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PLANE SETS ALLOWING BILIPSCHITZ EXTENSIONS

P. ALESTALO and D. A. TROTSENKO∗

Abstract

We give a geometric characterization for a plane set A ⊂ R2 to have the following linear bilipschitz
extension property: For 0 ≤ ε ≤ δ, every (1 + ε)-bilipschitz map f : A → R2 has a (1 + Cε)-
bilipschitz extension to the whole plane R2.

1. Introduction

Let A be a subset of the Euclidean n-space Rn and let L ≥ 1. A map f : A → Rn

is L-bilipschitz if

|x − y|/L ≤ |f (x) − f (y)| ≤ L|x − y|
for all x, y ∈ A.

In general, an L-bilipschitz map f : A → Rn cannot be extended to a
bilipschitz map F : Rn → Rn, not even to a homeomorphism, but this is often
possible in the case the bilipschitz constant L is close to 1. Extensions of this
kind are interesting because of their connections with embeddings in Banach
spaces and possible applications in theoretical computer science, cf. [4, p. 6]
and [5, Ch. 15]. However, even in the Euclidean case there are few results that
characterize the sets that have such extension properties. The main goal of this
article is to give such a characterization for planar sets under the condition
that an initial error term ε is allowed to grow at most linearly to Cε. In order
to understand this property in a more general context, we recall the following
concepts.

Let � be the set of increasing homeomorphisms ϕ: [0, ∞) → [0, ∞). If
ϕ ∈ � and δ > 0, we say that a set A ⊂ Rn has the (ϕ, δ)-bilipschitz extension
property, (ϕ, δ)-BLEP for short, if for 0 ≤ ε ≤ δ, every (1 + ε)-bilipschitz
map f : A → Rn has an extension to a (1+ϕ(ε))-bilipschitz map F : Rn → Rn.
We say that a set A ⊂ Rn belongs to the class ϕ-BLEP if it has the (ϕ, δ)-BLEP
for some δ > 0. In the case ϕ(ε) = Cε we say that A has the (C, δ)-linear
BLEP.
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The 1-dimensional case is somewhat exceptional for the following reason.
For A ⊂ R, an embedding f : A → R has a homeomorphic extension F : R →
R if and only if it is monotone. This result has a bilipschitz counterpart: a
monotone L-bilipschitz map f : A → R can be extended to an L-bilipschitz
map F : R → R (with the same constant) by using a piecewise linear con-
struction. Therefore, a set A ⊂ R has the (1, δ)-linear BLEP if and only if
(1 + ε)-bilipschitz maps f : A → R are monotone for ε ≤ δ. Thus all the
ϕ-BLEP classes are the same in dimension one.

It was shown in [3] that a set A ⊂ Rn has (C, δ)-linear BLEP if it satisfies a
geometric condition called sturdiness; see 2.2 for the definition. In this article
we prove that the converse is true in the 2-dimensional case. More precisely,
we obtain the following theorem.

Theorem 1.1. Let A ⊂ R2 contain at least three points. Then the following
assertions are quantitatively equivalent:

(1) A is c-sturdy.

(2) A has the (C, δ)-linear BLEP.

Here quantitative equivalence means that C and δ depend only on c, and
conversely, c = c(C, δ).

The proof is given in subsection 4.3. Note that a set A ⊂ Rn consisting of at
most two points has the 1-linear BLEP but it is sturdy only in the cases n = 1
or #A = 1.

For extension problems in higher dimensions and with more general bounds
for the bilipschitz constant, see [7] and the references in [3].

Acknowledgements. We thank Antti Rasila for his help in drawing the
figure in Section 3, as well as Jussi Väisälä and the referee for useful remarks
and corrections concerning the whole manuscript.

2. Basic concepts

Our notation is standard and the same as in [3]. However, we recall the abbre-
viation A(a, r) = A ∩ B̄(a, r) for a subset A ⊂ Rn and the following three
geometric properties of sets that are needed in our main result.

2.1. Thickness. For each unit vector e ∈ Sn−1 we define the projection
πe: Rn → R by πex = x · e. Let A 
= ∅ be a bounded set in Rn. The thickness
of A is the number

θ(A) = inf{d(πeA) : e ∈ Sn−1}.
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Alternatively, θ(A) is the infimum of all t > 0 such that A lies between two
parallel hyperplanes F, F ′ with d(F, F ′) = t . We have always 0 ≤ θ(A) ≤
d(A).

2.2. Sturdiness. Let A ⊂ Rn. For a ∈ A we set s(a) = sA(a) = d(a, A \
{a}). Then s(a) > 0 if and only if a is isolated in A.

Let c ≥ 1. We say that the set A ⊂ Rn is c-sturdy if

(1) θ(A(a, r)) ≥ 2r/c whenever a ∈ A, r ≥ cs(a), A 
⊂ B(a, r),

(2) θ(A) ≥ d(A)/c.

If A is unbounded, we omit (2), and the condition A 
⊂ B(a, r) of (1) is
unnecessary.

Examples of sturdy sets in the plane include bounded Lipschitz-domains,
Z2, and the snowflake curve.

2.3. Relative connectivity [6, 4.6]. Let A ⊂ Rn and M ≥ 1. A sequence
(x0, x1, . . . , xN−1, xN) is proper if xj−1 
= xj for all j . A sequence (x0, x1, . . . ,

xN−1, xN) in A is M-relative in A if it is proper and

|xj−1 − xj |/M ≤ |xj − xj+1| ≤ M|xj−1 − xj |
for all j . Such a sequence is said to join the pairs (x0, x1) and (xN−1, xN). The
set A is M-relatively connected (abbr. RC) if every two proper pairs in A can
be joined by an M-relative sequence in A.

The simplest examples of relatively connected sets are the connected ones,
but also many totally disconnected sets like the Cantor middle-third set satisfy
the RC-condition.

Lemma 2.4. Let A ⊂ Rn be a closed c-sturdy set. Then A is c1-RC for every
c1 > c.

Proof. Let a ∈ A and r > 0. Let c1 > c and assume that A∩B̄(a, r) 
= {a}
and A 
⊂ B̄(a, r). If R(a, r) = {x ∈ A | r/c1 ≤ |x − a| ≤ r} = ∅, then
θ(A(a, r)) ≤ θ(B̄(a, r/c1)) = 2r/c1 < 2r/c, a contradiction with the c-
sturdiness of A. It follows that, under the above assumptions, R(a, r) 
= ∅,
and by [6, 4.11], this implies the claim.

2.5. Linear isometric approximation property. Let A ⊂ Rn. We say that A

has the (C, δ)-linear isometric approximation property (IAP) if given 0 < ε ≤
δ, a (1 + ε)-bilipschitz map f : A → Rn, a point a ∈ A and r > 0, there is an
isometry T = Ta,r : Rn → Rn such that

|T x − f (x)| ≤ Cεr
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for all x ∈ A ∩ B̄(a, r).

Theorem 2.6. Suppose that a set A ⊂ Rn has the (C, δ)-linear BLEP.
Then it has the (C1, δ)-linear IAP with C1 = C1(C, n).

Proof. Let f : A → Rn be (1 + ε)-bilipschitz with 0 < ε ≤ δ. Suppose
that a ∈ A and r > 0. Since A has the (C, δ)-linear BLEP, there is a (1+Cε)-
bilipschitz extension F : Rn → Rn of f . Let Fa,r = F | B̄(a, r). Then Fa,r

is a 2Cεr-nearisometry and since θ(B̄(a, r)) = d(B̄(a, r)), [2, 3.3] gives an
isometry T = Ta,r : Rn → Rn such that

‖T − Fa,r‖B̄(a,r) ≤ 2cnCεr.

In particular, we have |T x − f (x)| ≤ 2Ccnεr for every x ∈ A(a, r), and the
proof is complete with C1 = 2cnC.

3. Triangle maps

Since we work with the planar case, we use complex numbers whenever it
simplifies notation.

3.1. Basic map. The basic triangle map f : {−1, 0, 1} → R2 is defined by

f (±1) = ±1 and f (0) = i
√

ε.

This map is (1+ε)-bilipschitz, but any approximation off by an isometryT has
an error at least

√
ε/2. This is seen by minimizing the distance from the image

of f to the straight line T R. The following elementary lemma generalizes this
idea.

Lemma 3.2. Let 0 ≤ δ ≤ δ′ ≤ 1/4, let A = {−1, a, 1} ⊂ R2 be such that
θ(A) = |a2| ≤ 2δ, and let f : A → R2 satisfy f (±1) = ±1 and θ(f A) =
|f (a)2| ≥ 2δ′. If the disks B̄(±1, δ′ −δ) and B̄(f (a), δ′ +δ) are disjoint, then
every isometry T : R2 → R2 satisfies ‖T − f ‖A ≥ δ′ − δ.

Proof. We emphasize that the conditions θ(A) = |a2| and θ(f A) =
|f (a)2| belong to the assumpions. In particular, they imply that −1 < a1 < 1
and −1 < f (a)1 < 1 so that the situation is not too far from the basic map
above.

Suppose that T is an isometry with ‖T − f ‖A < δ′ − δ and let L = T R.
Writing a′ = (a1, 0), we have

|T a′ − T a| = |a′ − a| = |a2| ≤ 2δ.

If L does not meet the disk B(f (a), δ′ + δ), then

|T a − f (a)| ≥ |T a′ − f (a)| − |T a′ − T a| ≥ (δ′ + δ) − 2δ = δ′ − δ,
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a contradiction.
It follows that the line L meets all three disks B̄(±1, δ′−δ) and B(f (a), δ′+

δ). By assumption, these disks are disjoint, and by elementary geometry we
get

(δ′ − δ) + (δ′ + δ) > |f (a)2| = θ(f A) ≥ 2δ′,

which leads to a contradiction. The result follows from this.

Later on we will need maps that are defined on a narrow neighbourhood of
a line but that still possess the essential features of the basic triangle map: they
should be (1 + cε)-bilipschitz but their approximation by isometries should
produce an error of the order

√
ε. The following lemmas show how to construct

these maps.

Lemma 3.3. Let 0 ≤ ε ≤ 1/10 and let a, b ∈ [0, 1] be such that 2ε ≤ a ≤
b/2. Then there is a C2 function f : R → R satisfying

(i) f (x) = 0 for x ≤ 0 and x ≥ b;

(ii) f (a) = ε3/2;

(iii) f is 2
√

ε-Lipschitz;

(iv) the curvature K of the graph y = f (x) satisfies K ≤ 1/
√

ε.

Proof. Let 0 < o < a and consider first the interval [o, a]. One should
think that o ≈ 0, but we need o > 0 for technical reasons. Let r = √

ε.
The graph y = f (x) consists of two circular arcs and a line segment. The
construction is based on the diagram below, where also the notation is indicated.

lr

r
h

α

α ao

Part of the graph y = f (x) with h = ε
√

ε.

By elementary geometry the variables l and α must satisfy

{
2r sin α + l cos α = a − o

2r(1 − cos α) + l sin α = ε3/2,
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and this system has the exact solution

l =
√

(a − o)2 − 4ε2 + ε3,

α = arcsin
(√

ε(2(a − o) + lε − 2l)/(l2 + 4ε)
)
.

The Lipschitz condition requires that tan α ≤ 2
√

ε. It is geometrically obvious
that α is decreasing in a, and thus α attains its maximum at a = 2ε. By sub-
stituting this value and choosing o small enough, we obtain α ≤ arcsin

√
ε ≤

arctan(2
√

ε ).
A similar construction is used on the interval [a, b], and outside [o, b − o]

we define f (x) = 0. This function satisfies conditions (i)–(iv), but it is only
piecewise C2. However, at the six points where a circular arc is joined either to
another arc or to a line segment, we use standard smoothing by clothoids (aka
Cornu spirals), in an arbitrarily small neighbourhood of each joint, in such a
way that the Lipschitz constant does not change, the curvature stays between
the appropriate bounds, and the support of f does not expand outside [0, b];
see [1, p. 636] for the basic construction.

Using the following lemma we can construct tubular neighbourhood exten-
sions for mappings of the type x �→ (x, f (x)).

Lemma 3.4. Let 0 < ε < 1/10, let I ⊂ R be an interval and let f : I → R
be

√
ε-Lipschitz and C2. Define F : I × [−δ, δ] → R2 by setting

F(x, y) = x + if (x) + yn(x),

where n(x) is the upper unit normal to the graph y = f (x). Let K be the
maximal curvature of y = f (x). If Kδ ≤ ε, then F is (1 + 4ε)-bilipschitz.
Moreover, if f (x) = 0 except for a subinterval of length l, then |F(z) − z| ≤√

εl + δ for every z ∈ I × [−δ, δ].

Proof. Let zi = (xi, yi) ∈ I × [−δ, δ], i = 1, 2. Note that

|y| ≤ δ, |f ′(x)| ≤ √
ε and

|f ′′(x)|
(1 + f ′(x)2)3/2

≤ K

for all (x, y).
In complex form we have

n(x) = 1√
1 + f ′(x)2

(−f ′(x) + i).



140 p. alestalo and d. a. trotsenko

Thus

|F(z1) − F(z2)|2

= |x1 − x2|2 +
∣∣∣∣ y1f

′(x1)√
1 + f ′(x1)2

− y2f
′(x2)√

1 + f ′(x2)2

∣∣∣∣
2

|f (x1) − f (x2)|2 +
∣∣∣∣ y1√

1 + f ′(x1)2
− y2√

1 + f ′(x2)2

∣∣∣∣
2

− 2(x1 − x2)

(
y1f

′(x1)√
1 + f ′(x1)2

− y2f
′(x2)√

1 + f ′(x2)2

)

+ 2(f (x1) − f (x2))

(
y1√

1 + f ′(x1)2
− y2√

1 + f ′(x2)2

)
.

Writing the right hand side above as |x1 − x2|2 + t1 + t2 + t3 + t4, where t4
contains the last two terms, we have to estimate each term. Since F is defined
in a convex set, we can use the mean value theorem.

(i) To estimate t1, let g(x, y) = yf ′(x)/
√

1 + f ′(x)2. Then

|∇g|2 = y2f ′′(x)2

(1 + f ′(x)2)3
+ f ′(x)2

1 + f ′(x)2
≤ δ2K2 + ε ≤ 2ε,

which implies that t1 ≤ 2ε|z1 − z2|2.
(ii) The upper bound t2 ≤ ε|x1 −x2|2 follows from the Lipschitz condition.
(iii) We need both upper and lower bounds for t3. Applying the mean value

theorem for h(x, y) = y/
√

1 + f ′(x)2, we get

t3 =
(

− f ′(u)f ′′(u)v

(1 + f ′(u)2)3/2
(x1 − x2) + 1√

1 + f ′(u)2
(y1 − y2)

)2

where (u, v) lies on the segment [z1, z2]. Using the estimate

2ε3/2|x1 − x2||y1 − y2| ≤ 2ε|x1 − x2||y1 − y2| ≤ ε|x1 − x2|2 + ε|y1 − y2|2,
it follows that

t3 ≤ εK2δ2|x1 − x2|2 + 1

1 + f ′(u)2
|y1 − y2|2 + 2

√
εKδ|x1 − x2||y1 − y2|

≤ ε3|x1 − x2|2 + |y1 − y2|2 + ε|x1 − x2|2 + ε|y1 − y2|2

≤ 2ε|x1 − x2|2 + (1 + ε)|y1 − y2|2.
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In the opposite direction, we have

t3 ≥ 1

1 + ε
|y1 − y2|2 − 2

√
εKδ|x1 − x2||y1 − y2|

≥ (1 − 2ε)|y1 − y2|2 − ε|x1 − x2|2.
(iv) Rearranging and using the Taylor formula, we have

t4 = 2y1√
1 + f ′(x1)2

(f (x1) − f (x2) − f ′(x1)(x1 − x2))

+ 2y2√
1 + f ′(x2)2

(f ′(x2)(x1 − x2) − f (x1) + f (x2))

=
(

y1f
′′(ξ1)√

1 + f ′(x1)2
− y2f

′′(ξ2)√
1 + f ′(x2)2

)
|x1 − x2|2,

where ξ1, ξ2 ∈ [x1, x2]. Since |f ′′(ξ)| ≤ K(1 + ε)3/2, this implies that

|t4| ≤ 2Kδ(1 + ε)3/2|x1 − x2|2 ≤ 3ε|x1 − x2|2.
Using these estimates we obtain

|F(z1) − F(z2)|2 ≤ |x1 − x2|2 + 2ε|x1 − x2|2 + 2ε|y1 − y2|2 + ε|x1 − x2|2
+ 2ε|x1 − x2|2 + (1 + ε)|y1 − y2|2 + 3ε|x1 − x2|2

= (1 + 8ε)|x1 − x2|2 + (1 + 3ε)|y1 − y2|2,
so that |F(z1) − F(z2)| ≤ √

1 + 8ε |z1 − z2| ≤ (1 + 4ε)|z1 − z2|.
For the lower bound, we discard irrelevant positive terms and get

|F(z1) − F(z2)|2 ≥ |x1 − x2|2 + t3 − |t4|
≥ (1 − 4ε)|x1 − x2|2 + (1 − 2ε)|y1 − y2|2
≥ (1 − 4ε)|z1 − z2|2.

This implies that |F(z1) − F(z2)| ≥ √
1 − 4ε |z1 − z2| ≥ |z1 − z2|/(1 + 4ε).

The proof for the bilipschitz condition is now complete, and the last in-
equality is obvious.

Lemma 3.5. Let A ⊂ Rn and let ε ≤ 1/10. Suppose that a ∈ A, r > 0
and let f : A → Rn be (1 + ε)-bilipschitz such that |f (z) − z| ≤ εr whenever
|z−a| ≤ r/2 andf (z) = z for |z−a| ≥ r/2. DefineF : A∪(Rn\B(a, r)) → Rn

by setting

F(z) =
{

f (z) for z ∈ A,

z for |z − a| ≥ r .
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Then F is (1 + 3ε)-bilipschitz.

Proof. Let z1 ∈ A ∩ B(a, r/2) and |z2 − a| ≥ r . Then |z1 − z2| ≥ r/2,
which implies that

|F(z1) − F(z2)| = |f (z1) − z2| ≤ |f (z1) − z1| + |z1 − z2| ≤ εr + |z1 − z2|
≤ (1 + 2ε)|z1 − z2|.

In the opposite direction, we have

|F(z1) − F(z2)| = |f (z1) − z2| ≥ |z1 − z2| − |f (z1) − z1| ≥ |z1 − z2| − εr

≥ (1 − 2ε)|z1 − z2| ≥ |z1 − z2|/(1 + 3ε),

since ε ≤ 1/10.
All other cases for z1, z2 are trivial, and the proof is complete.

Finally, we need an estimate on the distortion of angles under bilipschitz
maps.

Lemma 3.6. Let 1 < t ≤ 2 and let f : {0, 1, t} → Rn be (1 + ε)-bilipschitz
with ε ≤ 1/100. Let A = f (0), B = f (1), C = f (t) and α = 
 BAC. Then
α ≤ 2.1

√
ε.

Proof. Consider the triangle with vertices A, B, C. By elementary geo-
metry α is maximal in the case AB = 1 + ε, BC = (t − 1)(1 + ε), and
AC = t/(1 + ε). Using trigonometry and Taylor approximation we obtain

sin α ≤ 2
√

(t − 1)ε ≤ 2
√

ε ≤ 0.2.

Furthermore, for these values we have α ≤ 1.01 sin α ≤ 2.1
√

ε, and the proof
is complete.

4. Main proofs

We use triangle maps to prove the following theorem, which constitutes the
first part of our main result.

Theorem 4.1. Let λ ≥ 1, c > (14λ)8, and let A ⊂ R2 be λ-relatively
connected but not c-sturdy. Then for 1/

√
c ≤ ε ≤ 1/(14λ)4 there is a (1+48ε)-

BL map f : A → R2 with the following property: there are a ∈ A and r > 0
such that

‖T − f ‖A(a,r) ≥ r

1000λ3

√
ε

for all isometries T : R2 → R2.
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Proof. Since A is not (1/ε2)-sturdy, there are two possibilities.
Case 1: Condition 2.2(1) is not satisfied. In this case there are a ∈ A and

r > 0 such that A 
⊂ B(a, r), s(a) ≤ ε2r and θ(A(a, r)) ≤ 2ε2r . By scaling,
we may assume that a = 0, r = 1, and then A 
⊂ B(1) = B(0, 1), s(0) ≤ ε2,
θ(A(0, 1)) ≤ 2ε2. Furthermore, we may assume that A(0, 1) is contained in
the 2ε2-neighbourhood of R ⊂ R2.

We apply [6, 4.11(2)] with c = 4λ to find points u, v ∈ A as follows.
Since s(0) ≤ ε2 < ε, the set A(0, 2.25ε) contains at least two points. Also
A 
⊂ B(1), and thus there is a point u ∈ A∩B(9λε)\B(2.25ε). Similarly, since
80λ2ε ≤ 1, there is v ∈ A∩B(80λ2ε)\B(20λε). There are six possibilities for
the order of the points 0, u1, v1 and of these only two are essentially different;
we consider the case where 0 < u1 < v1 < 1, the other cases being similar.
However, the constants appearing below apply for all cases and may thus seem
unnecessarily large for this special case.

We construct a bilipschitz map f : A → R2 as follows:

– Apply Lemma 3.3 with substitutions 0 �→ 0, a �→ u1, b �→ v1, relying on
the estimates v1 > 19λε > 2u1 and u1 > 2ε. This gives a 2

√
ε-Lipschitz

map f1: R → R such that f1(x) = 0 if x 
∈ [0, v1], f1(u1) = ε3/2, and
K ≤ 1/

√
ε.

– Apply Lemma 3.4 with ε �→ (2
√

ε )2 = 4ε, δ �→ 2ε2, I �→ R and f �→ f1.
Then Kδ ≤ 2ε3/2 ≤ 4ε, and the resulting map F : R × [−δ, δ] → R2 is
(1 + 16ε)-BL. Also, we have l ≤ 90λ2ε and therefore

|F(z) − z| ≤ 90λ2ε
√

4ε + 2ε2 < ε

for all z. This is the crucial estimate that determines the upper bound for ε.

– We extend the definition of F outside B(1) by F(z) = z. Substitute ε �→
16ε and r = 1/2 in Lemma 3.5. Since 90λ2ε ≤ r/2, we have |F(z) − z| ≤
ε ≤ 16εr for |z| ≤ r/2 and F(z) = z for |z| ≥ r/2. It follows that F is
(1 + 48ε)-BL.

– The domain of definition for F contains the set A and by restriction we get
the required (1 + 48ε)-BL map f : A → R2.

It remains to show that f cannot be well approximated by isometries. For this
it suffices to consider the restriction f | {0, u, v} in the disk B = B̄(0, r1),
where r1 = 90λ2ε. Let A′ = {0, u, v} and let h: R2 → R2 be a similarity
such that h(0) = −1, h(v) = 1 and let g = hf h−1: hA′ → hf A′. Since
f (0) = 0, f (v) = v, Lemma 3.2 can be applied to g. The similarity ratio t of
h satisfies 1/45λ2ε ≤ t ≤ 1/10λε, and thus θ(hA′) ≤ 2ε2/10λε = ε/5λ and
θ(ghA′)) ≥ (ε3/2 −4ε2)/45λ2ε >

√
ε/46λ2. Thus the error of approximation
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of g by an isometry is at least
√

ε/92λ2 − ε/10λ ≥ √
ε/100λ2,

and therefore

‖T − f ‖A(0,r1) ≥ 10λε(
√

ε/100λ2) = ε3/2/10λ >
r1

1000λ3

√
ε

for all isometries T . This completes the proof for Case 1.
Case 2: Condition 2.2(2) is not satisfied. This implies that A is bounded and

θ(A) < ε2d(A). Using λ-relative connectedness, we can find points a, b, c ∈
A such that 1 ≤ |a − b|/|b − c| ≤ λ. Using Lemmas 3.3 and 3.4, we can
construct a map f : A → R2 that by 3.2 contradicts the requirements. The
details are similar to Case 1 and are omitted.

This completes the proof.

Theorem 4.2. Let λ ≥ 1000, let A ⊂ Rn be a closed set that is not λ-
relatively connected. Then there is ε ≤ 2/(λ − 2) and a (1 + ε)-bilipschitz
map f : A → Rn with the following property: If F : Rn → Rn is a (1 + δ)-
bilipschitz extension of f , then

δ ≥ 1/20 ln2 ε.

Proof. We use the concept of upper sets from [6, 4.9]. Since A is not λ-
relatively connected, the upper set Ã consists of more than one ln λ-component.
Let γ be a ln λ-component that is not the greatest element; see [6, 3.2]. By
[6, 3.4(11) and 3.4(14)] the set πγ is compact, and by [6, 3.4(12)] we have
A∩B(πγ, (λ−1)d(πγ )) = πγ . Choose a, b ∈ πγ such that |a−b| = d(πγ )

and then z ∈ A \ πγ such that d(z, πγ ) is minimal. We may assume that
|b − z| ≤ |a − z|, and hence 
 abz ≥ π/3. Using suitable similarities, we may
assume that b = 0, |a − b| = 1 and z = te1 with t ≥ λ − 1.

We choose ε = 2/(t − 1) ≤ 2/(λ − 2) < 0.01 and construct a (1 + ε)-
bilipschitz map f : A → Rn as follows. Let f | (A \ B(0, 1)) = id, and let f

rotate B̄(0, 1) so that f (0) = 0 and f (a) = e1. To calculate the bilipschitz
constant L of f , we note that the worst case arises from a = −e1, f (a) = e1;
this seems geometrically obvious and can be proved by solving an elementary
extremal value problem. Thus

L ≤ t + 1

t − 1
= 1 + 2

t − 1
= 1 + ε.

Suppose now that f can be extended to a (1 + δ)-bilipschitz map F : Rn →
Rn. We apply Lemma 3.6 to the map F−1 | {0, e1, 2e1, 4e1, . . . , 2Ne1, z},
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where N = �log2 t�. Let ai = F−1(2ie1) for i = 0, 1, 2, . . . , N and aN+1 = z.
The lemma implies that 
 ai0ai+1 ≤ 2.1

√
δ, and therefore

1 ≤ π

3
≤ 
 a0z ≤

N∑
i=0


 ai0ai+1 ≤ 2.1
√

δ(N + 1) ≤ 2.1
√

δ(log2 t + 1)

≤ 2.1
√

δ(1.5 ln t + 1) ≤ 3.15
√

δ ln(2t).

Since t = 2/ε + 1 ≤ 2.1/ε, we obtain

δ ≥ 1

10 ln2(4.2/ε)
≥ 1

20 ln2 ε
.

This completes the proof.

4.3. Proof of Theorem 1.1. The implication (1) ⇒ (2) was the main result
of [3].

For the converse part, suppose that A has the (C, δ)-linear BLEP. Choose
s0 = s0(C) > 0 such that g(s) = 20Cs ln2 s < 1 for 0 < s ≤ s0 and set
λ = λ(C, δ) = max{1000, 2 + 2/(δ ∧ s0)}.

We first show that A is λ-RC. If this is not the case, then Theorem 4.2 gives
an ε ≤ 2/(λ − 2) and a (1 + ε)-bilipschitz map f : A → R2. As ε ≤ δ, the
(C, δ)-linear BLEP of A gives a (1+Cε)-bilipschitz extension F : R2 → R2 of
f . By 4.2 we have g(ε) ≥ 1, which gives the contradiction ε > s0 ≥ 2/(λ−2)

and proves that A is λ-RC.
To prove that A is c0-sturdy with c0(C, δ), we assume that A is not c-sturdy

for some c > (14λ)8 ∨ 482/δ2. Writing ε1 = 1/
√

c, we have ε1 < 1/(14λ)4.
Hence 4.1 gives a (1 + 48ε1)-bilipschitz map f1: A → R2, a point a ∈ A and
a radius r > 0 such that

‖T − f1‖A(a,r) ≥ r
√

ε1/1000λ3

for every isometry T of R2.
By Theorem 2.6 the set A has the (C1, δ)-IAP with C1(C). As 48ε1 ≤ δ,

there is an isometry T1 of R2 such that ‖T1 − f1‖ ≤ 48C1ε1r , which implies
that

c = 1/ε2
1 ≤ (48 · 1000C1λ

3)4 < 6 · 1018C4
1λ12.

This completes the proof of the main theorem.

Remark 4.4. The first part of the above proof can be easily modified to
show that a planar set A having the ϕ-BLEP is relatively connected if

lim
ε→0

ϕ(ε) ln2 ε = 0.
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