B_{0}$ and $S \neq 0$ then $c=0$.

For $T \in \mathscr{H}^{\prime}$, let T^{\vee} given by $\left\langle T^{\vee}, \varphi\right\rangle=\left\langle T, \varphi^{\vee}\right\rangle$ where $\varphi^{\vee}(\tau)=\varphi(-\tau)$.
Theorem 2.8. i) For $\sigma>0, T \in \mathscr{H}^{\prime}$ is a solution of $D^{\prime} T+\sigma T=0$ if and only if $T=c\left(y_{0} H\right)^{(n-1)}$ for some $c \in \mathbf{R}$.
ii) For $\sigma=0, T \in \mathscr{H}^{\prime}$ is a solution of $D^{\prime} T=0$ if and only if $T=c 1+d B_{n-2}$ for some $c, d \in \mathbf{R}$.
iii) For $\sigma<0, T \in \mathscr{H}^{\prime}$ solves $\left(D^{\prime}+\sigma I\right) T=0$ if and only if T^{\vee} solves $\left(D^{\prime}-\sigma I\right) T^{\vee}=0$.

Proof. iii) is immediate. To see i) consider a solution $T \in \mathscr{H}^{\prime}$ of $D^{\prime} T+$ $\sigma T=0$. Then $T_{\mid D(0,+\infty)}=a y_{n-1}+b z_{n-1}$ and $T_{\mid D(-\infty, 0)}=\alpha y_{n-1}+\beta \widetilde{y}_{n-1}$ for some constants a, b, α, β. From Lemma 2.3 and Proposition 2.4, and since T is a tempered distribution we get $\alpha=0$. Thus

$$
S:=T-a\left(y_{0} H\right)^{(n-1)}-b P f^{+}\left(z_{n-1}\right)-\beta P f^{-}\left(\tilde{y}_{n-1}\right)
$$

is a distribution supported at the origin and, by Lemma 2.5, it satisfies

$$
D^{\prime} S+\sigma S=\sum_{j=0}^{n-2} \mu_{j} B_{j}-b c_{n-1}\left(A_{n-1}+B_{n-1}\right)-\beta d_{n-1} B_{n-1}
$$

with $c_{n-1} \neq 0$ and $d_{n-1} \neq 0$. Thus Lemma 2.6 gives $b c_{n-1}=0$ and $b c_{n-1}+$ $\beta d_{n-1}=0$. So $b=\beta=0, S=T-a\left(y_{0} H\right)^{(n-1)}$ and $D^{\prime} S+\sigma S=0$. Now, Lemma 2.6 implies $S=0$, i.e., $T=a\left(y_{0} H\right)^{(n-1)}$. Reciprocally, by Proposition 2.4, each distribution T of this form is a solution of $D^{\prime} T+\sigma T=0$.

To see ii) observe that the solutions of $\tau v^{\prime \prime}(\tau)+n v^{\prime}(\tau)=0$ on $(0,+\infty)$ (resp. on $(-\infty, 0)$) are generated by 1 and τ^{1-n}. If $\tau T^{\prime \prime}+n T=0$, then $T_{\mid D(0,+\infty)}=a+b \tau^{1-n}$ and $T_{\mid D(-\infty, 0)}=\alpha+\beta \tau^{1-n}$ for some constants a, b, α, β. Consider $S=T-P f^{+}\left(a+b \tau^{1-n}\right)-P f^{-}\left(\alpha+\beta \tau^{1-n}\right)$. Proceeding as in the proof of i) we get $b=\beta=0$. Then $T_{\mid D(0,+\infty)}=a 1$ and $T_{\mid D(-\infty, 0)}=\alpha$. Let $\widetilde{S}=T-a H-\alpha(1-H)$. Since $D^{D^{\prime}} H=B_{0}$, we have $D^{\prime} \widetilde{S}=(\alpha-a) B_{0}$ and so, by Lemma 2.7, $a=\alpha$ and $\widetilde{S}=d B_{n-2}$ for some $d \in \mathrm{R}$. Then $T=a 1+d B_{n-2}$. On the other hand it is clear that 1 and B_{n-2} are solutions of $D^{\prime} T=0$.

For $\sigma \in \mathrm{R}$ let $S_{\sigma}^{\#} \in \mathscr{S}^{\prime}\left(H_{n}\right)$ be defined by

$$
\begin{aligned}
& \left\langle S_{\sigma}^{\#}, f\right\rangle=(-1)^{n-1} \int_{-\infty}^{\infty} \int_{0}^{\infty} J_{0}\left((\sigma \tau)^{\frac{1}{2}}\right)(N f(., t))^{(n-1)}(\tau) d \tau d t \quad \text { for } \sigma \geq 0 \\
& \left\langle S_{\sigma}^{\#}, f\right\rangle=\int_{-\infty}^{\infty} \int_{0}^{\infty} J_{0}\left((-\sigma \tau)^{\frac{1}{2}}\right)(N f(., t))^{(n-1)}(-\tau) d \tau d t \quad \text { for } \sigma<0
\end{aligned}
$$

For $\sigma \in \mathrm{R}, S_{\sigma}^{\#}$ is a joint eigendistribution in \mathscr{H}^{\prime} of $-L$ and U (cf. Theorem 2.8). On the other hand, S_{σ} is a joint eigendistribution (cf. [5]) of $-L$ and U which, as stated in the introduction, belongs to \mathscr{H}^{\prime}. Thus, for $\sigma \neq 0, S_{\sigma}$ is a multiple of $S_{\sigma}^{\#}$ and so $\left[S_{\sigma}\right]=\left[S_{\sigma}^{\#}\right]$. Since S_{σ} converges in \mathscr{H}^{\prime} to S_{0} as σ tends to zero, we get, that also $\left[S_{0}\right]=\left[S_{0}^{\#}\right]$.

The distributions $S_{\lambda, k}$ can be explicitly written using Laguerre polynomials. For a non negative integer m let L_{m}^{0} be the Laguerre polynomial of degree m
and order zero, defined by $L_{m}^{0}(\tau)=\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{\tau^{j}}{j!}$. We have (cf. [14], also [7])

$$
\begin{equation*}
S_{\lambda, k}=F_{\lambda, k} \otimes e^{-i \lambda t} \tag{2.22}
\end{equation*}
$$

where for $k \geq 0, \lambda \neq 0$,

$$
\begin{align*}
& \left\langle F_{\lambda, k}, g\right\rangle \tag{2.23}\\
& \quad=\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \tau \rightarrow \frac{2}{|\lambda|} e^{-\tau / 2} N g\left(\frac{2}{|\lambda|} \tau\right)\right\rangle, \quad g \in \mathscr{S}\left(\mathrm{C}^{n}\right)
\end{align*}
$$

and for $k<0, \lambda \neq 0$

$$
\begin{align*}
& \left\langle F_{\lambda, k}, g\right\rangle \tag{2.24}\\
= & \left\langle\left(L_{-k-p+n-1}^{0} H\right)^{(n-1)}, \tau \rightarrow \frac{2}{|\lambda|} e^{-\tau / 2} N g\left(-\frac{2}{|\lambda|} \tau\right)\right\rangle, \quad g \in \mathscr{S}\left(\mathrm{C}^{n}\right) .
\end{align*}
$$

Using the Leibnitz rule and the change of variable $\tau=\frac{|\lambda|}{2} s$ we get, for $k \geq 0$, $\lambda \neq 0$ and $f \in \mathscr{S}\left(H_{n}\right)$,
(2.25)

$$
\begin{aligned}
&|\lambda|^{n-1}\left\langle S_{\lambda, k}, f\right\rangle \\
&=|\lambda|^{n-1}(-1)^{n-1} \frac{2}{|\lambda|} \\
& \quad \int_{-\infty}^{\infty} e^{-i \lambda t} \int_{0}^{\infty} L_{k-q+n-1}^{0}(\tau) \frac{d^{n-1}}{d \tau^{n-1}}\left(e^{-\frac{\tau}{2}} N f\left(\frac{2}{|\lambda|} \tau, t\right)\right) d \tau d t \\
&= \frac{1}{2^{n-1}} \sum_{j=0}^{n-1}\binom{n-1}{j} 4^{j}(-1)^{j}|\lambda|^{n-1-j} \\
& \times \int_{-\infty}^{\infty} e^{-i \lambda t} \int_{0}^{\infty} L_{k-q+n-1}^{0}\left(\frac{|\lambda|}{2} s\right) e^{-\frac{|\lambda|}{4} s}(N f(., t))^{(j)}(s) d s d t
\end{aligned}
$$

and similarly, for $k<0, \lambda \neq 0$ and $f \in \mathscr{S}\left(H_{n}\right)$,

$$
\begin{align*}
& |\lambda|^{n-1}\left\langle S_{\lambda, k}, f\right\rangle=\frac{1}{2^{n-1}} \sum_{j=0}^{n-1}\binom{n-1}{j} 4^{j}|\lambda|^{n-1-j} \tag{2.26}\\
& \quad \times \int_{-\infty}^{\infty} e^{-i \lambda t} \int_{0}^{\infty} L_{-k-p+n-1}^{0}\left(\frac{|\lambda|}{2} s\right) e^{-\frac{|\lambda|}{4} s}(N f(., t))^{(j)}(-s) d s d t
\end{align*}
$$

3. \mathscr{E} is an homeomorphism

Remark 3.1. The following result is a Mehler type formula (see for example [6], page 92, or Corollary 4.2 in [3]) :

$$
\lim _{m \rightarrow 0} L_{m}^{0}\left(\frac{x^{2}}{2(2 m+1)}\right) e^{\frac{x^{2}}{4(2 m+1)}}=J_{0}(x)
$$

uniformly on compact subsets of $[0, \infty)$.
Proof of Theorem 1.2. Let $E, \Delta\left(U(p, q), H_{n}\right)$ and \mathscr{E} be as in the introduction and let $\theta: E \rightarrow E / \sim$ be the quotient map. The map $\widetilde{\mathscr{E}}: E \rightarrow$ $\mathscr{A}\left(U(p, q), H_{n}\right)$ given by $\tilde{\mathscr{E}}(\Psi)=(-\widehat{L}(\Psi), i \widehat{U}(\Psi))$ is continuous. Indeed, since E is equipped with the pointwise convergence topology, if Ψ_{n} converges to Ψ (and we set $\Psi_{n} \rightharpoonup \Psi$) then $L \Psi_{n} \rightharpoonup L \Psi$. So, denoting by γ_{n} and γ the eigenvalues associated to Ψ_{n} and Ψ, respectively, we have that $\gamma_{n} \Psi_{n} \rightharpoonup \gamma \Psi$. Choosing some f such that $\langle\Psi, f\rangle \neq 0$, we conclude that $\gamma_{n} \rightarrow \gamma$.

Thus the bijection $\mathscr{E}: \Delta\left(U(p, q), H_{n}\right)-\{[1]\} \rightarrow \mathscr{A}\left(U(p, q), H_{n}\right)$ is also continuous.

For $(\sigma, \lambda) \in \mathscr{A}\left(U(p, q), H_{n}\right)$, we say that it is of type I if $\lambda \neq 0$ (and so $\sigma=|\lambda|(2 k+p-q)$ with $k \in \mathrm{Z})$. In this case we set $S_{(\sigma, \lambda)}=\frac{|\lambda|^{n-1}}{2^{n-1}} S_{\lambda, k}$. We will say that (σ, λ) is of type II if $\lambda=0$, and we set $S_{(\sigma, \lambda)}=S_{\sigma}^{\#}$.

To see that \mathscr{E}^{-1} is continuous it enough to show that if $\left\{\left(\sigma_{m}, \lambda_{m}\right)\right\}_{m \in N}$ is a sequence in $\mathscr{A}\left(U(p, q), H_{n}\right)$, either of type I or of type II, and if $\lim _{m \rightarrow \infty}\left(\sigma_{m}\right.$, $\left.\lambda_{m}\right)=(\sigma, \lambda)$, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} S_{\left(\sigma_{m}, \lambda_{m}\right)}=S_{(\sigma, \lambda)} \tag{3.1}
\end{equation*}
$$

with convergence in $\mathscr{S}^{\prime}\left(H_{n}\right)$.
Consider the case when $\sigma>0, \lambda=0$. If $\left\{\left(\sigma_{m}, \lambda_{m}\right)\right\}_{m \in \mathrm{~N}}$ is of type I then $\sigma_{m}=\left|\lambda_{m}\right|\left(2 k_{m}+p-q\right)$ with $k_{m} \in Z$. Since $\lambda_{m} \rightarrow 0$ and $2\left|\lambda_{m}\right| k_{m} \rightarrow \sigma$ we have $k_{m}>0$ for m large enough.

Fix $s \geq 0$ and let $x_{m}=\left(\left(2 k_{m}+1\right)\left|\lambda_{m}\right| s\right)^{\frac{1}{2}}$. Then $\lim _{m \rightarrow \infty} x_{m}=(\sigma s)^{\frac{1}{2}}$. Since $\frac{\left|\lambda_{m}\right|}{2} s=\frac{x_{m}^{2}}{2\left(2 k_{m}+1\right)}$ the uniform convergence in Remark 3.1 and dominated convergence gives that for $j=0, \ldots, n-1$,

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \int_{0}^{\infty} L_{k_{m}-q+n-1}^{0}\left(\frac{\left|\lambda_{m}\right|}{2} s\right) e^{-\frac{\left|\lambda_{m}\right|}{4} s}(N f(., t))^{(j)}(s) d s \\
&=\int_{0}^{\infty} J_{0}\left((\sigma s)^{\frac{1}{2}}\right)(N f(., t))^{(j)}(s) d s
\end{aligned}
$$

Thus, taking into account of (2.25), we obtain (3.1). If $\left\{\left(\sigma_{m}, \lambda_{m}\right)\right\}_{m \in N}$ is of type II, since J_{0} is continuous, dominated convergence gives $\lim _{m \rightarrow \infty} S_{\left(\sigma_{m}, \lambda_{m}\right)}$ $=S_{\sigma}^{\#}$.

The case $\sigma<0, \lambda=0$ follows the sames lines: in this case $k_{m}<0$ for m large enough, and so (2.26) and the definition of $S_{\sigma}^{\#}$ for $\sigma<0$ imply (3.1).

The origin $\sigma=0, \lambda=0$ has not additional work. As above, by (2.25) and (2.26), we see that $\lim _{m \rightarrow \infty} S_{\left(\sigma_{m}, \lambda_{m}\right)}=S_{0}^{\#}$. In particular this shows that the equivalence class of 1 is an isolated point of $\Delta\left(U(p, q), H_{n}\right)$.

The proof for the cases where $\lambda \neq 0$ are obvious.

REFERENCES

1. Benson, C., Jenkins, J., and Ratcliff, G., On Gel'fand pairs associated with solvanbe Lie groups, Trans. Amer. Math. Soc. 321 (1990), 85-116.
2. Benson, C., Jenkins, J., and Ratcliff, G., Bounded K-spherical functions on Heisenberg groups, J. Funct. Anal. 105 (1992), 409-443.
3. Benson, C., Jenkins, J., Ratcliff, G., and Worku, T., Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math. 71 (1996), 305-328.
4. Borel, A. and Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Math. Studies 94, Princeton Univ. Press, Princeton, NJ 1980.
5. Faraut, J., Distributions sphériques sur le espaces hiperboliques, Proc. Tunis 1984, J. Math. Pures Appl. 58 (1979), 369-444.
6. Faraut, J. and Harzallah, K., Deux Cours d'Analyse Harmonique, Progress in Math. 69, Birkhäuser, Boston, MA 1987.
7. Godoy, T. and Saal, L., L^{2} spectral decomposition on the Heisenberg group associated to the action of $U(p, q)$, Pacific J. Math. 193 (2000), 327-353.
8. Lebedev, N. N., Special Functions and their Applications, Dover Publications, New York 1972.
9. Stein, E. and Weiss, G., Introduction to Fourier Analysis in Euclidean Spaces, Princeton Math. Series 32, Princeton Univ. Press, Princeton, NJ 1971.
10. Sternberg, S. and Wolf J., Hermitian Lie algebras and metaplectic representations I, Trans. Amer. Math. Soc. 238 (1978), 1-43.
11. Szegő, G., Orthogonal Polynomials, 4th edn., Colloquium Publication XXIII, Amer. Math. Soc., Providence, RI 1975.
12. Tengstrand, A., Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218.
13. van Dijk, G., Group representations on spaces of distributions, Russian J. Math. Phys. 2 (1994), 57-68.
14. van Dijk, G. and Mokni, K., Harmonic analysis on a class of generalized Gel'fand pairs associated with hyperbolic spaces, Russian J. Math. Phys. 5 (1997), 167-178.
15. Wolf, J., Representations of certain semidirect product groups, J. Funct. Anal. 19 (1975), 339-372.
```
FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA
UNIVERSIDAD NACIONAL DE CÓRDOBA
AND CIEM-CONICET
CIUDAD UNIVERSITARIA
5000 CÓRDOBA
ARGENTINA
E-mail: godoy@mate.uncor.edu,saal@mate.uncor.edu
```

