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ON THE SPECTRUM OF THE GENERALIZED
GELFAND PAIR (U(p, q),Hn), p + q = n

TOMÁS GODOY and LINDA SAAL

Abstract
It is known that the spectrum of the Gelfand pair (U(n),Hn) is homeomorphic to the Heisenberg
fan.

In this paper after defining a suitable notion of spectrum, we prove an analogous result for the
generalized Gelfand pair (U(p, q),Hn), p + q = n.

1. Introduction

Let n ∈ N and let p, q nonnegative integers such that p + q = n. Let Hn be
the Heisenberg group defined by Hn = Cn × R with group law (z, t)(z′, t ′) =(
z+z′, t+t ′− 1

2 ImB(z, z′)
)

whereB(z,w) = ∑p

j=1 zjwj−
∑n
j=p+1 zjwj . For

x = (x1, . . . , xn) ∈ Rn, we write x = (x ′, x ′′) with x ′ ∈ Rp, x ′′ ∈ Rq . So, R2n

can be identified with Cn via the map ϕ(x ′, x ′′, y ′, y ′′) = (x ′ + iy ′, x ′′ − iy ′′),
x ′, y ′ ∈ Rp, x ′′, y ′′ ∈ Rq . In this setting, the form − ImB(z,w) agrees with the
standard symplectic form on R2(p+q), and the vector fieldsXj = − 1

2yj
∂
∂t

+ ∂
∂xj

,

Yj = 1
2xj

∂
∂t

+ ∂
∂yj

, j = 1, . . . , n and U = ∂
∂t

form a standard basis for the
Lie algebra hn of Hn. Thus Hn can be viewed as Rn × Rn × R via the map
(x, y, t) → (ϕ(x, y), t). From now on, we will use freely this identification.

Let S (Hn) be the Schwartz space on Hn and let S ′(Hn) be the space of
corresponding tempered distributions. Consider the action, by automorphism,
of U(p, q) on Hn given by g.(z, t) = (gz, t). So U(p, q) acts on L2(Hn),
S (Hn) and S ′(Hn) in the canonical way.

Let U(p, q)Hn denote the semidirect product of U(p, q) andHn. It is well
known that the pair (U(p, q)Hn,U(p, q)) is a generalized Gelfand pair, that
is, for each irreducible unitary representation π of U(p, q)Hn, the space of
distribution vectors fixed byU(p, q) is at most one dimensional. This definition
extends the notion of Gelfand pair, which in our case happens when p = 0 or
q = 0. As usual we will write (U(p, q),Hn) to refer to the generalized Gelfand
pair (U(p, q)Hn,U(p, q)). A consequence of being a generalized Gelfand pair
is that the subalgebra UU(p,q)(hn) of the left invariant and U(p, q) invariant
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differential operators is commutative. We refer to [13] for a detailed study
of the theory of generalized Gelfand pairs. By another way, it is easy to see
that this subalgebra is generated by L and U where L = ∑p

j=1(X
2
j + Y 2

j ) −∑n
j=p+1(X

2
j + Y 2

j ) and U is as above (cf. [7]).
The description of the unitary dual of U(p, q)Hn is given in [15]. Let

P be the cone of the bi-U(p, q)-invariant, positive-definite distributions on
U(p, q)Hn. We say that T ∈ P is extremal in P if and only if S ∈ P and
T − S ∈ P imply S = αT for some α ∈ R. For S, S ′ ∈ P we write S ∼ S ′ if
and only if S = αS ′ for some α > 0. Thus ∼ is an equivalence relation on P .
For S ∈ P we put [S] for its equivalence class.

By general theory (see [5], [13]) one knows that there exists a one to one cor-
respondence between the set of unitary representations π ofU(p, q)Hn admit-
ting a cyclic distribution vector ξπ fixed byU(p, q) (spherical representations),
and the set of the equivalence class of bi-U(p, q)-invariant, positive-definite
distributions. More precisely, for such π and ξπ , and for ϕ ∈ C∞(U(p, q)Hn),
it is easy to see that π(ϕ)ξπ is aC∞-vector for π . Define Tπ ∈ D′(U(p, q)Hn)
by

Tπ(ϕ) = 〈ξπ , π(ϕ)ξπ 〉
(Tπ is called a reproducing distribution for π .) With these notations, the quoted
correspondence is given by π → [Tπ ]. We recall also that π is irreducible if
and only if Tπ is extremal in P . As usual, we will identify the bi-U(p, q)-
invariant distributions on U(p, q)Hn with the U(p, q)-invariant distributions
on Hn.

Let us recall some facts concerning the compact case p = n, q = 0, i.e.,
when U(p, q) = U(n). Since (U(n),Hn) is a Gelfand pair, the convolution
algebra of the U(n)-invariant integrable functions on Hn is commutative. Its
spectrum, denoted by�(U(n),Hn) can be identified, via integration, with the
set of bounded spherical functions of the pair (U(n),Hn). Moreover, for this
Gelfand pair (as remarked in [2]), the set of bounded spherical functions is
precisely the set of positive definite spherical functions, and so �(U(n),Hn)
is the set of extremal points in the cone of U(n)-invariant, positive definite
functions on Hn. These spherical functions can be classified (see [1]) as:

a) The spherical functions of type I, i.e., those that restricted to the center
of Hn are nontrivial characters. These are given by

�λ,k(z, t) = e−iλtL n−1
k

( |λ|
2

|z|2
)
e−

|λ|
4 |z|2 , λ 	= 0, k ≥ 0

where L n−1
k is the Laguerre polynomial of order n−1 and degree k normalized

by L n−1
k (0) = 1.
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b) The spherical functions ηw of type II , i.e., those that are constant on the
center. They are given, for w ∈ Cn − {0}, by

ηw(z, t) = 2n−1(n− 1)!

(|z||w|)n−1
Jn−1(|z||w|)

where Jn−1 is the Bessel function of order n− 1 of the first kind, and by

η0(z, t) = 1.

In [3] is defined a map E : �(U(n),Hn) → [0,∞)× R by E (�) = (−L̂(�),
iÛ (�)), where L̂(�) and Û (�) denote the eigenvalues of L and U re-
spectively, associated to �. The image of E is the so called Heisenberg fan
A (U(n),Hn) and it is the set{

(|λ|(2k + n), λ) : λ 	= 0, k ∈ N ∪ {0}} ∪ {
[0,∞)× {0}}.

There, it is proved that E is a homeomorphism from �(U(n),Hn) (equipped
with the Gelfand topology) onto the Heisenberg fan (provided with the topo-
logy induced by R2).

We assume from now on that n ≥ 2, p ≥ 1, q ≥ 1 and we turn now to
the generalized Gelfand pair (U(p, q),Hn), p + q = n. Let E be the set of
extremal points of P . Motivated by the quoted results in the compact case, we
define

Definition 1.1. �(U(p, q),Hn) = E/∼, equipped with the quotient
topology of the pointwise convergence topology of S ′(Hn).

In order to describe �(U(p, q),Hn) we need to recall some facts. For
λ 	= 0, letπλ denote the Schroedinger representation ofHn, realized onL2(Rn).
According to [10], this representation can be extended to a representation
π̃λ of U(p, q)Hn by the rule π̃λ(k, z, t) = Wλ(k)πλ(z, t), for k ∈ U(p, q),
(z, t) ∈ Hn, where Wλ denotes the metaplectic representation of U(p, q)
(defined there) acting on L2(Rn). For α = (α1, . . . , αn) with αi ∈ N ∪ {0},
let ‖α‖ = ∑p

i=1 αi − ∑n
i=p+1 αi and, for x = (x1, . . . , xn), let hα(x) =

hα1(x1) . . . hαn(xn) where hl denotes the l-th Hermite function. For k ∈ Z, let
Hk be the closed subspace of L2(Rn) generated by {hα : ‖α‖ = k}. Then (see
e.g. [4]) Wλ decomposes in irreducible representations of U(p, q) as

L2(Rn) =
⊕
k∈Z

Hk.

Let γk denote the restriction ofWλ toHk and let γ ∗
k be its adjoint representation.
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For v ∈ Cn let also χv(z, t) = ei ReB(z,v) and let Kv be the stabilizer of
v in U(p, q), that is Kv = {g ∈ U(p, q) : gv = v}, and extends χv to
KvHn by χ̃v(k, z, t) = χv(z, t). Then �v := IndU(p,q)HnKvHn

(χ̃v) is an irreducible
representation of U(p, q)Hn, and for v, v′ ∈ Cn it holds that �v is equivalent
to �v′ if and only if B(v) = B(v′) (see [15]).

The spherical representations of U(p, q)Hn are given in [15]. They are
i) Those of the form γ ∗

k ⊗ π̃λ. For them, a reproducing distribution Sλ,k ,
found in [14], is given by

(1.1) 〈Sλ,k, ϕ〉 = tr πλ(ϕ)|Hk

ii) Those of the form�v . A corresponding reproducing distribution is given
by

(1.2) 〈Sσ , ϕ〉 =
∫
B(u,u)=−σ

∫
Hn

ei ReB(u,z)ϕ(z, t) dz dt dμσ (u)

where σ = B(v, v) and dμσ denotes the surface measure on B(u, u) = σ . In
other words Sσ is a sort of Fourier Transform of the measure dμσ .

iii) The trivial representation, with reproducing distribution 1.
The above list shows that for each [Tπ ] ∈ �(U(p, q),Hn), Tπ is a tempered

distribution on Hn.
Observe that if � is an extremal point of P , then � is a joint eigendis-

tribution of −L and iU (cf. [5]). Indeed, −L(Sλ,k) = |λ|(2k + p − q)Sλ,k ,
iU(Sλ,k) = λSλ,k and −L(Sσ ) = σSσ , iU(Sσ ) = 0 (cf. [14], [7]). Following
[3], we define the map E : �(U(p, q),Hn) → R2 by

E ([�]) = (−L̂(�), iÛ (�)),
where L̂(�) and Û (�) denote the eigenvalues of L and U respectively, as-
sociated to �. Let A (U(p, q),Hn) denote the image of E . Equipped with
the relative topology of R2 it is called the Heisenberg fan of the generalized
Gelfand pair (U(p, q),Hn) and it is given by

A (U(p, q),Hn) = {
(|λ|(2k + p − q), λ) : λ 	= 0, k ∈ Z

} ∪ {
(σ, 0) : σ ∈ R

}
Our main result is the following

Theorem 1.2. The map E : �(U(p, q),Hn)− {[1]} → A (U(p, q),Hn)

is a homeomorphism.

Remark 1.3. As observed by J. Faraut in [5], and in contrast with the
compact case, in the case of a generalized Gelfand pair a spherical distribution
is not necessarily an extremal point of P . For example, in our case, the solution
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space of −L(S) = 0, iU(S) = 0 is two dimensional and a basis is given by
{1, S0}. After the proof of the above Theorem, it is easy to see that [1] is an
isolate point of �(U(p, q),Hn).

2. The joint eigendistributions of L and iT

We begin this section by describing the space S ′(Cn)U(p,q) of tempered dis-
tributions which are U(p, q) invariant. We adapt the results by A. Tengstrand
detailed in [12], for the passage from the real to the complex case.

To this end, we take bipolar coordinates on Cn: for (x1, y1, . . . , xn, yn), we
set σ = ∑p

j=1(x
2
j + y2

j ) − ∑n
j=p+1(x

2
j + y2

j ), ρ = ∑n
j=1(x

2
j + y2

j ), u =
(x1, y1, . . . , xp, yp) and v = (xp+1, yp+1, . . . , xn, yn). So u = (

ρ+σ
2

) 1
2ωu,

v = (
ρ−σ

2

) 1
2ωv , where ωu belongs to the 2p−1 dimensional sphere S2p−1 and

ωv ∈ S2q−1.
By the change of variables theorem, we have that∫

Cn
f (z) dz =

∫ ∞

−∞

∫
|σ |<ρ

∫
S2p−1×S2q−1

f

((
ρ + σ

2

) 1
2

ωu,

(
ρ − σ

2

) 1
2

ωv

)
dωu dωv(ρ + σ)p−1(ρ − σ)q−1 dρ dσ

We define the map M on S (R2n) by

Mf (ρ, τ) =
∫
S2p−1×S2q−1

f

((
ρ + τ

2

) 1
2

ωu,

(
ρ − τ

2

) 1
2

ωv

)
dωu dωv,

and
Nf (τ) =

∫ ∞

|τ |
Mf (ρ, σ )(ρ + τ)p−1(ρ − τ)q−1dρ.

In other words,Nf is the integral of f on the surface B(z, z) = τ provided
with a suitable surface measure.

LetH denote the Heaviside function (i.e.,H(τ) = χ(0,∞)(τ )) and let H be
the space of the functionsϕ : R → C such thatϕ(τ) = ϕ1(τ )+τn−1ϕ2(τ )H(τ),
ϕ1, ϕ2 ∈ S (R). It is proved in [12] that H , with an adequate topology, is a
Fréchet space. Moreover, following straighforward the proof of Lemma 4.2
and Lemma 4.3 there, we obtain that

N : S (R2n − {0}) → S (R), and N : S (R2n) → H

are (linear) continuous, surjective maps. Now, let μ ∈ S ′(R2n)U(p,q). Then,
there exists a unique T ∈ S ′(R) such that

〈μ, f 〉 = 〈T ,Nf 〉 for every f ∈ S (R2n − {0}).
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Indeed, let �(x1, y1, . . . , xn, yn) = (ρ, τ, ωu, ωv) the change of coordin-
ates and let J (�−1) be the Jacobi determinant. If μ ◦ � is the distribution
defined by 〈μ ◦�, f 〉 = 〈μ, (f ◦�−1)J (�−1)〉, then as U(p, q) acts transit-
ively on the surface B(z, z) = τ , μ ◦� is independent of ρ, ωu and ωv . So, T
is well defined and the uniqueness of T follows from the surjectivity of N .

Moreover, the adjoint map ofN,N ′ : H ′ → S ′(R2n)U(p,q), is injective and
the same lines of Theorem 5.1 in [12] prove that N ′ is a homeomorphism.

For f ∈ S (Hn), we will write Nf (τ, t) for N(f (., t))(τ ). We have that
for all ϕ ∈ S (R2)∫ ∞

−∞

∫
Cn
ϕ(B(z), t)f (z, t) dz dt =

∫ ∞

−∞

∫ ∞

−∞
Nf (τ, t)ϕ(τ, t) dτ dt.

Our next step is to compute, for σ ∈ R, the solutions S ∈ S ′(Hn)U(p,q) of the
problem

(2.1)

{
−L(S) = σS,

iU(S) = 0

i.e., the U(p, q) invariant tempered joint eigendistributions of −L and iU
corresponding to a pair (σ, λ) ∈ A (U(p, q),Hn) with λ = 0. For such a
solution S,U(S) = 0 gives S = F ⊗ 1 with F ∈ S ′(R2n). Since

L = � +
( p∑
j=1

(x2
j + y2

j )−
n∑

j=p+1

(x2
j + y2

j )

)
∂2

∂t2
+ ∂

∂t

n∑
j=1

(
xj
∂

∂yj
− yj

∂

∂xj

)
,

where

� =
p∑
j=1

(
∂2

∂xj 2
+ ∂2

∂yj 2

)
−

n∑
j=p+1

(
∂2

∂xj 2
+ ∂2

∂yj 2

)
,

and S is U(p, q) invariant, from (2.1) we get

(2.2) −�(F ) = σF.

Conversely, for each solution F ∈ S ′(R2n) of this equation, S = F ⊗ 1 solves
(2.1). It is proved in [12] that N(�f ) = D(Nf ) for f ∈ S(R2n), where D is
the differential operator

(2.3) D = 4

(
τ
∂2

∂τ 2
+ (2 − n)

∂

∂τ

)
.
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Writing F = N ′(T ) with T ∈ H ′, (2.2) becomes D′T = −σT , where D′ is
the adjoint of D given by D′T = 4(τT ′′ + nT ′), i.e., (2.2) is equivalent to

(2.4) D′T + σT = 0.

If T ∈ H ′ is a solution of (2.4) then (since D is elliptic) its restrictions
T|D(0,∞) andT|D(−∞,0)) are functions belonging toC∞(0,∞) andC∞(−∞, 0),
respectively. They are solutions, on the respective semiaxis, of the equation

(2.5) 4(τv′′(τ )+ nv′(τ ))+ σv(τ) = 0.

Consider the case σ > 0. A computation shows that a function y : (0,∞) → R
is a solution of (2.5) if and only if

y(τ) = w((στ)
1
2 )

(στ)
n−1

2

for some w that solves, on (0,∞), the Bessel equation of order n− 1

(2.6) τ 2w′′(τ )+ τw′(τ )+ (τ 2 − (n− 1)2)w(τ) = 0, τ > 0.

For m ∈ N ∪ {0}, let Jm be the Bessel function of first kind of order m,

(2.7) Jm(τ) =
(τ

2

)m ∞∑
k=0

(−1)k

k!(k +m)!

(τ
2

)2k
.

and let Nm : (0,∞) → R be the Neumann function defined by

(2.8) Nm(τ) = 2

π
Jm(τ) log

(τ
2

)
− 1

π

m−1∑
k=0

(m− k − 1)!

k!

(τ
2

)2k−m

(2.9) − 1

π

∞∑
k=0

(−1)k

k!(k +m)!
[ψ(k + 1)+ ψ(k +m+ 1)]

(τ
2

)m+2k

where ψ(m+ 1) := −γ + ∑m
j=1

1
j

and γ is the Euler constant.
For τ > 0, σ > 0 and m ∈ N ∪ {0}, let

(2.10) ym(τ) = m!
Jm((στ)

1
2 )

(στ)
m
2

, zm(τ ) = Nm((στ)
1
2 )

(στ)
m
2

.

We observe that, for τ > 0,

(2.11) ym(τ) = m!
∞∑
k=0

(−1)k

k!(k +m)!

(στ
4

)k
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and so ym has an analytic extension to R, still denoted by ym, given by (2.11).
Note that {Jn−1, Nn−1} is a basis of the space of the solutions of (2.6) on (0,∞)

and so {yn−1, zn−1} is a basis of the solution space of (2.5) on (0,∞). Moreover,
since yn−1 is analytic on R, it solves (2.5) on the whole line. A suitable (for our
purposes) solution ỹn−1, linearly independent with yn−1, of the equation (2.5)
on (−∞, 0) can be chosen as follows. We propose ỹn−1(τ ) = c(τ )yn−1(τ )

which gives the equation τyn−1(τ )c
′′(τ ) + (nyn−1(τ ) + 2τy ′

n.1(τ ))c
′(τ ) = 0

that solved for c gives c(τ ) = A
∫ τ
−∞

1
y2
n−1(s)|s|n ds + B with A and B arbitrary

constants (c(τ ) is well defined by Lemma 2.1 below). We pick A = 1, B = 0
to obtain

ỹn−1(τ ) = yn−1(τ )

∫ τ

−∞
1

y2
n−1(s)|s|n

ds.

So a basis of the solution space of (2.5) on (−∞, 0) is given by {yn−1, ỹn−1}.
Lemma 2.1. Assume that σ > 0. Then for τ < 0 it holds that yn−1(τ ) > 0

and y ′
n−1(τ ) < 0. Moreover, there exist positive constants A,B such that for

τ negative with absolute value large enough

(2.12) yn−1(τ ) ≥ AeB|τ | 1
2
, y ′

n−1(τ ) ≤ −AeB|τ | 1
2
.

Proof. For τ < 0, from (2.11),

yn−1(τ ) = (n− 1)!
∞∑
k=0

1

k!(k + n− 1)!

(
σ |τ |

4

)k

≥ (n− 1)!
∞∑
k=0

1

(k + n− 1)!2

(
σ |τ |

4

)k

≥ (n− 1)!

(
σ |τ |

4

)−(n−1) ∞∑
k=0

1

(2(k + n− 1))!

(√
σ |τ |

4

)2(k+n−1)

.

So, yn−1(τ ) > 0 and

yn−1(τ ) ≥ (n− 1)!

(
σ |τ |

4

)−(n−1) (
cosh

√
σ |τ |

4
− Pn−2

(√
σ |τ |

4

))
,

where Pn−2 is the Taylor polynomial, around the origin, and of degree n− 2,
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of cosh. This gives the first inequality in (2.12). Similarly, for τ < 0,

y ′
n−1(τ ) = −(n− 1)!

σ

4

∞∑
k=1

1

(k − 1!)(k + n− 1)!

(
σ |τ |

4

)k−1

≤ −(n− 1)!
∞∑
k=1

1

(k + n− 1)!2

(
σ |τ |

4

)k−1

= −(n− 1)!
∞∑
k=0

1

(k + n)!2

(
σ |τ |

4

)k
.

In particular, y ′
n−1(τ ) < 0. Proceeding as before we obtain that

y ′
n−1(τ ) ≤ −(n− 1)!

(
σ |τ |

4

)−n (
cosh

√
σ |τ |

4
−Qn−1

(√
σ |τ |

4

))
for a polynomialQn−1 of degree n− 1, which implies the remaining assertion
of the Lemma.

The following provides information about the asymptotic behavior of zn−1

and ỹn−1 at the origin and at −∞.

Lemma 2.2. Assume that σ > 0. Then

i) limτ→0+ τn−1zn−1(τ ) = − 2n−1�(n−1)
πσn−1 , limτ→+∞ zn−1(τ ) = 0

ii) limτ→0− τn−1ỹn−1(τ ) = − 1
n−1 , limτ→−∞ ỹn−1(τ ) = 0

iii) ỹn−1 is integrable on (−∞,−1).

Proof. The assertions in i) are a direct consequence of the asymptotic
behavior of Nn−1 at the origin and at +∞. The first assertion of ii) follows
from the definition of ỹn−1 and the L’Hôpital rule. To see the second one, we
note that from Lemma 2.1 we have ỹn−1(τ ) > 0 for τ < 0. Also, for τ negative
with absolute value large enough,

0 < ỹn−1(τ ) = yn−1(τ )

∫ τ

−∞
1

y2
n−1(s)|s|n

ds

≤
∫ τ

−∞
1

yn−1(s)|s|n ds ≤ A′e−B|τ | 1
2

for some positive constantsA′ andB. Thus iii) holds and also lim
τ→−∞ ỹn−1(τ ) =

0.
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Lemma 2.3. Assume that σ > 0. Then

i) there exist the limits limτ→0+ τnz′n−1(τ ), limτ→0− τnỹ ′
n−1(τ ) and they

are finite and different from zero.

ii) limτ→∞ z′n−1(τ ) = 0 and limτ→−∞ ỹ ′
n−1(τ ) = 0.

Proof. A computation using the definition of zn−1, that 2N ′
n−1 = Nn−2 −

Nn and the asymptotic behavior of then Neumann functions (see [8], p. 134
and 135) gives the assertions of the lemma about zn−1. On other hand, from
the definition of ỹn−1,

(2.13) ỹ ′
n−1(τ ) = y ′

n−1(τ )

∫ τ

−∞
1

y2
n−1(s)|s|n

ds + 1

yn−1(τ )|τ |n .

Since yn−1 is continuous and yn−1(0) = 1, from (2.13) it follows that the
limit limτ→0− τnỹ ′

n−1(τ ) exists, is finite and different from zero. To prove the
remaining assertion of the lemma we rewrite (2.5) as

4
d

dτ
(τ ỹ ′

n−1(τ )) = −4(n− 1)ỹ ′
n−1(τ )− σ ỹ ′

n−1(τ ).

Now, for τ < −1, an integration on (τ,−1) gives

−4(ỹ ′
n−1(−1)+ τ ỹ ′

n−1(τ ))

= −4(n− 1)(ỹn−1(−1)− ỹn−1(τ ))− σ

∫ −1

τ

ỹn−1(s) ds

and so ỹ ′
n−1(τ ) = Aτ−1ỹn−1(τ ) + Bτ−1 − στ−1

∫ −1
τ
ỹn−1(s) ds with A and

B independent of τ . Thus, by Lemma 2.2, limτ→−∞ ỹ ′
n−1(τ ) = 0.

From the asymptotic behavior of Jn−1 at +∞ (cf. [8], p. 134–135), we have
that limτ→+∞ yn−1(τ ) = 0. In particular, yn−1H ∈ H ′.

Proposition 2.4. For σ > 0 the distribution T = (y0H)
(n−1) is a solution

in H ′ of D′T + σT = 0.

Proof. We first look for distributions T̃ = yn−1H + ∑n−2
j=0 cj δ

(j) with

c0, . . . , cn−2 ∈ R such that D′T̃ + σ T̃ = 0. Let S = yn−1H . A computation
shows that D′S = 4(n − 1)yn−1(0)δ = 4(n − 1)δ. Also, for 0 ≤ j ≤ n − 2,
D′(δ(j))+ σδ(j) = 4(n− 2 − j)δ(j+1) + σδ(j). SoD′T̃ + σ T̃ = 0 if and only
if c0 = − 4(n−1)

σ
and cj = − 4(n−1−j)

σ
cj−1 for j = 1, . . . , n− 2, i.e., if and only

if cj = (− 4
σ

)j+1 (n−1)!
(n−2−j)! . Let T̃ be defined with these constants and observe

that

(y0H)
(n−1) = y

(n−1)
0 +

n−2∑
j=0

y
(j)

0 (0)δ(n−2−j),
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so the proposition will follow if we show that for some constant A 	= 0,

y
(n−1)
0 = Ayn−1 and y

(j)

0 (0) = Acn−2−j for 0 ≤ j ≤ n− 2,

but, taking the corresponding derivatives in the series expansion for y0, it is
easy to see that these conditions are fulfilled by A = (− σ

4

)n−1
.

For g ∈ C(0,+∞) with growth at most polynomial at +∞ and such that
limτ→0+ τn−1g(τ) exists and is finite we define Pf +(g) ∈ H ′ by

〈Pf +(g), ϕ〉 =:
∫ 1

0
g(τ)

(
ϕ(τ)−

n−2∑
j=0

ϕ(j)(0)

j !
τ j

)
dτ +

∫ ∞

1
g(τ)ϕ(τ) dτ

Similarly, for g ∈ C(−∞, 0) satisfying the analogous conditions at −∞ and
at the origin, let Pf −(g) ∈ H ′ given by

〈Pf −(g), ϕ〉 =:
∫ 0

−1
g(τ)

(
ϕ(τ)−

n−2∑
j=0

ϕ(j)(0)

j !
τ j

)
dt +

∫ −1

−∞
g(τ)ϕ(τ) dτ.

We recall that for ϕ ∈ H , since ϕ(τ) = ϕ1(τ )+τn−1H(τ)ϕ2(τ )with ϕ1, ϕ2 ∈
S(R), ϕ has an asymptotic development, near the origin, of the form

(2.14) ϕ(τ ) �
∑
j≥0

Bj(ϕ)τ
j +

∑
j≥n−1

Aj(ϕ)τ
jH(τ)

with Aj(ϕ) = 0 for 0 ≤ j ≤ n − 2. It is proved in [12] that if S ∈ H ′ is
supported at the origin then S = ∑m

j=0 αjAj+
∑m
j=0 βjBj for somem ∈ N∪{0}

and α1, . . . , αm; β1, . . . , βm ∈ C.
If v ∈ C2(0,∞) (respectively v ∈ C2(−∞, 0)) is a solution ofD′v+σv =

0 on (0,∞) (respectively on (−∞, 0)) satisfying that limτ→0∗(τ n−1v(τ)) ex-
ists and is finite (resp. limτ→0−(τ n−1v(τ)) exists and is finite), an integration
by parts shows that, for 0 < a < b ≤ +∞ (resp. −∞ ≤ a < b < 0),

(2.15)
∫ b

a

v(τ )(D + σI)(ϕ)(τ ) dτ = R(v, b, ϕ)− R(v, a, ϕ)

where, for ξ ∈ R − {0},
(2.16) R(v, ξ, ϕ) := 4ξ(v(ξ)ϕ′(ξ)− v′(ξ)ϕ(ξ))+ 4(1 − n)v(ξ)ϕ(ξ)

and R(v,±∞, ϕ) := limξ→±∞ R(v, ξ, ϕ).
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Lemma 2.5. i) Assume σ > 0. Then there exist constants c0, . . . , cn−1 and
d0, . . . , dn−1 with cn−1 	= 0 and dn−1 	= 0 such that

(D′ + σI)Pf +(zn−1) =
n−2∑
j=0

cjBj + cn−1(An−1 + Bn−1),(2.17)

(D′ + σI)Pf −(ỹn−1) =
n−2∑
j=0

djBj + dn−1Bn−1.(2.18)

ii) For σ = 0 and a, b ∈ R, the assertions in i) hold with zn−1 and ỹn−1

replaced by a + bτ 1−n.

Proof. A computation shows that for ϕ ∈ H , Pn−2(Dϕ) = D(Pn−2ϕ),
where Pn−2(ϕ) denotes the Taylor polynomial of ϕ of degree n− 2 around the
origin. Then, from (2.15),

〈Pf +(zn−1), (D + σI)ϕ〉

=
∫ 1

0
zn−1((D + σI)ϕ − Pn−2(D + σI)ϕ)+

∫ ∞

1
zn−1(D + σI)ϕ

=
∫ 1

0
zn−1(D + σI)(ϕ − Pn−2ϕ)+

∫ ∞

1
zn−1(D + σI)ϕ

= R(zn−1, 1, ϕ − Pn−2ϕ)− lim
ε→0

R(zn−1, ε, ϕ − Pn−2ϕ)

+ lim
b→+∞R(zn−1, b, ϕ)− R(zn−1, 1, ϕ).

By Lemmas 2.2 and 2.3, limb→∞ R(zn−1, b, ϕ) = 0. Thus

〈(D′ + σI)Pf +(zn−1), ϕ〉 = −R(1, Pn−2(ϕ))− lim
ε→0+

R(ε, ϕ − Pn−2(ϕ)).

A computation using the asymptotic development (2.14) gives that

R(zn−1, ε, ϕ − Pn−2ϕ) = −4z′n−1(ε)ε
n(An−1(ϕ)+ Bn−1(ϕ))+ o(ε)

with limε→0+ o(ε) = 0. Then, by Lemma 2.3,

〈(D′ + σI)Pf +(zn−1), ϕ〉 = −R(1, Pn−2ϕ)− cn−1(An−1(ϕ)+ Bn−1(ϕ))

for some constant with cn−1 	= 0. This gives (2.17) and the proof of (2.18) is
similar using that R(zn−1,−ε, ϕ − Pn−2ϕ) = −4ỹ ′

n−1(−ε)(−ε)nBn−1(ϕ) +
o(ε). The same arguments give also ii).
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For S ∈ H ′ supported at the origin we have

S =
∞∑
j=0

αjAj +
∞∑
j=0

βjBj

with each αj , βj ∈ C and αj = βj = 0 for j large enough. So, from (2.14) a
computation gives that, for σ ∈ R,

(2.19) D′S + σS = σα0A0 + σβ0B0

+
∞∑
j=1

(4j (j + 1 − n)αj−1 + σαj )Aj +
∞∑
j=0

(4j (j + 1 − n)βj−1 + σβj )Bj

Lemma 2.6. Let S ∈ H ′ supported at the origin and let σ 	= 0.

i) If

(2.20) (D′ + σI)S =
n−2∑
j=0

cjBj + cn−1An−1 + dn−1Bn−1

with c0, c1, . . . , cn−1, dn−1 ∈ C, then cn−1 = dn−1 = 0.

ii) If D′S + σS = 0, then S = 0.

Proof. i) From (2.20) and (2.19) we get, for j ≥ n,

(2.21) 4j (j + 1 − n)αj−1 + σαj = 0

and also σαn−1 = cn−1. So cn−1 	= 0 implies αn−1 	= 0 and thus αj 	= 0 for
j ≥ n which is a contradiction. Then cn−1 = 0 and similarly dn−1 = 0.

ii) IfD′S+σS = 0 then, from (2.19), α0 = 0 and also 4j (j+1−n)αj−1 +
σαj = 0 for j ≥ 1 Thus αj = 0 for all j and similarly βj = 0 for each j .

The following lemma is a direct consequence of (2.19) and the fact that
An−2 = 0

Lemma 2.7. Let S ∈ H ′ supported at the origin,

i) If D′S = 0 then S = cBn−2 for some c ∈ C.

ii) If D′S = cB0 and S 	= 0 then c = 0.

For T ∈ H ′, let T ∨ given by 〈T ∨, ϕ〉 = 〈T , ϕ∨〉 where ϕ∨(τ ) = ϕ(−τ).
Theorem 2.8. i) For σ > 0, T ∈ H ′ is a solution ofD′T + σT = 0 if and

only if T = c(y0H)
(n−1) for some c ∈ R.

ii) Forσ = 0, T ∈ H ′ is a solution ofD′T = 0 if and only ifT = c1+dBn−2

for some c, d ∈ R.
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iii) For σ < 0, T ∈ H ′ solves (D′ + σI)T = 0 if and only if T ∨ solves
(D′ − σI)T ∨ = 0.

Proof. iii) is immediate. To see i) consider a solution T ∈ H ′ of D′T +
σT = 0. Then T|D(0,+∞) = ayn−1 + bzn−1 and T|D(−∞,0) = αyn−1 + βỹn−1

for some constants a, b, α, β. From Lemma 2.3 and Proposition 2.4, and since
T is a tempered distribution we get α = 0. Thus

S := T − a(y0H)
(n−1) − bPf +(zn−1)− βPf −(ỹn−1)

is a distribution supported at the origin and, by Lemma 2.5, it satisfies

D′S + σS =
n−2∑
j=0

μjBj − bcn−1(An−1 + Bn−1)− βdn−1Bn−1,

with cn−1 	= 0 and dn−1 	= 0. Thus Lemma 2.6 gives bcn−1 = 0 and bcn−1 +
βdn−1 = 0. So b = β = 0, S = T − a(y0H)

(n−1) and D′S + σS = 0.
Now, Lemma 2.6 implies S = 0, i.e., T = a(y0H)

(n−1). Reciprocally, by
Proposition 2.4, each distribution T of this form is a solution ofD′T +σT = 0.

To see ii) observe that the solutions of τv′′(τ ) + nv′(τ ) = 0 on (0,+∞)

(resp. on (−∞, 0)) are generated by 1 and τ 1−n. If τT ′′ + nT = 0, then
T|D(0,+∞) = a + bτ 1−n and T|D(−∞,0) = α + βτ 1−n for some constants
a, b, α, β. Consider S = T − Pf +(a + bτ 1−n) − Pf −(α + βτ 1−n). Pro-
ceeding as in the proof of i) we get b = β = 0. Then T|D(0,+∞) = a1 and
T|D(−∞,0) = α1. Let S̃ = T − aH − α(1 − H). Since D′H = B0, we have
D′S̃ = (α − a)B0 and so, by Lemma 2.7, a = α and S̃ = dBn−2 for some
d ∈ R. Then T = a1 + dBn−2. On the other hand it is clear that 1 and Bn−2

are solutions of D′T = 0.

For σ ∈ R let S#
σ ∈ S ′(Hn) be defined by

〈S#
σ , f 〉 = (−1)n−1

∫ ∞

−∞

∫ ∞

0
J0((στ)

1
2 )(Nf (., t))(n−1)(τ ) dτ dt for σ ≥ 0,

〈S#
σ , f 〉 =

∫ ∞

−∞

∫ ∞

0
J0((−στ) 1

2 )(Nf (., t))(n−1)(−τ) dτ dt for σ < 0.

For σ ∈ R, S#
σ is a joint eigendistribution in H ′ of −L andU (cf. Theorem 2.8).

On the other hand, Sσ is a joint eigendistribution (cf. [5]) of −L and U which,
as stated in the introduction, belongs to H ′. Thus, for σ 	= 0, Sσ is a multiple
of S#

σ and so [Sσ ] = [S#
σ ]. Since Sσ converges in H ′ to S0 as σ tends to zero,

we get, that also [S0] = [S#
0 ].

The distributions Sλ,k can be explicitly written using Laguerre polynomials.
For a non negative integer m let L0

m be the Laguerre polynomial of degree m
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and order zero, defined byL0
m(τ) = ∑m

j=0

(
m

j

)
(−1)j τ

j

j ! . We have (cf. [14], also
[7])

(2.22) Sλ,k = Fλ,k ⊗ e−iλt ,

where for k ≥ 0, λ 	= 0,

(2.23) 〈Fλ,k, g〉
=

〈
(L0

k−q+n−1H)
(n−1), τ → 2

|λ|e
−τ/2Ng

(
2

|λ|τ
)〉
, g ∈ S (Cn)

and for k < 0, λ 	= 0

(2.24) 〈Fλ,k, g〉
=

〈
(L0

−k−p+n−1H)
(n−1), τ → 2

|λ|e
−τ/2Ng

(
− 2

|λ|τ
)〉
, g ∈ S (Cn).

Using the Leibnitz rule and the change of variable τ = |λ|
2 s we get, for k ≥ 0,

λ 	= 0 and f ∈ S (Hn),
(2.25)

|λ|n−1〈Sλ,k, f 〉

= |λ|n−1(−1)n−1 2

|λ|∫ ∞

−∞
e−iλt

∫ ∞

0
L0
k−q+n−1(τ )

dn−1

dτn−1

(
e−

τ
2Nf

(
2

|λ|τ, t
))

dτ dt

= 1

2n−1

n−1∑
j=0

(
n− 1

j

)
4j (−1)j |λ|n−1−j

×
∫ ∞

−∞
e−iλt

∫ ∞

0
L0
k−q+n−1

( |λ|
2
s

)
e−

|λ|
4 s(Nf (., t))(j)(s) ds dt

and similarly, for k < 0, λ 	= 0 and f ∈ S (Hn),

(2.26) |λ|n−1〈Sλ,k, f 〉 = 1

2n−1

n−1∑
j=0

(
n− 1

j

)
4j |λ|n−1−j

×
∫ ∞

−∞
e−iλt

∫ ∞

0
L0

−k−p+n−1

( |λ|
2
s

)
e−

|λ|
4 s(Nf (., t))(j)(−s) ds dt.
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3. E is an homeomorphism

Remark 3.1. The following result is a Mehler type formula (see for example
[6], page 92, or Corollary 4.2 in [3]) :

lim
m→0

L0
m

(
x2

2(2m+ 1)

)
e

x2

4(2m+1) = J0(x)

uniformly on compact subsets of [0,∞).

Proof of Theorem 1.2. Let E, �(U(p, q),Hn) and E be as in the in-
troduction and let θ : E → E/ ∼ be the quotient map. The map Ẽ : E →
A (U(p, q),Hn) given by Ẽ (�) = (−L̂(�), iÛ (�)) is continuous. Indeed,
sinceE is equipped with the pointwise convergence topology, if�n converges
to � (and we set �n ⇀ �) then L�n ⇀ L�. So, denoting by γn and γ the
eigenvalues associated to �n and �, respectively, we have that γn�n ⇀ γ�.
Choosing some f such that 〈�, f 〉 	= 0, we conclude that γn → γ .

Thus the bijection E : �(U(p, q),Hn)− {[1]} → A (U(p, q),Hn) is also
continuous.

For (σ, λ) ∈ A (U(p, q),Hn), we say that it is of type I if λ 	= 0 (and so
σ = |λ|(2k + p − q) with k ∈ Z). In this case we set S(σ,λ) = |λ|n−1

2n−1 Sλ,k . We
will say that (σ, λ) is of type II if λ = 0, and we set S(σ,λ) = S#

σ .
To see that E −1 is continuous it enough to show that if {(σm, λm)}m∈N is a

sequence in A (U(p, q),Hn), either of type I or of type II, and if limm→∞(σm,
λm) = (σ, λ), then

(3.1) lim
m→∞ S(σm,λm) = S(σ,λ)

with convergence in S ′(Hn).
Consider the case when σ > 0, λ = 0. If {(σm, λm)}m∈N is of type I then

σm = |λm|(2km + p − q) with km ∈ Z. Since λm → 0 and 2|λm|km → σ we
have km > 0 for m large enough.

Fix s ≥ 0 and let xm = ((2km + 1)|λm|s) 1
2 . Then limm→∞ xm = (σ s)

1
2 .

Since |λm|
2 s = x2

m

2(2km+1) the uniform convergence in Remark 3.1 and dominated
convergence gives that for j = 0, . . . , n− 1,

lim
m→∞

∫ ∞

0
L0
km−q+n−1

( |λm|
2
s

)
e−

|λm |
4 s(Nf (., t))(j)(s) ds

=
∫ ∞

0
J0((σ s)

1
2 )(Nf (., t))(j)(s) ds

Thus, taking into account of (2.25), we obtain (3.1). If {(σm, λm)}m∈N is of
type II, since J0 is continuous, dominated convergence gives limm→∞ S(σm,λm)
= S#

σ .
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The case σ < 0, λ = 0 follows the sames lines: in this case km < 0 for m
large enough, and so (2.26) and the definition of S#

σ for σ < 0 imply (3.1).
The origin σ = 0, λ = 0 has not additional work. As above, by (2.25) and

(2.26), we see that limm→∞ S(σm,λm) = S#
0 . In particular this shows that the

equivalence class of 1 is an isolated point of �(U(p, q),Hn).
The proof for the cases where λ 	= 0 are obvious.
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